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We discuss different mathematical models of gene regulatory networks as relevant to the onset and development of cancer. After
discussion of alternative modelling approaches, we use a paradigmatic two-gene network to focus on the role played by time delays
in the dynamics of gene regulatory networks. We contrast the dynamics of the reduced model arising in the limit of fast mRNA
dynamics with that of the full model. The review concludes with the discussion of some open problems.

1. Introduction

Cancer is a complex disease, triggered by multiple mutations
in various genes and exacerbated by a number of different
behavioural and environmental factors. Some risk factors
associated with possible onset and development of cancer
are preventable, such as inappropriate diet, physical inactiv-
ity, smoking, and drinking [1], while other causes include
pathogens (HPV16 and HPV18 are known to cause up to 70%
of cervical cancer cases [2]), as well as genetic predisposition.
Many studies have focussed on identifying efficient genetic
cancer biomarkers, such as specific genes and groups of genes
associated with significant number of cases of breast cancer
[3] and prostate [4] and pancreatic cancer [5]. Despite this
progress, due to significant complexity associated with muta-
tions of various cancer genes, many molecular mechanisms
of oncogenesis remain poorly understood.

Recent advances in microarray and high-throughput
sequencing technologies have provided pathways for mea-
suring the expression of thousands of genes and mapping
most crucial genes and groups of genes controlling different
types of cancer. The networks of interactions between DNA,
RNA, proteins, and molecules are defined as gene regulatory
networks (GRNs). GRNs play a major role in a large num-
ber of normal life processes, including cell differentiation,
metabolism, the cell cycle, and signal transduction; hence,
significant efforts have been made to develop mathematical
techniques for their analysis [6–8].

GRNs are usually formalised as networks (undirected
or directed) where the nodes represent individual genes,
proteins, and so forth and the edges correspond to some form
of regulation between the nodes. In order tomake progress in
understanding the onset and development of cancer, as well
as to develop effective drug targets, it is essential to be able
to reconstruct GRNs pertinent to particular types of cancer
from available data. Yeh et al. [9] have used a 𝑘-nearest-neigh-
bours algorithm to identify GRNs correlated with cancer,
tumour grade, and stage in prostate cancer. As an alternative
approach, Bonnet et al. [10] have utilised LeMoNe (Learning
Module Networks) algorithms to derive GRNs from gene and
mRNA expression, as measured in lymphoblastoid cell lines
of prostate cancer patients. A rule-based algorithm has been
successfully used to determineGRNs in colon cancer [11], and
similar kinds of networks have been identified frommicroar-
ray data using neural fuzzy networks [12]. Madhamshettiwar
et al. [13] discuss different approaches to infer GRNs in
ovarian cancer, as well as the potential of using these GRNs
to develop optimal drug targets. Bayesian network techniques
have been employed to construct GRNs frommicroarray data
for breast cancer [14]. In a recent paper, Emmert-Streib et
al. [15] have successfully used BC3Net inference algorithm
to analyse a large-scale breast cancer gene expression dataset
and reconstruct the associated GRN.

In the next section we survey and compare different
approaches to model the dynamics of GRNs, making an
emphasis on particular biological features that can be best
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represented by each of the methods. Section 3 focuses on the
role of transcriptional and translational time delays in GRN
models, and we show how such delays can be introduced in a
paradigmatic two-gene activator-inhibitor GRN. Depending
on a particular biological regime in which a given GRN is
operating, it is often possible to encounter a situation where
there is a significant separation of time scales due to, for
instance, very fast mRNA dynamics compared to other char-
acteristic time scales. In such a case it is possible to perform
dimensional reduction and concentrate on the dynamics of
a smaller number of variables. In Section 4 we analyse such
reduced model and show how one can derive analytical
conditions that lead to a transition froma stable steady state to
stable periodic oscillations that are impossible in the model
systemwithout the time delays. Section 5 extends the analysis
to a full nonlinear system to illustrate differences in stability
conditions. The review concludes in Section 6 with a discus-
sion of main results and some open questions.

2. Mathematical Models of
Gene Regulatory Networks

In the analysis of gene regulatory networks and their dynam-
ics, the first step is the identification of key modules or
components and possible relations between them, which is
often done by interrogating available expression data. Once
the topology of theGRNhas been fixed, the next step inmod-
elling the dynamics is making realistic assumptions about
specific rules that govern the expression of particular genes.
Depending on the level of understanding of underlying pro-
cesses, the complexity of the GRN under investigation, and
the specific questions to be addressed, there are severalmetho-
dologically different approaches that can be employed. Endy
and Brent [16] and Hasty et al. [17] discuss biological under-
pinnings for studying and modelling GRNs, while excellent
reviews by de Jong [7], Bernot et al. [8], Tušek and Kurtanjek
[18], and Hecker et al. [19] give an overview of mathematical
and statistical techniques that have been successfully used to
modelGRNs, and someof thesemethods are discussed below.

2.1. BooleanNetworks. Some of the firstmodels developed for
modelling GRNs were the so-called Boolean networks [20–
22], where the states of all genes participating in the inter-
actions are represented by binary variables having the values
of ON and OFF, or 1 and 0, with the possibility of either
synchronous or asynchronous update rules for the nodes.
Boolean logic rules are then used to approximate regulatory
control of gene expression [23], with updates of binary states
of all genes taking place simultaneously [24]. Boolean net-
works approach has been extended in several directions to
provide a better approximation of real GRNs. Shmulevich
et al. [25] have proposed a probabilistic analogue of Boolean
networks to account for stochastic nature of many processes
involved in gene expression. Silvescu and Honavar [26] have
proposed temporal Boolean networks, where the next state of
genes in the networks is determined not only by their current
state but also by a fixed number of their previous states, which
effectively allows one to take into account some history of

transitions in GRN. Recently, Boolean network models of
GRNs have been compared to models based on ordinary
differential equations (ODEs), and, in fact, it has been shown
that some Boolean models can be rigorously derived as
coarse-grained analogues of some ODE models [27].

Significant advantage of usingBooleannetworks tomodel
GRNs lies in the fact that they allow one to consider networks
with a very large number of nodes. At the same time, there are
several deficiencies in this approach. The first one concerns
the fact that since the gene states only admit the values of
ON or OFF, this formalism does not take into account inter-
mediate stages of gene expression [28]. Another issue is that
GRNs modelled by Boolean networks can exhibit behaviour
not observed in real life; hence, special care has to be taken
when choosing the class of admissible Boolean functions [29].

2.2. Fuzzy Methods. Due to intrinsic imprecision and uncer-
tainty associated with gene expression data, it may be appro-
priate to move away from precise rules of Boolean logic
in favour of machine learning techniques based on fuzzy
logic. The basic idea is that, rather than trying to reconstruct
some assumed fixed gene network topology, one considers
the whole family of possible networks with all possible dis-
tributions of links between nodes. The problem lies in using
actual data to assign appropriate probabilities to each of these
configurations, so that for a given input the fuzzy network
would provide an output that most resembles actual data. A
significant advantage of fuzzy logic for inferring the structure
of GRNs lies in their ability to rely on already available
knowledge of biological relations between different nodes in
the network and, at the same time, being able to recover
important previously unknown connections. On the other
hand, fuzzy methods for GRN inference are characterised by
a high level of computational complexity.

To give a few examples, fuzzy approach has been used
to analyse microarray data from the yeast cell cycle and to
recover a set of GRNs, with 𝑘-nearest-neighbour algorithm
being used to replace missing data [30]. Woolf andWang [31]
have used 𝑘-means clustering algorithm to reconstruct and
evaluate GRNs for Saccharomyces cerevisiae. In this approach,
groups of coregulated genes are considered clusters, and
clustering algorithm is then used to detect cluster centres.
Volkert andMahlis [32] have used a smooth response surface
algorithm to recoverGRNs fromgene expression data for Sac-
charomyces cerevisiae. Approaches based on an artificial bee
colony search algorithm have allowed the reconstruction of
a GRN in Escherichia coli [33]. A very recent review by Al
Qazlan et al. [34] gives an overview of different fuzzy meth-
ods, as well as their combinations with other approaches,
such as ordinary differential equations, with the purpose of
optimising data mining of gene expression and microarray
datasets to recover GRNs.

2.3. Ordinary and Delay Differential EquationModels. A very
powerful and mathematically insightful methodology for
analysis of GRNs is based on nonlinear ordinary or delay dif-
ferential equations (ODEs or DDEs). In this approach, a gene
regulatory network is represented by concentrations of differ-
ent mRNAs and proteins, and the dynamics can be written as
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a system of ODEs or DDEs using the law of mass action for
individual reactions [6]. Some of the earliest results on ODE
models of gene regulation go back to Goodwin [35, 36], who
introduced and studied a negative feedback loop involving
the concentrations of mRNA, an enzyme, and a metabolite.
It has been later shown that a negative feedback loop is abso-
lutely essential to ensure the existence of stable periodic solu-
tions, while positive feedback is required formultistationarity
[37, 38]. This approach was subsequently generalised and
expanded [39–42]; reviews by Smolen et al. [24], de Jong [7],
and Hecker et al. [19] discuss some of these models based on
systems of nonlinear ODEs. A very important aspect of all
these models is a regulation function that controls the rates of
gene expression. In light of experimental evidence suggesting
monotonic sigmoidal shape of regulation functions [43], a
conventional choice for this function is given by the Hill
function [44–46]. Weiss [47] has discussed various chemical
mechanisms associated with the Hill function, including dif-
ferent kinds of ligand binding, and amore recent reviewof the
uses of theHill function in GRNmodels can be found in [48].

In order tomore accurately represent a switch-like behav-
iour of the gene expression, several authors have developed
models of GRNs using piecewise-linear differential equa-
tions, in which the continuous Hill function is replaced by a
discontinuous step function [49–54]. Besides regular steady
states, the piecewise-linear models also allow for singular
steady states, which, although important for representing
homeostasis in GRNs, are complex to analyse due to discon-
tinuities at the thresholds [55, 56]. Polynikis et al. [44]
discuss various features of piecewise-linear ODEmodels and
different dynamical regimes that can be exhibited in these
models, including possible periodic solutions, sharp-thresh-
old dynamics, and the comparison with models based on
continuous regulation function.

In terms of applications to cancer, ODE models have
explained aberrant dynamics of the NF-𝜅B transcription fac-
tor linked to oncogenesis, tumour progression, and resistance
to therapy, as well as the dynamics of I𝜅B-NF-𝜅B [57, 58].
Another example is the analysis of the feedback loop between
the tumour suppressor p53 and the oncogene Mdm2 [59]
and the single-cell response of p53 to radiation-inducedDNA
damage [60]. There is a clinical evidence suggesting that
different components of the PI3K/AKT pathway can lead
to aberrant cell growth, metastatic competence, and therapy
resistance, and some progress has been made in modelling
this pathway and identifying inhibitors responsible for the
regulation of PI3K/AKT signalling [61]. Cheng et al. [62] and
Edelman et al. [63] give a number of examples of the uses of
differential equation based models for the analysis of GRNs
in cancer.

Another aspect that has to be properly accounted for in
dynamical models is the fact that transcription and transla-
tion during gene expression often take place over nonnegligi-
ble time periods. Monk [64] has shown how time delays can
cause oscillatory gene expression and provide insights into
the dynamics of interactions between p53 andMdm2proteins
associated with cancer suppression. Subsequent research has
focused on the role of time delays in GRN dynamics [65–
69]. Xiao and Cao [70] have analysed a Hopf bifurcation in

a gene network with two transcriptional delays, which occurs
when the sum of the delays passes through a critical value,
and shown how the amplitude and period of oscillations of
gene expression change with the time delays. Due to the fact
that it may not be practically possible to identify discrete
transcription/translation time delays, a better alternative
would be to use models with distributed delay [71]. Models
with time delays have been used to understand the regulation
of feedback loops involving transcription factors E2F and
Myc, known oncogenes, and possible tumour suppressors
[72, 73]. Ribeiro et al. [74] have developed a delayed stochastic
simulation algorithm for analysis of the p53-Mdm2 feedback
loop whose malfunction is associated with 50% of cancers.
Sequences of multiple reactions with unknown intermediate
kinetics can also be successfully analysed using time-delayed
models [75, 76].

2.4. Stochastic Models. Experimental evidence suggests that
significant stochastic fluctuations are observed during gene
expression and regulation; hence, in many cases it is para-
mount to use stochastic models for studying GRN dynamics
[77, 78]. Even in the absence of extrinsic noise associatedwith
variability in different environmental factors, there are several
fundamental processes responsible for intrinsic stochasticity
of gene expression [79, 80]. One of these is the process of
initiation of transcription, which starts by first forming an
elongation complex by binding RNA polymerase (RNAp) to
the promoter region of the gene, and there is a significant
variation in the duration of elongation processes between
different transcription events [81–84]. Binding of RNAp to
the promoter regions of different genes results in switching
of these genes on and off, thus either blocking or facilitating
further transcription, which gives another major source of
noise in GRNs. Stochasticity in expression of individual gene
results in stochastic behaviour of larger genetic circuits and
GRNs [77, 85]. Some of the early work on stochastic gene
expression emerged from experiments in synthetic biology
[86, 87] that demonstrated how stochasticity can result in
sustained oscillations, and significant amount of research has
been subsequently done both theoretically and experimen-
tally on the analysis of stochastic (and delayed) oscillations in
gene regulatory networks [80, 88–90]. Zavala and Marquez-
Lago have recently considered delay-induced oscillations
in deterministic and stochastic models of single-cell gene
expression, highlighting important differences between these
two types of models and associated behaviours [91].

Besides being an intrinsic feature of biological dynamics,
stochasticity has proved to be important in the context of
engineered genetic switches [86, 92]. de Jong [7] and El
Samad et al. [93] discuss various methods for modelling sto-
chastic GRN models, including stochastic master equation
and various stochastic simulation algorithms. Bratsun et al.
[90] have developed an algorithm for analysis of non-
Markovian dynamics in GRNs with time delays and showed
that these delays are able to induce oscillatory dynamics in the
case where deterministic models do not exhibit oscillations.
This methodology was later improved, and several exact
stochastic simulation algorithms have been developed for
simulations of time-delayed models [94, 95]. A review by
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Ribeiro [84] discusses various techniques for simulating
stochastic time-delayed dynamics of gene expression, and
very recently Jansen and Pfaffelhuber [96] have reviewed the
role of delay distribution in the stochastic dynamics during
gene expression.

Another way to approach stochasticity in the analysis
and reconstruction of GRNs is by using so-called Bayesian
networks [97], where gene expression values are represented
as random variables and relations between them are proba-
bilistic. Learning techniques for Bayesian networks [98, 99]
allow one to combine expression datawith a priori knowledge
to deduce the structure of GRN that best matches the avail-
able expression data. Friedman et al. [97] have developed an
algorithm for deriving Bayesian networks that circumvents a
dimensionality problem, and this method has been used to
analyse the cell cycle data for S. cerevisiae containing numer-
ous measurements of mRNA expression levels [100]. Out of
800 genes it was possible to identify a few genes controlling
the regulation of cell cycle processes.

The rest of this paper is devoted to consideration of the
effects of transcriptional and translational time delays on the
dynamics of GRNs. In the next sectionwe introduce the time-
delayed model of a two-gene activation-inhibition network
together with its quasi-steady state simplification and estab-
lish the well-posedness of both models. Section 4 contains
the derivation of analytical conditions for stability and Hopf
bifurcation in the case of very fast mRNA dynamics, while
in Section 5 the analysis is extended to the full time-delayed
system. The paper concludes in Section 6 with discussion of
results and future research directions.

3. Time-Delayed Models:
Derivation and Positivity

To motivate the analysis of time-delayed effects on gene reg-
ulatory dynamics, following Polynikis et al. [44], we consider
an activation-inhibition two-gene GRN consisting of two
genes 𝑎 and 𝑏, which are assumed to have no effect on their
own expression; at the same time, protein 𝑃𝑏 is assumed to
activate the expression of gene 𝑎, while protein𝑃𝑎 inhibits the
expression of gene 𝑏. This is one of the fundamental motifs,
which has been shown to be functionally relevant in GRNs
[62, 101]. Denoting the concentrations of proteins 𝑃𝑎 and 𝑃𝑏
as 𝑝𝑎 and 𝑝𝑏 and concentrations of transcribed mRNAs as 𝑟𝑎
and 𝑟𝑏, the following system of equations can be derived for
the dynamics of this GRN [44]:

̇𝑟𝑎 = 𝑚𝑎ℎ
+
(𝑝𝑏; 𝜃𝑏, 𝑛𝑏) − 𝛾𝑎𝑟𝑎,

̇𝑟𝑏 = 𝑚𝑏ℎ
−
(𝑝𝑎; 𝜃𝑎, 𝑛𝑎) − 𝛾𝑏𝑟𝑏,

�̇�𝑎 = 𝑘𝑎𝑟𝑎 − 𝛿𝑎𝑝𝑎,

�̇�𝑏 = 𝑘𝑏𝑟𝑏 − 𝛿𝑏𝑝𝑏,

(1)

where 𝑚𝑖 are the maximum transcription rates, 𝑘𝑖 are the
translation rates, 𝛾𝑖 are the mRNA degradation rates, and 𝛿𝑖
are the protein degradation rates for 𝑖 = 𝑎, 𝑏. Equations (1)
are called the complete nonlinear model (CNM). To make
further analytical progress, the activation and inhibition

functions in system (1) can be written as the following Hill
functions:
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where 𝜃𝑎 and 𝜃𝑏 are known as activation and inhibition
coefficients and the integer parameters 𝑛𝑎 and 𝑛𝑏, known as
Hill coefficients, determine the steepness of Hill curves [6].
The parameters 𝜃𝑎 and 𝜃𝑏 give the values of protein concen-
trations 𝑝𝑎 and 𝑝𝑏, at which the corresponding Hill function
achieves half of its maximum value. Depending on the values
of transcription rates, this would then lead to a significant
increase in the respective mRNAs regulated by these proteins
[8, 44].

Due to the fact that the dynamics of mRNA is normally
much faster than that of related proteins, one can use a quasi-
steady state assumption to simplify CNM (1) by reducing the
number of equations. Effectively, this means assuming that
mRNAs have already reached their steady state concentra-
tions, that is, taking ̇𝑟𝑖 ≈ 0, 𝑖 = 𝑎, 𝑏 in CNM (1), and then
focusing on the dynamics of proteins only, as given by the
following simplified nonlinear model (SNM):
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(4)

Polynikis et al. [44] have shown that while the CNM exhibits
Hopf bifurcation of a positive equilibrium, leading to persis-
tent oscillations, in the case of the SNMmodel this behaviour
can disappear. They have also demonstrated an important
role played by the Hill coefficients, as well as the separation
of timescales between mRNA and proteins, with a larger
scale separation favouring a stable equilibrium rather than
oscillatory behaviour.

While the transcription and translation may be faster
than characteristic times associated with significant changes
in protein concentrations (of the order of 5 minutes for
transcription + translation and 1 hour for a 50% change in
the concentration of translated protein for E. coli [6]), these
are, in fact, multistep processes consisting of thousands of
consecutive chemical reactions. Hence, the duration of tran-
scription and translation is nonnegligible when considered in
the context of GRN dynamics [84, 96] and has to be correctly
accounted for in mathematical models. To analyse the effects



Computational and Mathematical Methods in Medicine 5

of transcriptional and translational time delays we introduce
the following model:

̇𝑟𝑎 = 𝑚𝑎ℎ
+
(𝑝𝑏 (𝑡 − 𝜏𝑟𝑎

) ; 𝜃𝑏, 𝑛𝑏) − 𝛾𝑎𝑟𝑎,

̇𝑟𝑏 = 𝑚𝑏ℎ
−
(𝑝𝑎 (𝑡 − 𝜏𝑟𝑏

) ; 𝜃𝑎, 𝑛𝑎) − 𝛾𝑏𝑟𝑏,

�̇�𝑎 = 𝑘𝑎𝑟𝑎 (𝑡 − 𝜏𝑝𝑎
) − 𝛿𝑎𝑝𝑎,

�̇�𝑏 = 𝑘𝑏𝑟𝑏 (𝑡 − 𝜏𝑝𝑏
) − 𝛿𝑏𝑝𝑏,

(5)

where 𝜏𝑟𝑎
and 𝜏𝑟𝑏

are the delays during transcription of
mRNAs 𝑟𝑎 and 𝑟𝑏 and 𝜏𝑝𝑎 and 𝜏𝑝𝑏 are the delays during trans-
lation of proteins 𝑝𝑎 and 𝑝𝑏, respectively. This model will
be referred to as the delayed complete nonlinear model
(DCNM). Similar to the case of instantaneous transcription
and translation, the quasi-steady state assumption simplifies
system (5) to the following delayed simplified nonlinear
model (DSNM):

�̇�𝑎 = 𝑘


𝑎
ℎ
+
(𝑝𝑏 (𝑡 − 𝜏𝑟𝑎

− 𝜏𝑝𝑎
) ; 𝜃𝑏, 𝑛𝑏) − 𝛿𝑎𝑝𝑎,

�̇�𝑏 = 𝑘


𝑏
ℎ
−
(𝑝𝑎 (𝑡 − 𝜏𝑟𝑏

− 𝜏𝑝𝑏
) ; 𝜃𝑎, 𝑛𝑎) − 𝛿𝑏𝑝𝑏,

(6)

with parameters 𝑘
𝑎
and 𝑘
𝑏
defined in (4).

Before proceeding with the analysis, one has to augment
models (5) and (6) with the appropriate initial conditions
and establish that these models are well posed; that is, their
solutions remain nonnegative for all time to ensure their
biological feasibility.The initial conditions for DCNMmodel
(5) are given by

𝑟𝑎 (𝑠) = 𝜙1 (𝑠) , 𝑠 ∈ [−𝜏max, 0] ,

𝑟𝑏 (𝑠) = 𝜙2 (𝑠) , 𝑠 ∈ [−𝜏max, 0] ,

𝑝𝑎 (𝑠) = 𝜙3 (𝑠) , 𝑠 ∈ [−𝜏max, 0] ,

𝑝𝑏 (𝑠) = 𝜙4 (𝑠) , 𝑠 ∈ [−𝜏max, 0] ,

(7)

where 𝜏max = max (𝜏𝑟𝑎 , 𝜏𝑟𝑏 , 𝜏𝑝𝑎 , 𝜏𝑝𝑏) and 𝜙𝑖(𝑠) ∈ 𝐶([−𝜏max, 0],
R) with 𝜙𝑖(𝑠) ≥ 0 (−𝜏max ≤ 𝑠 ≤ 0, 𝑖 = 1, . . . , 4) and similarly
for DSNM model (6). Here, 𝐶([−𝜏max, 0],R) is the Banach
space of continuous mappings of interval [−𝜏max, 0] onto R.
It is further assumed that 𝑟𝑎(0) > 0 and 𝑟𝑏(0) > 0 to ensure
that at least some amount of proteins will be produced.

We now prove that solution (𝑟𝑎(𝑡), 𝑟𝑏(𝑡), 𝑝𝑎(𝑡), 𝑝𝑏(𝑡)) of
DCNMmodel (5) with the initial condition (7) is positive for
all 𝑡 > 0.This result can be proven by contradiction, following
themethodology used in [102]. As a first step, let us show that
𝑟𝑏(𝑡) ≥ 0 for all 𝑡 > 0. Let 𝑡1 > 0 be the first time when
𝑝𝑎(𝑡1)𝑟𝑏(𝑡1) = 0; assuming that 𝑟𝑏(𝑡1) = 0 implies 𝑝𝑎(𝑡) ≥ 0

for all 𝑡 ∈ [0; 𝑡1] and since 𝑡1 is the first time when 𝑟𝑏(𝑡1) = 0,
this also means 𝑑𝑟𝑏(𝑡1)/𝑑𝑡 ≤ 0; that is, the function 𝑟𝑏(𝑡) is
decreasing at 𝑡 = 𝑡1. On the other hand, evaluating the second
equation of system (5) at 𝑡 = 𝑡1 yields

𝑑𝑟𝑏 (𝑡1)

𝑑𝑡
=

𝑚𝑏𝜃
𝑛𝑎
𝑎

𝑝𝑎 (𝑡1 − 𝜏𝑟𝑏
)
𝑛𝑎
+ 𝜃
𝑛𝑎
𝑎

> 0, (8)

which gives a contradiction. Since 𝑟𝑏(0) > 0, this implies
𝑟𝑏(𝑡) > 0 for all 𝑡 > 0. Now that the positivity of 𝑟𝑏(𝑡) has
been established, let 𝑡2 > 0 be the first time when 𝑝𝑏(𝑡2) = 0.
In order for this to happen, one must have 𝑑𝑝𝑏(𝑡2)/𝑑𝑡 ≤ 0;
that is, the function 𝑝𝑏(𝑡) should be decreasing at 𝑡 = 𝑡2. At
the same time, evaluating the last equation of system (5) at
𝑡 = 𝑡2 yields

𝑑𝑝𝑏 (𝑡2)

𝑑𝑡
= 𝑘𝑏𝑟𝑏 (𝑡2 − 𝜏𝑝𝑏

) > 0, (9)

which gives a contradiction and, therefore, 𝑝𝑏(𝑡) > 0 for all
𝑡 > 0. In a similar manner, the positivity of 𝑝𝑏(𝑡) implies the
positivity of 𝑟𝑎(𝑡), which in turn implies the positivity of𝑝𝑎(𝑡).
Hence, all solutions 𝑟𝑎(𝑡), 𝑟𝑏(𝑡), 𝑝𝑎(𝑡), and 𝑝𝑏(𝑡) of DCNM
model (5) are positive for all 𝑡 > 0. The same approach can
be employed to show positivity of solutions of DSNMmodel
(6).

Steady states (𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏) of the DCNM model can be
found as roots of the following system of algebraic equations:

𝑚𝑎ℎ
+
(𝑝
𝑏
; 𝜃𝑏, 𝑛𝑏) − 𝛾𝑎𝑟𝑎 = 0,

𝑚𝑏ℎ
−
(𝑝
𝑎
; 𝜃𝑎, 𝑛𝑎) − 𝛾𝑏𝑟𝑏 = 0,

𝑘𝑎𝑟𝑎 − 𝛿𝑎𝑝𝑎 = 0,

𝑘𝑏𝑟𝑏 − 𝛿𝑏𝑝𝑏 = 0.

(10)

This gives

𝑟𝑎 =
𝛿𝑎

𝑘𝑎

𝑝
𝑎
,

𝑟𝑏 =
𝛿𝑏

𝑘𝑏

𝑝
𝑏
,

𝑝
𝑏
=

𝜙𝑏𝜃
𝑛𝑎
𝑎

𝜃
𝑛𝑎
𝑎 + 𝑝

𝑛𝑎

𝑎

,

(11)

where 𝑝
𝑎
satisfies the polynomial equation:

𝜃
𝑛𝑏

𝑏

𝑛𝑏

∑

𝑘=0

(
𝑛𝑏

𝑘
)𝑝
𝑛𝑎(𝑛𝑏−𝑘)+1

𝑎
𝜃
𝑛𝑎𝑘

𝑎
+ (𝑝
𝑎
− 𝜙𝑎) (𝜙𝑏𝜃

𝑛𝑎
𝑎
)
𝑛𝑏
= 0, (12)

and we used the notation

𝜙𝑎 =
𝑚𝑎𝑘𝑎

𝛾𝑎𝛿𝑎

,

𝜙𝑏 =
𝑚𝑏𝑘𝑏

𝛾𝑏𝛿𝑏

.

(13)

Even for realistically small values of Hill coefficients, such as
𝑛 = 2, 3 [103] or 𝑛 = 4–8 [104], (12) is too complicated to allow
one to analytically find closed form expressions for 𝑝

𝑎
and

other state variables. Despite not having explicit formulae for
possible steady states (𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏), one can still perform the
analysis of stability in terms of system parameters, and such
results would be valid for the values of steady state variables
that can be accurately and efficiently determined through
numerical solution of the polynomial equation (12).
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4. Analysis of the Delayed Simplified
Nonlinear Model (DSNM)

In order to gain some first insights into the role of transcrip-
tional and translational delays on the dynamics of GRN, we
focus on the behaviour of the delayed simplified nonlinear
model (DSNM) (6). To reduce the number of free parameters
in the model, we introduce the new variables:

𝑝𝑎 (𝑡) = 𝑝𝑎 (𝑡) ,

𝑝𝑏 (𝑡) = 𝑝𝑏 (𝑡 − 𝜏𝑟𝑎
− 𝜏𝑝𝑎

) ,

(14)

which transform the first equation of system (6) into

�̇�𝑎 = 𝑘


𝑎
ℎ
+
(𝑝𝑏 (𝑡 − 𝜏𝑟𝑎

− 𝜏𝑝𝑎
) ; 𝜃𝑏, 𝑛𝑏) − 𝛿𝑎𝑝𝑎

⇐⇒ ̇̂𝑝
𝑎
(𝑡) = 𝑘



𝑎
ℎ
+
(𝑝𝑏 (𝑡) ; 𝜃𝑏, 𝑛𝑏) − 𝛿𝑎𝑝𝑎 (𝑡) .

(15)

The second equation of system (6) evaluated at 𝑡 − 𝜏𝑟𝑎
− 𝜏𝑝𝑎

has the form

�̇�𝑏 (𝑡 − 𝜏𝑟𝑎
− 𝜏𝑝𝑎

)

= 𝑘


𝑏
ℎ
−
(𝑝𝑎 (𝑡 − 𝜏𝑟𝑎

− 𝜏𝑝𝑎
− 𝜏𝑟𝑏

− 𝜏𝑝𝑏
) ; 𝜃𝑎, 𝑛𝑎)

− 𝛿𝑏𝑝𝑏 (𝑡 − 𝜏𝑟𝑎
− 𝜏𝑝𝑎

) ,

(16)

and in terms of new variables (14) this can be rewritten as

̇̂𝑝
𝑏
(𝑡) = 𝑘



𝑏
ℎ
−
(𝑝𝑎 (𝑡 − 𝜏𝑟𝑎

− 𝜏𝑝𝑎
− 𝜏𝑟𝑏

− 𝜏𝑝𝑏
) ; 𝜃𝑎, 𝑛𝑎)

− 𝛿𝑏𝑝𝑏 (𝑡) .

(17)

Thus, system (6) takes form

̇̂𝑝
𝑎
(𝑡) = 𝑘



𝑎
ℎ
+
(𝑝𝑏 (𝑡) ; 𝜃𝑏, 𝑛𝑏) − 𝛿𝑎𝑝𝑎 (𝑡) ,

̇̂𝑝
𝑏
(𝑡) = 𝑘



𝑏
ℎ
−
(𝑝𝑎 (𝑡 − 𝜏) ; 𝜃𝑎, 𝑛𝑎) − 𝛿𝑏𝑝𝑏 (𝑡) ,

(18)

where

𝜏 = 𝜏𝑟𝑎
+ 𝜏𝑝𝑎

+ 𝜏𝑟𝑏
+ 𝜏𝑝𝑏 (19)

is the new combined time delay. The equation for charac-
teristic eigenvalues 𝜆 of the linearisation near a steady state
(𝑝
𝑎
, 𝑝
𝑏
) of system (18) has the form

(𝜆 + 𝛿𝑎) (𝜆 + 𝛿𝑏) + 𝐷DSNM𝑒
−𝜆𝜏

= 0, (20)

where

𝐷DSNM = 𝑘


𝑎
𝑘


𝑏
𝑛𝑎𝑛𝑏

𝜃
𝑛𝑎
𝑎
𝜃
𝑛𝑏

𝑏
𝑝
(𝑛𝑎−1)

𝑎
𝑝
(𝑛𝑏−1)

𝑏

(𝜃
𝑛𝑎
𝑎 + 𝑝

𝑛𝑎

𝑎
)
2
(𝜃
𝑛𝑏

𝑏
+ 𝑝
𝑛𝑏

𝑏
)
2

= 𝑛𝑎𝑛𝑏𝛿𝑎𝛿𝑏

𝑝
𝑛𝑎

𝑎

𝜃
𝑛𝑎
𝑎 + 𝑝

𝑛𝑎

𝑎

𝜃
𝑛𝑏

𝑏

𝜃
𝑛𝑏

𝑏
+ 𝑝
𝑛𝑏

𝑏

.

(21)

In limit 𝜏 = 0, this equation reduces to the quadratic equation
[44]:

𝜆
2
+ (𝛿𝑎 + 𝛿𝑏) 𝜆 + 𝛿𝑎𝛿𝑏 + 𝐷DSNM = 0, (22)

whose roots always have negative real parts, since 𝛿𝑎 > 0,
𝛿𝑏 > 0, and 𝐷DSNM > 0. This implies that, for 𝜏 = 0, the
steady state (𝑝

𝑎
, 𝑝
𝑏
) is stable for any values of parameters. To

investigate whether this steady state can lose stability for 𝜏 >
0, one can note that𝜆 = 0 is not a solution of the characteristic
equation (20). Hence, the only possible way that the steady
state (𝑝

𝑎
, 𝑝
𝑏
) can lose its stability is when a pair of complex

conjugate eigenvalues crosses the imaginary axis. In the light
of this observation, one can look for eigenvalues of (20) in
form 𝜆 = 𝑖𝜔 for some real 𝜔 > 0. Substituting this into (20)
and separating into real and imaginary parts gives

𝜔
2
− 𝛿𝑎𝛿𝑏 = 𝐷DSNM cos (𝜔𝜏) ,

(𝛿𝑎 + 𝛿𝑏) 𝜔 = 𝐷DSNM sin (𝜔𝜏) .
(23)

Squaring and adding these two equations yields the following
equation for 𝑧 = 𝜔

2:

ℎ (𝑧) = 𝑧
2
+ (𝛿
2

𝑎
+ 𝛿
2

𝑏
) 𝑧 + 𝛿

2

𝑎
𝛿
2

𝑏
− 𝐷
2

DSNM = 0, (24)

which can be solved to give the critical frequency as

𝜔
2

0
=
1

2
[− (𝛿
2

𝑎
+ 𝛿
2

𝑏
)

+ √(𝛿2
𝑎
+ 𝛿2
𝑏
)
2
− 4 (𝛿2

𝑎
𝛿2
𝑏
− 𝐷2DSNM)] .

(25)

One should note that 𝜔2
0
will only admit real values,

provided 𝛿𝑎𝛿𝑏 < 𝐷DSNM, which implies that, for 𝛿𝑎𝛿𝑏 ≥

𝐷DSNM, the steady state (𝑝𝑎, 𝑝𝑏) is stable for all values of the
time delay 𝜏. Note that

𝑑ℎ (𝑧)

𝑑𝑧
= 2𝑧 + 𝛿

2

𝑎
+ 𝛿
2

𝑏
> 0 for any 𝑧 ≥ 0. (26)

The critical value of the time delay 𝜏 can be found from
(23), which gives

𝜏0,𝑛 =
1

𝜔0

[arctan(
(𝛿𝑎 + 𝛿𝑏) 𝜔0

𝜔2
0
− 𝛿𝑎𝛿𝑏

) + 𝑛𝜋] ,

𝑛 = 0, 1, 2, . . . ,

(27)

where𝜔0 is determined by (25) and arctan corresponds to the
principal value of arctan. When 𝜏 = 𝜏0,𝑛, the characteristic
equation (20) has a pair of purely imaginary roots. To
determine whether or not these roots do indeed cross the
imaginary axis, we consider 𝜆(𝜏) = 𝜇(𝜏) + 𝑖𝜔(𝜏) as a root of
(20) near 𝜏 = 𝜏0,𝑛, satisfying 𝜇(𝜏0,𝑛) = 0, 𝜔(𝜏0,𝑛) = 𝜔0, and 𝑗 =
0, 1, 2, . . .. Substituting 𝜆 = 𝜆(𝜏) into (20) and differentiating
with respect to 𝜏 yields

(
𝑑𝜆

𝑑𝜏
)

−1

=
(2𝜆 + 𝛿𝑎 + 𝛿𝑏) 𝑒

𝜆𝜏

𝜆𝐷DSNM
−
𝜏

𝜆
. (28)
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Figure 1: Stability boundary of the steady state (𝑝
𝑎
, 𝑝
𝑏
) of DSNM system (18).The steady state is stable below the surface in (a) and to the left

of the boundary curves shown in (b). Parameter values are𝑚𝑎 = 𝑚𝑏 = 2.35, 𝜃𝑎 = 𝜃𝑏 = 0.21, 𝑛𝑎 = 𝑛𝑏 = 3, and 𝑘𝑎 = 𝑘𝑏 = 𝛾𝑎 = 𝛾𝑏 = 1.

From this equation, one can find

sgn{[𝑑 (Re 𝜆)
𝑑𝜏

]

𝜏=𝜏0,𝑛

} = sgn{Re[(𝑑𝜆
𝑑𝜏

)

−1

]

𝜏=𝜏0,𝑛

}

= sgn{Re[
(2𝜆 + 𝛿𝑎 + 𝛿𝑏) 𝑒

𝜆𝜏

𝜆𝐷DSNM
]

𝜏=𝜏0,𝑛

}

= sgn{
2𝜔0cos (𝜔0𝜏0,𝑛) + (𝛿𝑎 + 𝛿𝑏) sin (𝜔0𝜏0,𝑛)

𝜔0𝐷DSNM
} .

(29)

Substituting the expressions for cos(𝜔0𝜏0,𝑛) and sin(𝜔0𝜏0,𝑛)
from system (23) gives

sgn{[𝑑 (Re 𝜆)
𝑑𝜏

]

𝜏=𝜏0,𝑛

}

= sgn
{

{

{

2 (𝜔
2

0
− 𝛿𝑎𝛿𝑏) + (𝛿𝑎 + 𝛿𝑏)

2

𝐷2DSNM

}

}

}

= sgn{
ℎ

(𝜔
2

0
)

𝐷2DSNM
} > 0.

(30)

Hence, the eigenvalues of the characteristic equation cross the
imaginary axis at 𝜏 = 𝜏0 (here, 𝜏0 = 𝜏0,0) and never cross back
for higher values of 𝜏. Thus, we have proved the following
result.

Theorem 1. If 𝛿𝑎𝛿𝑏 ≥ 𝐷𝐷𝑆𝑁𝑀, the steady state (𝑝
𝑎
, 𝑝
𝑏
) of

DSNMsystem (18) is stable for all values of the time delay 𝜏 ≥ 0.
If 𝛿𝑎𝛿𝑏 < 𝐷𝐷𝑆𝑁𝑀, this steady state is stable for 0 ≤ 𝜏 < 𝜏0 and
unstable for 𝜏 > 𝜏0 and undergoes Hopf bifurcation at 𝜏 = 𝜏0.

Figure 1 illustrates the stability boundary of the steady
state (𝑝

𝑎
, 𝑝
𝑏
) of the DSNM system (18) depending on the

time delay 𝜏 and the protein degradation rates 𝛿𝑎 and 𝛿𝑏,
with the parameter values taken from Polynikis et al. [44].
This Figure suggests that, for any fixed value of one of such
rates, there is only a limited range of positive values of the
other degradation rate, for which, at a given time delay 𝜏, the
positive equilibrium is unstable. For sufficiently high values of
𝛿𝑎 and 𝛿𝑏, this steady state is stable regardless of the value of
the time delay 𝜏, confirming the result proved inTheorem 1.

In Figure 2 we show how the stability boundary varies
depending on the parameters 𝜃𝑎 and 𝜃𝑏 and the time delay 𝜏.
One observes that, for sufficiently high values of 𝜃𝑏, the range
of possible values of 𝜃𝑎 for which the steady state is unstable
is significantly reduced, thus making the system more prone
to support a stable positive equilibrium rather than exhibit
oscillations. At the Hopf bifurcation, the associated critical
value of the time delay 𝜏 monotonically increases with the
parameter 𝜃𝑎. At the same time, there is a minimum value
of the time delay 𝜏, such that for 𝜏 smaller than this value the
steady state (𝑝

𝑎
, 𝑝
𝑏
) is stable for any value of 𝜃𝑎.

In a similar way, the effects of the transcription rates 𝑚𝑎
and 𝑚𝑏 are illustrated in Figure 3, which shows that the
critical transcription rate of the inhibitor 𝑚𝑎 increases with
decreasing 𝜏, and, similar to Figure 2, below certain value
of 𝜏, the steady state (𝑝

𝑎
, 𝑝
𝑏
) is stable for any value of 𝑚𝑎.
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Figure 2: Stability boundary of the steady state (𝑝
𝑎
, 𝑝
𝑏
) of DSNM system (18).The steady state is stable below the surface in (a) and (c) and to

the left of the boundary curves shown in (b) and (d). Parameter values are𝑚𝑎 = 𝑚𝑏 = 2.35, 𝑛𝑎 = 𝑛𝑏 = 3, and 𝑘𝑎 = 𝑘𝑏 = 𝛿𝑎 = 𝛿𝑏 = 𝛾𝑎 = 𝛾𝑏 = 1.

Qualitatively similar dependence is observed between the
critical value of 𝜏 and the transcription rate 𝑚𝑏, though this
dependence is not completely monotonic.

Figure 4 demonstrates how increasing the overall time
delay 𝜏 results in a Hopf bifurcation of the steady state (𝑝

𝑎
,

𝑝
𝑏
) and the emergence of a stable periodic orbit. The shift

between individual time series for 𝑝𝑎 and 𝑝𝑏 can be inter-
preted in the same way as in predator-prey or activator-
inhibitor systems [105]. In accordance with Theorem 1, once
the stability of the steady state (𝑝

𝑎
, 𝑝
𝑏
) is lost, it can never

be regained for higher values of 𝜏, so the system will be
exhibiting oscillatory behaviour. This result highlights the
significance of correct mathematical representation of the
transcription and translation processes, since inclusion of
transcriptional and translational delays can lead to sustained
periodic oscillations even in the simplified model, where
such oscillations were impossible when the time delays were
neglected.

5. Analysis of the Delayed Complete
Nonlinear Model (DCNM)

Linearisation of the full nonlinear DCNMmodel (5) near the
steady state (𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏) results in the following character-
istic equation:

(𝜆 + 𝛾𝑎) (𝜆 + 𝛾𝑏) (𝜆 + 𝛿𝑎) (𝜆 + 𝛿𝑏) + 𝐷DCNM𝑒
−𝜆𝜏

= 0, (31)

where

𝐷DCNM = 𝑚𝑎𝑚𝑏𝑘𝑎𝑘𝑏𝜃
𝑛𝑎
𝑎
𝜃
𝑛𝑏

𝑏

𝑛𝑎𝑛𝑏𝑝
(𝑛𝑎−1)

𝑎
𝑝
(𝑛𝑏−1)

𝑏

(𝜃
𝑛𝑎
𝑎 + 𝑝

𝑛𝑎

𝑎
)
2
(𝜃
𝑛𝑏

𝑏
+ 𝑝
𝑛𝑏

𝑏
)
2

= 𝑛𝑎𝑛𝑏𝛿𝑎𝛿𝑏

𝑝
𝑛𝑎

𝑎

𝜃
𝑛a
𝑎 + 𝑝

𝑛𝑎

𝑎

𝜃
𝑛𝑏

𝑏

𝜃
𝑛𝑏

𝑏
+ 𝑝
𝑛𝑏

𝑏

,

𝜏 = 𝜏𝑟𝑎
+ 𝜏𝑟𝑏

+ 𝜏𝑝𝑎
+ 𝜏𝑝𝑏

.

(32)
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Figure 3: Stability boundary of the steady state (𝑝
𝑎
, 𝑝
𝑏
) of DSNM system (18). The steady state is stable below the surface in (a), and to the

left of the boundary curves shown in (b). Parameter values are 𝜃𝑎 = 𝜃𝑏 = 0.21, 𝑛𝑎 = 𝑛𝑏 = 3, and 𝑘𝑎 = 𝑘𝑏 = 𝛿𝑎 = 𝛿𝑏 = 𝛾𝑎 = 𝛾𝑏 = 1.

It immediately follows from the form of the characteristic
equation (31) that stability of the steady state (𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏)
is determined not by individual transcriptional and transla-
tional delays but rather by their overall combined duration. In
the case 𝜏𝑟𝑎 = 𝜏𝑟𝑏

= 𝜏𝑝𝑎
= 𝜏𝑝𝑏

= 0, the characteristic equation
of the DCNMmodel reduces to the one analysed in Polynikis
et al. [44].

The characteristic equation (31) can be recast in the form

𝜆
4
+ 𝐴𝜆
3
+ 𝐵𝜆
2
+ 𝐶𝜆 + (𝐷 + 𝐷DCNM𝑒

−𝜆𝜏
) = 0, (33)

where

𝐴 = 𝛾𝑎 + 𝛾𝑏 + 𝛿𝑎 + 𝛿𝑏,

𝐵 = 𝛾𝑎𝛾𝑏 + 𝛾𝑎𝛿𝑎 + 𝛾𝑎𝛿𝑏 + 𝛾𝑏𝛿𝑎 + 𝛾𝑏𝛿𝑏 + 𝛿𝑎𝛿𝑏,

𝐶 = 𝛾𝑎𝛾𝑏𝛿𝑎 + 𝛾𝑎𝛾𝑏𝛿𝑏 + 𝛾𝑎𝛿𝑎𝛿𝑏 + 𝛾𝑏𝛿𝑎𝛿𝑏,

𝐷 = 𝛾𝑎𝛾𝑏𝛿𝑎𝛿𝑏.

(34)

At 𝜏 = 0, (33) reduces to a quartic

𝜆
4
+ 𝐴𝜆
3
+ 𝐵𝜆
2
+ 𝐶𝜆 + (𝐷 + 𝐷DCNM) = 0. (35)

By the Routh-Hurwitz criterion [105], the necessary and
sufficient conditions for all roots of (35) to have negative real
parts are given by

Δ 1 = A > 0,

Δ 2 = 𝐴𝐵 − 𝐶 > 0,

Δ 3 = 𝐴𝐵𝐶 − 𝐴
2
(𝐷 + 𝐷DCNM) > 0,

Δ 4 = (𝐷 + 𝐷DCNM) (𝐴𝐵𝐶 − 𝐴
2
(𝐷 + 𝐷DCNM) − 𝐶

2
)

= (𝐷 + 𝐷DCNM) (Δ 3 − 𝐶
2
) > 0.

(36)

From the fact that all system parameters are positive and
using the definitions of 𝐴, 𝐵, and 𝐶 in (34), it follows that
Δ 1 > 0 and Δ 2 > 0 for any values of the parameters. Since
𝐷+𝐷DCNM > 0, it is sufficient to requireΔ 4 > 0 to ensure that
condition Δ 3 > 0 is also satisfied. This leads to the following
result.

Lemma 2. Let 𝜏 = 0. The steady state (𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏) of system
(5) is stable whenever the condition 𝐴𝐵𝐶−𝐴

2
(𝐷 +𝐷𝐷𝐶𝑁𝑀) −

𝐶
2
> 0 holds.

From now on, we will assume that the condition in
Lemma 2 holds and analyse whether stability can be lost as
𝜏 increases. Since both𝐷 and𝐷DCNM are positive, this means
that 𝜆 = 0 is not a root of the characteristic equation (33),
so once again the stability can only be lost through a possible
Hopf bifurcation. To investigate this possibility, we look for
solutions of (33) in the form 𝜆 = 𝑖𝜔 for some real 𝜔 > 0.
Substituting this into (33) and separating into the real and
imaginary parts gives

𝜔
4
− 𝐵𝜔
2
+ 𝐷 = −𝐷DCNMcos (𝜔𝜏) ,

−𝐴𝜔
3
+ 𝐶𝜔 = 𝐷DCNMsin (𝜔𝜏) .

(37)
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Figure 4: Numerical solution of DSNM system (18): (a) 𝜏 = 0.5; (b) 𝜏 = 2. Parameter values are 𝑚𝑎 = 𝑚𝑏 = 2.35, 𝜃𝑎 = 𝜃𝑏 = 1, 𝑛𝑎 = 𝑛𝑏 = 3,
and 𝑘𝑎 = 𝑘𝑏 = 𝛿𝑎 = 𝛿𝑏 = 𝛾𝑎 = 𝛾𝑏 = 1. The critical time delay is 𝜏0 = 0.9762.

Squaring and adding these equations yields a quartic equa-
tion as follows:

𝑔 (𝑧) = 𝑧
4
+ 𝑎𝑧
3
+ 𝑏𝑧
2
+ 𝑐𝑧 + 𝑑 = 0, (38)

where 𝑧 = 𝜔
2 and

𝑎 = 𝐴
2
− 2𝐵,

𝑏 = 𝐵
2
+ 2𝐷 − 2𝐴𝐶,

𝑐 = 𝐶
2
− 2𝐵𝐷,

𝑑 = 𝐷
2
− 𝐷
2

DCNM.

(39)

Without loss of generality, suppose that (38) has four
positive real roots, denoted by 𝑧1, 𝑧2, 𝑧3, 𝑧4, respectively,
which would give four possible values of 𝜔:

𝜔1 = √𝑧1,

𝜔2 = √𝑧2,

𝜔3 = √𝑧3,

𝜔4 = √𝑧4.

(40)

Dividing the two equations in (37) gives

tan (𝜔𝑘𝜏𝑘) =
𝐴𝜔
3

𝑘
− 𝐶𝜔𝑘

𝜔4
𝑘
− 𝐵𝜔2
𝑘
+ 𝐷

⇒

𝜏𝑘,𝑗 =
1

𝜔𝑘

[arctan
𝐴𝜔
3

𝑘
− 𝐶𝜔𝑘

𝜔4
𝑘
− 𝐵𝜔2
𝑘
+ 𝐷

+ 𝑗𝜋] ,

𝑘 = 1, . . . , 4, 𝑗 = 0, 1, 2, . . . .

(41)

Define

𝜏0 = min
1≤𝑘≤4

{𝜏𝑘,0} ,

𝜔0 = 𝜔𝑘0
,

𝑘0 ∈ {1, 2, 3, 4} ,

(42)

and then 𝜏0 is the first value of 𝜏 > 0 such that the charac-
teristic equation (33) has a pair of purely imaginary roots.We
have the following result.

Theorem 3. Suppose the conditions of Lemma 2 hold and
𝑔

(𝑧0) > 0, where 𝑔(𝑧) is defined in (38). Then the steady state

(𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏) of system (5) is stable for 0 ≤ 𝜏 < 𝜏0 and unstable
for 𝜏 > 𝜏0 and undergoes a Hopf bifurcation at 𝜏 = 𝜏0.

Proof. The conclusion of Lemma 2 ensures that the steady
state (𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏) of system (5) is stable at 𝜏 = 0, and the
fact that the roots of the characteristic equation (33) depend
continuously on 𝜏 implies that the steady state (𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏)
is also stable for sufficiently small positive values of 𝜏. Since 𝜏0
is the first positive 𝜏, for which the characteristic eigenvalues
lie on the imaginary axis, in order to verify whether or not
the steady state actually loses stability at 𝜏 = 𝜏0, one has to
compute the sign of 𝑑Re(𝜆)/𝑑𝜏|𝜏=𝜏0 . Let 𝜆(𝜏) = 𝜇(𝜏) + 𝑖𝜔(𝜏)

be the root of the characteristic equation (33) near 𝜏 = 𝜏0,
satisfying 𝜇(𝜏0) = 0 and 𝜔(𝜏0) = 𝜔0. Substituting 𝜆 = 𝜆(𝜏)

into (33) and differentiating both sides with respect to 𝜏 gives

(
𝑑𝜆

𝑑𝜏
)

−1

=
(4𝜆
3
+ 3𝐴𝜆

2
+ 2𝐵𝜆 + 𝐶) 𝑒

𝜆𝜏

𝜆𝐷DCNM
−
𝜏

𝜆
. (43)
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This implies, with 𝜆(𝜏0) = 𝑖𝜔0,

sgn{[𝑑 (Re 𝜆)
𝑑𝜏

]

𝜏=𝜏0

} = sgn{Re[(𝑑𝜆
𝑑𝜏

)

−1

]

𝜏=𝜏0

}

= sgn
{

{

{

Re[
(4𝜆
3
+ 3𝐴𝜆

2
+ 2𝐵𝜆 + 𝐶) 𝑒

𝜆𝜏

𝜆𝐷DCNM
]

𝜏=𝜏0

}

}

}

= sgn{
(2𝐵𝜔0 − 4𝜔

3

0
) cos (𝜔0𝜏0) + (𝐶 − 3𝐴𝜔

2

0
) sin (𝜔0𝜏0)

𝜔0𝐷DCNM
} .

(44)

Using the expressions for cos(𝜔0𝜏0) and sin(𝜔0𝜏0) from (37)
gives

sgn{[𝑑 (Re 𝜆)
𝑑𝜏

]

𝜏=𝜏0

} = sgn{
4𝜔
6

0
+ (3𝐴

2
− 6𝐵)𝜔

4

0
+ (2𝐵

2
+ 4𝐷 − 4𝐴𝐶)𝜔

2

0
+ 𝐶
2
− 2𝐵𝐷

𝐷2DCNM
} = sgn{

𝑔

(𝜔
2

0
)

𝐷2DCNM
} > 0, (45)

which means that at 𝜏 = 𝜏0 a pair of complex conjugate
eigenvalues of the characteristic equation (33) crosses the
imaginary axis with a positive speed. This implies that the
steady state (𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏) of system (5) does lose its stability
at 𝜏 = 𝜏0.

Figure 5 shows the stability boundary of the steady state
(𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏) of system (5) depending on the transcription
rates 𝑚𝑎 and 𝑚𝑏 and the total time delay 𝜏. In a manner
similar to that for the simplified model, the critical value of
the transcription rate𝑚𝑎 at theHopf bifurcation reduces with
increasing 𝜏. However, a major difference from the DSNM
model, as shown in Figure 3, is that now the Hopf bifurcation
can take place even at 𝜏 = 0, as the DCNM system is able to
support sustained oscillations [44]. In Figure 6 we illustrate
the transition from a stable steady state (𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏) to a
stable periodic solution around this steady state as the time
delay passes through the critical value of 𝜏 = 𝜏0.

6. Conclusions

In this review we have discussed various mathematical
models for the analysis of GRNs and focussed on the role
played by the transcriptional and translational time delays
in the dynamics of a two-gene activator-inhibitor GRN. By
reducing the model to the one with a single time delay, we
have considered possible behaviour in the quasi-steady state
approximation of very fast mRNA dynamics, which has
resulted in a lower-dimensional system of DDEs. Due to the
presence of time delays, even this simplified model is able to
exhibit loss of stability of the positive equilibrium through a
Hopf bifurcation and a subsequent emergence of sustained
periodic oscillations, which was not possible in the absence
of the time delays, as discussed in Polynikis et al. [44]. We
have found analytically the boundary of the Hopf bifurcation
depending on the total time delay and other system param-
eters and illustrated different types of behaviour by direct
numerical simulations.Our results suggest that once the posi-
tive steady state loses its stability, it can never regain it for
higher values of the time delay.

We have also studied the stability of a positive steady state
in the full system and showed that this steady state can also
undergo a Hopf bifurcation depending on the time delay and
system parameters. Our analysis extends an earlier result of
Polynikis et al. [44] by showing how the critical values of the

parameters at theHopf boundary changewhen the time delay
increases from zero. Numerical simulations have illustrated
the transition from a stable positive steady state to a stable
periodic solution as the time delay exceeds its critical value.

The work presented in the paper can be extended in
several interesting and important research directions. One
possibility would be to account for the fact that inmost exper-
iments the transcriptional and translational time delay are
not fixed but rather obey some form of a delay distribution.
Recent work on the effects on delay distribution on system
dynamics [106–108] has shown that, even for the same mean
delay, details of the distribution can also play an impor-
tant role. He and Cao [71] have used Lyapunov functional
approach to derive conditions for global stability of equilibria
in some types of GRNs with distributed delays, and it would
be insightful to investigate the possibility of extending this
methodology to other types of GRNs and various types of
delay kernels. Alternatively, one could use the framework of a
master stability function for systems with distributed delays
[109] to study possible synchronization dynamics in GRNs
with a large number of proteins involved.

As it has already beenmentioned, in some cases gene exp-
ression behaviour is characterised by a switch-like behaviour
that can be bettermodelled using piecewise-linear rather than
continuous transcription functions [50, 53]. Whilst some
preliminary work has been done recently on the analysis of
piecewise-linear systems with discrete time delays, primarily
in engineering applications [110–112], the dynamics of GRNs
with piecewise-linear transcription functions and transcrip-
tional/translational delays have remained completely unex-
plored. Further inclusion of distributed delays would make
such models mathematically very challenging, but it could
provide a new level of understanding of GRN dynamics.

Besides providing insights into the dynamics of GRNs,
there are several practical ways in which models similar to
the one described in this review are helpful inmonitoring and
treatment of cancer. GRNmodels based on differential equa-
tions coupled with other techniques, such as machine learn-
ing and Bayesian networks, have proved effective in identify-
ing specific oncogenes that can be used as biomarkers or drug
targets [14, 62, 113–116]. Similar kinds of models are useful for
modelling cancer cell growth and understanding interactions
between tumour growth and immune response and for anal-
ysis of the effects of chemotherapy (or immunotherapy) and
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Figure 5: Stability boundary of the steady state (𝑟𝑎, 𝑟𝑏, 𝑝𝑎, 𝑝𝑏) of DCNM system (5).The steady state is stable below the surface in (a), (c) and
below the boundary curves shown in (b), (d). Parameter values: 𝜃𝑎 = 𝜃𝑏 = 0.21, 𝑛𝑎 = 𝑛𝑏 = 3, and 𝑘𝑎 = 𝑘𝑏 = 𝛿𝑎 = 𝛿𝑏 = 𝛾𝑎 = 𝛾𝑏 = 1.
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Figure 6: Numerical solution of DCNM system (5): (a) 𝜏 = 0.25; (b) 𝜏 = 2. Parameter values:𝑚𝑎 = 0.6,𝑚𝑏 = 0.3, 𝜃𝑎 = 𝜃𝑏 = 0.21, 𝑛𝑎 = 𝑛𝑏 = 3,
and 𝑘𝑎 = 𝑘𝑏 = 𝛿𝑎 = 𝛿𝑏 = 𝛾𝑎 = 𝛾𝑏 = 1. The critical time delay is 𝜏0 = 0.5314.
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drug resistance [62, 63, 117, 118]. The methodology described
in this review can be directly used to improve the perfor-
mance of these models by elucidating the role of transcrip-
tional and translational time delays in GRN dynamics and its
impact on various aspects of cancer onset and development.
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