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SUMMARY

Complexity metrics and machine learning (ML) models have been utilized to
analyze the lengths of segmental genomic entities of DNA sequences (exonic, in-
tronic, intergenic, repeat, unique) with the purpose to ask questions regarding
the segmental organization of the human genome within the size distribution
of these sequences. For this we developed an integrated methodology that is
based upon the reconstructed phase space theorem, the non-extensive statistical
theory of Tsallis, ML techniques, and a technical index, integrating the generated
information, which we introduce and named complexity factor (COFA). Our anal-
ysis revealed that the size distribution of the genomic regions within chromo-
somes are not random but follow patterns with characteristic features that
have been seen through its complexity character, and it is part of the dynamics
of the whole genome. Finally, this picture of dynamics in DNA is recognized using
ML tools for clustering, classification, and prediction with high accuracy.

INTRODUCTION

The DNA structure in the human genome reflects the entire evolutionary process from simple to highly

complex biological forms and organisms. Complexity theory indicates the existence of a strange and

self-organizing dynamic process underlying the biological evolution process. As we have shown, in two

previous studies (Pavlos et al., 2015; Karakatsanis et al., 2018) concerning the DNA sequence of the major

histocompatibility complex (MHC), all DNA sequences of sub-genomic regions (exons, introns, intergenic)

have structure and contain information. The DNA base sequence is constructed by nature as a long-range

correlated self-organized system and emergent biological form through the co-evolution of biological and

environmental subsystems. From mathematical point of view, nature realizes complex mathematical forms

with spatiotemporal correlations. The non-linear and strange dynamics describes the evolution of complex

systems such as biological systems as a non-linear complex process including critical states and critical

points, where the system can develop ordered states and forms throughout the development of long-

range spatiotemporal correlations. This mathematical behavior of nature is self-consistently described

by the non-equilibrium thermodynamics and the non-extensive statistical theory of Tsallis. Nature works

thermodynamically for the development of non-equilibrium stationary thermodynamic states where the en-

tropy function is maximized (Prigogine, 1978; Nicolis and Prigogine, 1989; Nicolis, 1993; Tsallis, 2009). The

development of the complexity theory (Prigogine, 1978, 1997; Nicolis and Prigogine, 1989; Nicolis, 1993;

Tsallis, 2009), through the information theory can describe the redundancy of information in DNA. Accord-

ing to the classical biological description, only 1.5% of the human DNA is translated into proteins. The rest

was traditionally of unknown significance and thought as non-essential (‘‘junk’’). To determine the role of

the remaining part of the genome, many tries have been made, with the most notable one being the Ency-

clopedia of DNA elements project (Davis et al., 2017). To shed light on the problem from a different

perspective, a significant increase in novel interdisciplinary approaches and methods were developed.

More specifically for the last 30 years, or so, the complex character of biological systems, such as the order

of information in genome, the origins of autoimmune diseases, etc, have been studied with the intent to

shed light on DNA’s internal organization. Many researchers have developed computational methods to

identify and characterize DNA motifs throughout the genome utilizing methods borrowed from the field

of signal processing, information theory, non-linear dynamics, and the non-extensive statistics-based

methods (Broomhead and King, 1986; Tsallis, 1988, 2002, 2004; Casdagli, 1989; Theiler, 1990; Grassberger
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et al., 1991; Peng et al., 1992; Provenzale et al., 1992; Lorentz, 1993; Klimontovich, 1994; Provata and Beck,

2011; Kellis et al., 2014; Wu, 2014). These statistical metrics can be used to describe the dynamic charac-

teristics and the structure and organization of the human genome. Many scientists (Voss, 1992; Li and Ka-

neko, 1992; Buldyrev et al., 1993, 1995; Grosberg et al., 1993; Ossadnik et al., 1994; Stanley et al., 1994) have

introduced and studied the DNA random walk process as a basic physical process-model for the detection

and understanding of the observed long-range correlations of nucleotides in DNA sequences. According

to Voss (1992) there is no significant difference between long-range correlation properties of coding and

non-coding sequences, and in contrast, other scientists (Peng et al., 1992; Li and Kaneko, 1992; Buldyrev

et al., 1993, 1995; Grosberg et al., 1993) found that the non-coding sequences are characterized by

long-range correlations, whereas coding sequences are not. This could mean that the dynamics that pro-

duced the spatial information of the DNA can be characterized by strange dynamics such as strange attrac-

tors, islands, andmultifractal behavior in the reconstructed phase space. Some significant theories from the

account of statistical physics, like self-organized criticality (SOC), strange dynamics, non-extensive statisti-

cal mechanics of Tsallis, fractional dynamics, etc., have been proposed to interpret the development of

long-range correlations of the DNA sequences.

However more recently, thanks to advanced DNA sequencing (cumulatively named next-generation

sequencing) technologies, a large-scale sequencing information has become available enabling and

advancing the research that utilizes these computational and statistical methods to identify the principles

that define DNA’s internal structural characteristics (Oikonomou and Provata, 2006; Vinga and Almeida,

2007; Oikonomou et al., 2008; Kellis et al., 2014; Pavlos et al., 2015; Namazi and Kiminezhadmalaie,

2015; Woods et al., 2016; Karakatsanis et al., 2018).

More specifically, Melnik and Usatenko (2014), using an additive Markov chain approach, analyzed DNA

molecules of different organisms, and they estimated the differential entropy for the biological classifica-

tion of these organisms. Similarly, Papapetrou and Kugiumtzis (2014, 2020) studied DNA sequences,

through the estimation of the Markov chain orders and Tsallis conditional mutual information. The results

showed a different longmemory structure in their DNA samples (coding and non-coding). In another study,

Provata et al. (2014a, 2014b) analyzed the evolutionary tree of higher eukaryotes, amebae, unicellular eu-

karyotes, and bacteria with complexity tools to estimate the conditional probability, the fluxes, the block

entropy, and the exit distance distributions. The study detected the changes in the statistical and

complexity measures of the five organisms and proposed thesemeasures as alternativemethods for organ-

ism classification. Wu (2014) studied the Synechocystis sp. PCC6803 genome by using the recurrence plot

method and the technique of phase space reconstruction. This analysis revealed periodic and non-periodic

correlation structures in the DNA sequences. Costa et al. (2019), Machado (2019), and Silva et al. (2020) used

tools from Kaniadakis statistics, power law distribution, and fractal and information theory to uncover the

order information of the Homo sapiens DNA chromosomes.

There is additional literature related to the complexity metrics used in this study and other proposed complexity

metrics that utilize these theoretical/statistical tools to address questions in the realm of genomics. Specifically,

Corona-Ruiz et al. (2019) presented an analysis of the mitochondrial DNA of 32 species in the subphylum Verte-

brata, divided in seven taxonomic classes, using stochastic parameters, like the Hurst and detrended fluctuation

analysis exponents, Shannonentropy, andChargaff ratio.Namazi et al. (2016) used fractal dimension to study the

influence of changes in DNA (DNA mutation) on human characteristics and features. Liu et al. (2020) analyzed

promoter sequences by calculating the information content of the sequences and the correlation between se-

quences in the subregion andother sequence features as supplements, such as theHurst exponent,GCcontent,

and sequence bending property. Li et al. (2019) analyzed exon and intron DNA sequences based on topological

entropy calculation, genomic signal processing method, and singular value decomposition to explore the

complexity of DNA sequences and its functional elements. Hsu et al. (2017) proposed a measure of complexity,

called entropy of entropy analysis, useful for DNA sequences compared with Shannon entropy and application

to the cardiac interbeat interval time series. Thanos et al. (2018) studied the local Shannon entropy in blocks as a

complexity measure to study the information fluctuations along DNA sequences. Finally, Anitas (2020) analyzed

DNA sequences based on Chaos game representation followed by a multifractal analysis studying the corre-

sponding scaling properties.

The produced data from these large-scale DNA sequencing efforts have provided researchers the oppor-

tunity to develop additional approaches like machine learning (ML) techniques to analyze these sequences
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with models for clustering, pattern recognition, classification, and prediction with supervised and unsuper-

vised learning (Manogaran et al., 2018; Apostolou et al., 2019; Washburn et al., 2019; Varma et al., 2019;

Frey et al., 2019). The use of methods based on statistics and ML algorithms have many common and

also separate routes with respective disadvantages and advantages. The limit between statistics and ML

is often not visible (Bzdok et al., 2018; Xu and Jackson, 2019). For a review of theML applications in genetics

and genomics see Libbrecht and Noble (2015). The goal of all these methods of analysis is the deep under-

standing of DNA organization and therefore of the biological systems.

In this work we expand upon our previous studies (Pavlos et al., 2015; Karakatsanis et al., 2018), where we

measured the dynamical and the non-extensive statistical characteristics in the DNA sequence of the whole

MHC as a single unit and in the exonic, intronic, and intergenic sequences of the MHC as separate and inde-

pendent entities.We seek to identify order information included in the whole genome and their possible inter-

active relationships focused in regions such as exons versus introns and repeat versus unique sequences. Our

analyses are based upon the reconstructed phase space theorem (Takens, 1981; Theiler, 1990), the non-exten-

sive statistical theory of Tsallis (Tsallis, 1988, 2004, 2009), and ML techniques, and we introduce a technical in-

dex, which we call complexity factor (COFA), as a more suitable one to our analysis.

The selected parameter of length for each of these genomic sub-regions was chosen because the overall

intent of the study was to identify the potential relationships and order/information concealed within the

spatial organization of each chromosome. Questions like possible relationships between and among the

sizes of exonic/intronic, genic/intergenic, or repeat/unique regions, whereby occasionally overlapping se-

quences have different functions among the different chromosomes, are simple and fundamental ques-

tions that have never before been comprehensively addressed. Until recently the detailed and massive

genomic data for the whole genome was not available and the computational and statistical tools were

not fully developed. Their availability now enables our community to ask these questions and hopefully

identify answers that at some future point can be confirmed experimentally; eventually a more thorough

and comprehensive characterization of the human genome and its interactions will emerge.

Instructive literature to familiarize the readership of this article with basic concepts of complex systems

would be the following books and articles: On Complexity—Self Organization (Nicolis and Prigogine,

1989; Bak, 2013), on Strange Attractors (Grebogi et al., 1987; Ben-Mizrachi et al., 1984; Grassberger and

Procaccia, 1983), on Correlation Dimension (Grassberger and Procaccia, 2004; Argyris et al., 1998), on Mul-

tifractality (Stanley and Meakin, 1988), and on Non-extensive Statistical Theory (Tsallis, 2009).

RESULTS

The Genomic compartments we used in this study and the Gene definitions are taken fromNational Center

for Biotechnology Information (NCBI). This database provides both, the gene and exon definitions. Based

on these definitions we generated the intronic and intergenic region coordinates. For the repeat individual

we used the Repeat Masker. We then merged the repeat individual to generate the repeat merge data.

Coordinates for the non-repeat sequences were complementary to merged repeat sequences. Using

both the curated and derived definitions we generated the data below.

Figures 1A–1C shows the set of data, which includes seven regions per chromosome (genic, intergenic,

exonic, intronic, repeat individual, repeat merge, unique). The dataset equates 7 regions by 22 chromo-

somes = 154 raw data. Finally, we analyzed 5 regions (exonic, introns, repeat individual, repeat merge,

unique) by 22 chromosomes = 110 raw data. The genic and intergenic regions do not have enough number

of points to satisfy the statistics in the reconstruction state space, therefore they were not included in our

analysis.

It is noteworthy to mention that the data in Figures 1A and 1C if combined reveal a proportional relation-

ship between the number of exonic and genic regions, which is constant (see Table 1) in all chromosomes.

Expectedly, the same is observed to couples exonic/intergenic, intronic/genic, and intronic/intergenic

due to numeric relationships among these genomic fragments. The values of the fraction�
Number of exonic regions

Number of genic regions

�
per chromosome (Figure 1D) present a remarkable stability with average

value 10.79 G 1.01, where the linear fittings have very small deviations from chromosome to chromosome.

It appears that this universal ratio is a deep structural symmetry reflecting the internal organization of the
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genome, defining both spatial and functional relationships between the number of exonic and the number

of genic regions.

In Figure 2, we present a sample of raw data (space series) for all regions fromChromosome 6. For example,

each point on axis x corresponds to the ith exon, intron, etc., whereas each point on axis y corresponds to

the length of ith exon, intron, etc.

In Figure 3 the general flowchart of the analysis method of DNA data (arithmetic or text) is shown. This gen-

eral method can be an alternative view of the DNA entities in the entire genome based on the strange dy-

namics with the goal of revealing new symmetries and rules on this information.

Metrics of complexity theory

In this section the results from the estimation of complexity metrics in the distribution of the entities of

genome are presented.

Hurst exponent

The Hurst exponent was estimated, for all genomic entities and for each chromosome. Figure 4 presents

the estimated values of the Hurst exponent. The dashed line at 0.5 corresponds to a normal diffusion

random walk process. As can be observed in Figure 4A, the Hurst exponent for intron data are much higher

than 0.5 for all chromosomes and related with persistent (super-diffusion) random walk process. For the

exon data, the Hurst exponent is higher than 0.5 and related with persistent (super-diffusion) random

walk process for all chromosomes except Chromosome 13, which is lower than 0.5 and related with anti-

persistent (sub-diffusion) random walk process. These findings reflect the degree of the multifractal char-

acter and the existence of different scaling along the distribution of the DNA entities. For Chromosomes 4,

Figure 1. The set of data for the analysis in 22 Chromosomes and 7 regions

(A–C) (A) Exonic, Intronic; (B) Repeats, Unique; (C) Genic, Intergenic.

(D) Numerical fractions of regions in exonic/genic
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15, and 18, the Hurst exponent is almost equal to 0.5 and related with normal diffusion random walk pro-

cess. This means that the profile is mono-fractal, and does not permit the existence of different scaling in

the data. Similarly, in Figure 4B, for the Repeat Individual, Repeat Merge and Unique data, the Hurst expo-

nent is much higher than 0.5 for all chromosomes and related with persistent (super-diffusion) randomwalk

process.

q-triplet of Tsallis statistics

In Figures 5, 6, and 7, we present the estimation of Tsallis q-triplet for all genomic entities and for all chro-

mosomes. Specifically, in Figure 5 we present the estimation of qstat index; in Figure 6, the estimation of qrel

index; and finally in Figure 7, the estimation of qsen index.

Concerning the qstat index (Figure 5), as one can see, the value in all chromosomes in all genomic entities is

higher than 1 and suggests the presence of long-range correlations, a distinctive property of open non-

equilibrium systems, with underlying dynamics characterized by non-Gaussian (q-Gaussian) distributions.

The variations of the Tsallis qstat along the sizes of DNA entities is the quantitative manifestation of the bio-

logical evolution process throughout the constructive scenario of critical DNA turbulent phase transition

processes. The development of long-range correlations means that the sizes of regions that are furthest

between them are governed by fundamental rules on their size. Specifically, for the exonic genomic entity

the index takes values mainly between 1 and 1.5, while for intronic one take values between 1.5 and 3. This

means that the non-extensive character of the dynamics is much higher in introns than the exons and pre-

sents stronger long-range correlations in introns. Moreover, we observe a significant differentiation of the

qstat index between chromosomes in both exonic and intronic genomic entities, which means a significant

differentiation of the non-extensive character of the dynamics between chromosomes in the same genomic

entity (Figure 5A). Similarly in Figure 5B, the value of qstat index is higher for the repeat genomic entities

than the unique one, which means that in the repeat the non-extensivity is higher than the unique region.

Furthermore, among chromosomes it is observed that the q stationary index of the unique genomic

Table 1. Numerical fractions

Chromosome Exonic/genic Intronic/genic Exonic/intergenic Intronic/intergenic

1 10.91 9.91 10.90 9.90

2 12.92 11.92 12.91 11.91

3 12.40 11.40 12.39 11.39

4 10.69 9.69 10.68 9.68

5 10.65 9.65 10.64 9.64

6 10.39 9.39 10.38 9.39

7 11.36 10.36 11.35 10.35

8 10.26 9.26 10.25 9.25

9 10.82 9.82 10.80 9.81

10 11.66 10.66 11.64 10.64

11 9.75 8.75 9.75 8.75

12 12.00 11.00 11.99 10.99

13 10.13 9.13 10.11 9.11

14 9.75 8.75 9.74 8.74

15 11.37 10.37 11.36 10.36

16 11.10 10.10 11.09 10.09

17 11.41 10.41 11.40 10.40

18 11.49 10.49 11.46 10.46

19 8.77 7.77 8.76 7.76

20 10.31 9.31 10.29 9.29

21 8.76 7.76 8.73 7.73

22 10.43 9.43 10.41 9.41

Average values 10.79 G 1.01 9.79 G 1.01 10.77 G 1.01 9.78 G 1.01
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Figure 2. A sample of raw data to all regions from Chromosome 6

(A–J) (A) exonic; (B) intronic; (C) genic; (D) intergenic; (E) repeat individual; (F) repeat individual (zoom in); (G) repeat merge; (H) repeat merge (zoom in); (I)

unique; (J) unique (zoom in). We see clearly here that the lengths of regions have a fractal shape, indicating a complex behavior.
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Figure 3. The flow chart diagram of the method of analysis
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sequences of the first larger Chromosomes 1–4 have an average value of 1.324 G 0.003, whereas the last

smaller in size four Chromosomes 19–22 have an average value of 1.599 G 0.087. This difference is statis-

tically significant (p = 0.0008) and denotes a differential character of q stationary even within the unique

regions. The smaller chromosomes appear to have a higher index, suggesting a higher order of long-range

correlations.

Concerning the qrel index (Figure 6), there is a significant differentiation between exons and introns (Fig-

ure 6A). As we observe for all chromosomes, the qrel index is higher for the intronic than the exonic regions.

This reveals a non-Gaussian (qrel>1) relaxation process of the system to its non-equilibrium steady states

(NESS) for the data in intronic regions, whereas for the signals in exonic regions it reveals a near-Gaussian

(qrelz1) or Gaussian (qrel = 1) relaxation process of the system to its NESS. The results of the qrel in these

Figure 4. The estimation of Hurst exponent per chromosome and genomic entity

(A and B) (A) Exons, Introns; (B) Repeats, Unique.
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regions suggest that the distribution of the sizes may reach a new metastable state with different time

(space) profiles. Clearly, though, while all regions include information, they are of a complex character,

such that there are differences in the degree of complexity, and therefore this complexity impacts the

time (space) they take to transition to a new state of equilibrium upon being disturbed. In Figure 6B, we

observe that in both repeat and unique regions the qrel index is different than 1, and this reveals a non-

Gaussian relaxation process of the system to its NESS. However, in certain chromosomes the qrel index

for one genomic entity is different from those of other(s), which means that in those cases the non-Gaussian

relaxation process is stronger. Moreover, we observe differentiations of relaxation process between chro-

mosomes within the same genomic entity. The dotted line in Figure 6B shows the limit of values in Figure 6A

for visual comparison values of subfigures.

Figure 5. The estimation of qstat index per chromosome and genomic entity

(A and B) (A) Exons, Introns; (B) Repeats, Unique.
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Finally, concerning the qsen index (Figure 7), there is a strong differentiation between chromosomes for

exonic and intronic regions (Figure 7A). As one can observe, the qsen index for intronic regions in all chro-

mosomes takes much higher values than those in exonic regions, indicating that the multifractal character

of the chromosomes is stronger within intronic regions. The multifractal profile verifies the presence of

different scaling in physical space, which characterized the different order of information per region and

per chromosome in the entire genome. Moreover, the multifractal character is different between chromo-

somes regarding intronic regions. Oppositely, in the exonic regions the multifractal character has almost

the same behavior for most of chromosomes. For the repeat and unique genomic entities, we observe

similar results as the exonic regions, but with smaller values of qsen index (Figure 7B). The dotted line in

Figure 7B shows the limit of values in Figure 7A for visual comparison values of subfigures. In certain chro-

mosomes, there is no differentiation of multifractal character between different genomic entities.

Figure 6. The estimation of qrel index in per chromosome and genomic entity

(A and B) (A) Exons, Introns; (B) Repeats, Unique
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Moreover, there is a differentiation of multifractal character between chromosomes with higher values than

the repeat and unique ones.

Correlation dimension

In Figure 8, the estimation of correlation dimension (D2) is presented. For a random system the correlation

dimension is approaching the embedding dimension. In contrast, a more deterministic self-organized sys-

tem, the correlation dimension, remains at lower values from the embedding dimension. The estimation of

the correlation dimension showed that the distribution of the sizes of the intronic regions reveals strong

self-organization with strong variations per chromosome. The self-organized behavior means the existence

of fundamental laws that produced the order of the sizes of intronic regions. Moreover, as we observe in

Figure 8A, there is a differentiation between chromosomes, but the important thing here is the reduction

of dimensionality of intronic and exonic genomic entities and even more the significant reduction of

Figure 7. The estimation of qsen index per chromosome genomic entities

(A and B) (A) Exons, Introns; (B) Repeats, Unique.
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dimensionality of intronic against exonic regions. As one can see, the correlation dimension for the intronic

region is D2 % 5 for almost all chromosomes (except Chromosomes 4, 13, and 18), whereas while the cor-

relation dimension for the exonic region is D R 5 for all chromosomes. In Figure 8B, we observe the cor-

relation dimension for Repeat Individual, Repeat Merge and Unique signals and does not seem to be any

differentiation between chromosomes or genomic entities, except in cases of Chromosomes 18–22 where

a significant reduction of dimensionality (D % 7) is observed in the Unique genomic entity and significant

differentiation with the rest of the chromosomes.

Complexity factor (COFA)

A technical factor was introduced to characterize the degree of complexity in the phase space, taking into

account the set of complexity metrics that we used in the analysis:

Figure 8. The estimation of Correlation Dimension (D2) per chromosome and genomic entity

(A and B) (A) Exons, Introns; (B) Repeats, Unique.
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COFA =
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

qstat

�2
+
�
qrel

�2
+
�
qsen

�2q �
h
.
D2

where qstat, qrel,qsen are the q-triplet indices from Tsallis non-extensive statistics, h is the Hurst exponent,

and D2 is the correlation dimension. The scale of the factor appears the degree of complexity in the phase

space in the metric of the Euclidean space. For a pure Gaussian (random) signal the Euclidean distance of

the q-triplet equals 1, h equals 0.5, and for embedding dimensionm = 10 the estimation of D2 gives a value

y10, so the COFA estimation is: COFA= 1x0:5
10 = 0:05: In the Table 2 we show the estimation of COFA for a

various knownmodels. The COFA creates ametric that characterizes the amount of the strange dynamics in

a geometrical Euclidean space, and it can be used as an external classifier to theMLmodeling. The COFA is

a linear transformation of the complexity metrics that we used. In future studies a non-linear transformation

of the factor will be presented as well.

In Figure 9, the estimation of the technical term COFA per chromosome and genomic entity is presented.

The dotted line in Figure 9A shows the limit of values in Figure 9B for visual comparison values of subfig-

ures. As we observe in Figure 9A, there is a significant variation of COFA between genomic entities and

chromosomes. The Exonic are characterized by a low complexity (COFA < 0.2), whereas the Intronic by

high complexity (COFA > 0.6). In Figure 9B, we observe Repeat Individual, Repeat Merge, and Unique

genomic entities were characterized by low (COFA < 0.2) and medium (0.2 < COFA < 0.6) complexity.

Machine learning algorithms

In this section we used the estimation of complexity metrics as an input in ML algorithms for classification

clustering and prediction with the thought to see if the variation of the metrics that correspond to each

genomic entity for all chromosomes can be identified as a common dynamical feature that is characterizing

these genomic entities. We analyzed these set of metrics first with a supervised classification based on

Nave Bayes classifier, and second, with a k-means clustering.

Supervised classification (Naive Bayes classifier)

We used the supervised classification based on Naive Bayes classifier (see Supplementary Information for

details). We prepare the model using a different set of complexity metrics every time we run the classifica-

tion process. Table 3 shows the classification model’s accuracy for each try, and the Figure 10 shows the

block diagram of the model. These tables, also known as Confusion Matrices, reveal true versus predicted

values. The diagonal of each matrix represents the correct predictions. The first set of variables (h,qstat,

qrel,D2,DDq) gives the highest accuracy ((Correct predictions)/(Number of Examples)) of 95.56%.

For the classifier’s evaluation we used a 60/40 train/test set split. We split the dataset into a training dataset

and a test dataset. Our model randomly selects 60% of the instances for training and uses the remaining

40% as a test dataset. On the test dataset the accuracy of our model is:

� 95.56% with attributes: h, qstat, qrel, D2, DDq

� 92.59% with attributes: h, qstat, qsen, qrel, D2, DDq

� 75.56% with attributes: h, (qstat)
2+(qrel)

2+(qsen)
2, D2, DDq

� 77.78% with attributes: COFA, DDq

Table 2. COFA for known models

Models Hurst (D2) (m = 10) qstat qrel qsen

EYKLIDEAN

Dist. of q-triplet Linear COFA

Gaussian (theoretical) 0.500 10 1.00 1.00 1.00 1.00 0.050

White noise 0.491 9.18 1.00 1.00 1.00 1.00 0.053

Henon map 0.415 1.26 1.75 1.30 1.00 2.40 0.790

Logistic map 0.466 0.54 1.65 2.25 0.24 2.80 2.416

xLorenz 0.621 2.12 0.93 1.15 �1.24 1.93 0.564
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K-means clustering (unsupervised)

Similar to the previous paragraph, we applied the unsupervised k-means clustering (see Supplementary In-

formation for details). We prepared the model using a different set of complexity metrics every time we ran

the clustering process. To evaluate each clustering process we used the Davies-Bouldin (DB) index (Davies

and Bouldin, 1979). The DB index provides an internal evaluation schema (the score is based on the cluster

itself and not on external knowledge such as labels) and is bounded from 0 to 1, where a lower score is

better.

In Figure 11, the DB performance of each model with a different number of attributes for different values of

k parameter is presented. The number, the type, and the combination of attributes characterized the

Figure 9. The estimation of the technical term Complexity Factor (COFA) per chromosome and genomic entity

(A and B) (A) Exons, Introns; (B) Repeats, Unique. The dotted line in Figure 9A shows the limit of values in Figure 9B 4o
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success of themodel performance. The set of (h,qstat, qsen,qrel,D2,DDq) complexity metrics gave the best

DB index performance (0.155), and specifically we had the lowest value for k = 5 parameter.

In Figure 12A we showed the number of regions per chromosome that are included in the cluster, and the

block diagram of the model is shown in Figure 12B. It is clear that the model managed to separate the DNA

regions in different clusters with very high accuracy for Exonic, Intronic, and Unique and high accuracy on

Repeat Individual. The region Repeat Merge had the lowest accuracy.

In Figure 13A, the 3D scattered plot is presented with complexity metrics: h,qstat and (D2). In Figure 13B, the

results of k-means model, with the same complexity metrics, with clusters k = 5 is shown. The variation of

the complexity metrics is identified from the clustering model in high accuracy for regions Intronic, Exonic,

and Unique and high-medium accuracy for the rest of the regions.

K-means clustering (unsupervised) based on COFA index

Similarly to the previous paragraph, we applied the unsupervised k-means clustering based on the COFA

metric for different values of parameter k. The best results for the DB index versus the k parameter are pre-

sented in Figure 14. For the parameters k = 5 we had the lowest values of DB index performance. This

means that the k-means model creates five clusters.

In Figure 15 the clusters for the best DB index performance are presented. Each cluster included a set of

different genomic entities from different chromosomes with a common geometrical center of the variations

of the COFA index. With this method of clustering based on the COFA index we discriminated sets of

genomic entities per chromosomes, which appears to have similar dynamics or dynamics that live around

a local center. These sets may contain specific flows of information that are produced from fundamental

laws and symmetries. It would be promising to see these findings in the laboratory.

DISCUSSION

In this study, the size distribution of sub-genomic regions, were used to develop an insight of the degree of

complexity behavior and internal organization of chromosomes, as reflected in the sizes of exonic, intronic,

repeat individual, repeat merge, and unique regions of the genome. The analysis was based on complexity

metrics to phase or physical space with the estimation of Hurst exponent, multifractal indices, q-triplet of

Tsallis, correlation dimension, and COFA index and presented variations in the degree of complexity

behavior per region and chromosomes. In particular, the low-dimensional deterministic non-linear chaotic

dynamics (anomalous random walk-strange dynamics) and the non-extensive statistical character of the

sizes of the sub-genomic regions were verified with strong multifractal characteristics and long-range

correlations.

Table 3. Accuracy table/set of attributes

Accuracy: 95.56%

True

exons

True

introns

True

Rep. Ind.

True Rep.

merge

True

unique

Class

precision

Pred. Exons 9 0 0 0 0 100.00%

Pred. Introns 0 9 0 0 0 100.00%

Pred. Rep. Ind. 0 0 9 2 0 81.82%

Pred. Rep. Merge 0 0 0 7 0 100.00%

Pred. Unique 0 0 0 0 9 100.00%

Class recall 100.00% 100.00% 100.00% 77.78% 100.00%

Figure 10. Block diagram of the model
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The results of this study demonstrate that the DNA chromosomic system is a dynamic system working

throughout an anomalous random walk and strange dynamic process underlying the biological temporal

evolution and creating the DNA multifractal structure system. The multifractal DNA character reveals that

the DNA system is a globally unified, multiscale self-correlated and information storage of a fractal system.

The evolution of the chromosomic system includes consecutive critical points and self-organizing phase

transition scenario included in the DNA dynamics. This process creates critical self-organized states with

the DNA being a storage of information redundancy, according to the DNA entropy reduction and self-or-

ganization. This process corresponds to the maximization of Tsallis entropy function at different chromo-

somic regions. The DNA chromosomic system includes scales and fundamental laws everywhere as the

DNA entities are built through the underlying DNA strange dynamics. Moreover, the findings of this study

reveal the chromosomic DNA system as the storage of biological information of which only a small fraction

has been decoded. In this direction, the complexity theory and the computational tools can lead to further

decoding of the hidden information within the DNA. In addition, the Tsallis theory used in this study

showed the existence of the non-Gaussian character everywhere in the DNA.

Notably the results of the Hurst exponent reveal that the distributions of sizes of all regions in the genome

are characterized bymemory character or persistent behavior in all chromosomes. Specifically, this memory

character has a differential profile so much between exonic and intronic regions within a single chromo-

some and also among all chromosomes. Generally, it is observed that intronic regions maintain a higher

Hurst exponent in all chromosomes suggesting that the size distribution of intronic regions possess an en-

richedmultiplicity character with a high degree of organization, as opposed to exonic regions that maintain

a lower degree of multiplicity and therefore a lower degree of organization. This, in biological terms, may

suggest that intronic regions are engaged inmultiple structural or functional roles, whereas exons aremore

restricted in terms of functionality and multiplicity of roles. Additionally, the distributions of sizes in repeat

and unique regions are characterized by a similar memory/pattern behavior with small fluctuations, not only

between themselves within each individual chromosome but also as a set of repeat and unique sequences

among all chromosomes. We observed that these regions possess a high Hurst exponent in all chromo-

somes, similar to intronic regions, meaning that the size distribution of these regions appears to have a

high degree of organization reflected at different levels (multi-scaling). This in turn suggests that the

role of repeat/unique regions in the genome is of comparable complexity not only within each chromo-

some but also among all chromosomes.

The results of the q stationary reveals that the size distribution of the different genomic regions is characterized

by long range correlations. This non-extensive behavior is stronger in intronic regions when compared with

exonic regions with some degree of variations per chromosome. Similarly, the variations are also significant in

the exonic regions, reflecting long-range correlations within chromosomes. Both intronic and exonic size distri-

butions are independent of the chromosomal size. No particular trend was identified between the size of the

Figure 11. The DB index performance versus number of attributes for different k
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chromosome and the distribution of the size interactions of the two different sub-genomic regions. These results

would suggest that the sizes of these two regions (exonic and intronic) in a particular location of the chromosome

are coordinated with sizes located in other distant regions of the same kind (exon to exon or intron to intron)

within a single chromosome and that all chromosomes have similar interactive structural relationships dictated

by the same principles. These interactions and functionalities regarding the sizes of intronic regions, however,

are more extensive than the exonic ones, as suggested by the Tsallis q stationary index. Regarding the unique

versus repeat sequences our data suggest that the sizes of the repeat individual sequences are expectedly not

very different from the sizes of the repeat merge and their long-range correlations are significantly more exten-

sive than the size interactions of the unique sequences. Characteristically, the size interactions of the unique se-

quences are such that as the sizes of the chromosome decrease, the q stationary index increases, reflecting

stronger interactions and interdependencies of the size of the unique regions within the four last shorter

Figure 12. The model of the unsupervized k-means clustering

(A and B) (A) The clustering model’s results for the best try; (B) block diagram of the model.
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chromosomes. The same does not apply for the sizes of the repeat sequences. The q stationary index clearly

demonstrates that there is a coordination of the distributions of the sizes of the different sub-genomic regions

(exonic, intronic, repeats, unique) within chromosomes characterized by specific profiles per genomic sub-re-

gion and chromosome.

The results of the q relaxation suggest that the distribution of the sizes of these regions, upon disturbing

the particular order of sequences (different kind of genomic variations), may reach a new metastable state

Figure 13. Visualization of the regions clusters in all genome

(A and B) (A) real 3D visualization; (B) 3D visualization after k-means clustering (k = 5).
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with different time profiles. Clearly though, while all regions include information, and they are all of a com-

plex character, this complexity varies from region to region. Therefore, their degree of complexity impacts

the time it takes to transition to a new state of equilibrium upon being disturbed. This character is reflected

in the q relaxation index. Differences in the relaxation process per genomic entity, like between exonic and

intronic (Figure 6A) indicate that the intronic regions with the higher q index would reach a new metastable

equilibrium in a shorter period of time when compared with exonic regions with a lower q index that would

take more time to reach a new metastable equilibrium. This observation is compatible with the results from

the Hurst exponent, whereby the intronic regions are of a higher multifractal character when compared with

exons, suggesting that intronic segments are of more complex nature, and that any disturbing event in

these intronic regions needs to be addressed/restored in a shorter period of time. In more direct and

simplified terms, the more complex the system the greater the need for its timely restoration. Intuitively,

someone may think that higher complexity would dictate longer periods of restoration, but apparently

for the proper balancing of the whole system, the degree of complexity may dictate degrees of priority

in terms of functionality, and therefore, the more complex the system the higher the need for its immediate

restoration. The enriched complex character of intronic regions, when compared with exonic, offers a

multitude of alternative paths for restoration and therefore of a faster recovery time.

Moreover, the results of the q sensitivity reveal that the size distribution of regions have a multifractal pro-

file in all chromosomes and also significant variations per chromosome. The multifractal profiles verify the

presence of different scaling in phase space of different regions and at different chromosomes. Specifically,

the multifractal profile is stronger in the distributions of sizes of intronic regions when compared with

exonic regions. This result in biological terms may suggest that intronic regions operate at multiple struc-

tural or functional levels, whereas exonic regions reflect a different and less complex structural/functional

mechanism. Additionally, the multifractal profile is weaker in the distributions of sizes in repeat and unique

regions than exonic and intronic regions, and between them the multifractal profile has similar shape

concluding similar number of subsets of structural or functional roles. These are reminiscent of our earlier

observations from the Hurst exponent. Two different approaches reveal similar characters for the respec-

tive sub-genomic regions.

Correlation Dimension is another complexity metric reflecting the size of the strange attractor in the phase

space. When the system is embedded in higher dimensions and the system shows strong self-organization

then we have reduction of dimensionality in the phase space, and so the correlation dimension remains

significantly in lower values from the embedding dimension (Argyris et al., 1998; Grassberger and Procac-

cia, 1983, 2004). Lower values of the Correlation Dimension index reflect higher self-organization. In the

reconstructive phase space, the distribution of the intronic region reveals strong self-organization with sig-

nificant variations per chromosome. The lower values of Correlation Dimension index of the sizes of intronic

regions, when compared with exonic, demonstrate the stronger self-organization of the intronic segments.

This, is turn, reflects the existence of fundamental laws, which produced the distribution of sizes in the

Figure 14. The DB index performance versus parameter k (where k is the number of clusters)
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Figure 15. Visualization of the clusters in all genome after k-means clustering (k = 5) based on COFA index

We separate the results in five clusters. In the x axis are the genomic entities and chromosome reference; for example, the

first one is Repeat individual genomic entity in Chromosome 18; the y axis is the COFA index.

ll
OPEN ACCESS

20 iScience 24, 102048, February 19, 2021

iScience
Article



aforementioned regions. This stronger self-organization would imply an enriched multilevel functional

character for the intronic regions, quite different from that of the exonic regions. These findings are concor-

dant with interpretations we have already provided using other complexity metrics like Hurst exponent and

q sensitivity. Different complexity metrics reveal the same complexity character for the intronic/exonic re-

gions and therefore strengthen the conclusions drawn regarding their complexity and therefore content

information and multiple functionalities. Furthermore, the distributions of sizes of unique regions are

such that the self-organization gradually increases, as reflected in the lower Correlation Dimension values,

starting with Chromosome 12. The same does not apply for the repeat regions. However, the observation

regarding the repeat regions using Correlation Dimension analysis is concordant with the earlier observa-

tions derived from the q stationary analysis demonstrating that the higher complexity character of unique

regions is smaller chromosomes. Generally, the presence of self-organization regarding the sizes of the

different sub-genomic entities follows the principle that the degree of multilevel functionality depends

on the degree of self-organization.

The technical index COFA, which represents the geometrical measure of the complexity in a Euclidean

space (Hurst exponent, the Euclidean distance of the q-triplet of Tsallis statistics, and the Correlation

Dimension index) was successfully used as a technical term to describe cumulatively the degree of

complexity. COFA index below 0.08 suggests that the system lacks structure and is low in complexity

behavior. Values over 0.08 reflect higher complexity behavior and order of information content. In Figure 9A

we observe that the size of intronic segments is permeated by a significantly higher complexity when

compared with exonic regions. Basically, the data are a synthesis of all previous complexity indexes we

have already discussed. Figure 9B respectively demonstrates the relative complexity of repeat and unique

sequences, whereby each chromosome appears to have its own unique character. The COFA index for

these regions is consistently below 0.35.

Overall, the existence of strange dynamics in the phase space with set of attractors with multifractal profile

reflects the existence of symmetries and fundamental laws that finally produced the multi-dimensional

structural-functional mechanism of the genome. Such symmetry is demonstrated and strongly suggested

by the proportional relationship identified between the number of exonic and genic regions, which con-

stant (see Table 1) in all chromosomes. It derives that all other ratios of exonic/intergenic, intronic/genic,

and intronic/intergenic have the same ratio that is close to 10.

Additionally, the estimation of complexitymetrics for a subset of chromosomes (60%) was used as an input inML

algorithms for classification clustering and prediction with the intent to assess whether the variation of the met-

rics that correspond to each genomic entity for all chromosomes can be identified as a common dynamical

feature that characterizes these genomic entities. We used first a supervised classification based onNaive Bayes

classifier and second with a k-means clustering. The models successfully re-create the size of all regions in

different clusters with high accuracy for the rest of the 40% of the genome (chromosomes), basically confirming

the validity of the overall approach. Furthermore, we used the COFA index along with ML models as a new

external classifier. With COFA index and ML models we identify sets of genomic regions among all chromo-

somes that present similar dynamics (similar COFA index) or dynamics that lives around a local center (cluster

center). These new sets may contain interactions of information among genomic entities and chromosomes

based on internal laws and symmetries. This is a differentway to assess either physical interactions or information

flow among different genomic regions and chromosomes. The aforementioned approach can be subjected to

modifications to further improve the accuracy and our results.

In conclusion, the results demonstrate that the underlying dynamical processes, which give rise to the or-

ganization of the genome, correspond to the extremization of q-entropy principle included in the non-

extensive statistical mechanics of Tsallis (Broomhead and King, 1986; Klimontovich, 1994). The q-entropy

principle of Tsallis applies the unification of the macroscopic to the microscopic level through the multi-

scale interaction and the scale invariance principle included in the power laws of complex phenomena.

It is to be noted that in this work we used the Tsallis entropy. In general, different entropies are used for

different reasons in different cases, depending on the particular application. For example, a system that

moves toward thermodynamic equilibrium maximizes Gibbs entropy. Thus, when you are in this case, it

is natural to use Gibbs entropy to analyze it. In case of far from equilibrium that we are at, as biological sys-

tems are, systems evolve toward maximizing Tsallis entropy (Tsallis, 2009). Specifically, for the DNA, it has

ll
OPEN ACCESS

iScience 24, 102048, February 19, 2021 21

iScience
Article



been shown that it can be viewed as an out-of-equilibrium structure (Provata et al., 2014a, 2014b). There-

fore, the Tsallis entropy analysis is appropriate and adequate. Furthermore, it has been verified from our

previous studies that the probability distribution of the DNA structures follows the Tsallis entropy maximi-

zation probability distribution function (Pavlos et al., 2015). Other entropies may be relevant depending on

the nature of the particular system under investigation. Most recent literature, as mentioned earlier in the

Introduction, section, utilizes other entropies for different questions but not for the particular questions

that we have addressed in this work. Considering that our previous work (Pavlos et al., 2015; Karakatsanis

et al., 2018) has consistently utilized the Tsallis entropy, our current analysis was also performed in a similar

fashion. As our approach to study the lengths of subgenomic regions of DNA has not studied by others,

using other entropy approaches such comparisons are not presently possible. It should be mentioned,

however, that although different methods have been used to analyze the DNA and its information content,

they show some commonalities in their general findings. As a general trend, they distinguish between

different structural regions of the genome, and differentiate between coding and non-coding regions of

DNA (Karakatsanis et al., 2018, Thanos et al., 2018).

The projection of the dynamics to the statistics in the phase space develops a complete picture that integrated

to the variations of the complexitymetrics. The redundancy of information inDNA lies between randomness and

order in a continuous evolutionary process of thousands of years (Beltrami, 1999) based on fluctuations and

deterministic laws. This picture of dynamics can be identified fromML tools for clustering, classification, and pre-

diction. The results of the ML tools successfully identified the different degree of complexity profile of the dis-

tribution of the regions with high accuracy, based on a given set of complexity metrics. In conclusion, the distri-

bution of the size of the genome entities is characterized from different degree of complexity profiles, which is

recognizable from the ML models. This integrated methodology (Figure 3) is a different approach for the iden-

tification of the symmetries and fundamental laws, which produces the order of information in all genome and

generates strange dynamics that is observable and qualitatively measurable. Finally, the merging of interdisci-

plinary complexity theory and genomics can provide semantic results in the direction of a deeper understanding

and promotion of the fundamental laws of biology with new motifs, patterns, and interactions of the complex

biological information.

Limitations of the study

In our study, publicly available DNA sequences were used to analyze the lengths of the different genomic

entities using complexity metrics andML. Admittedly, however, these sequences are a compilation of many

different sequencing projects resulting in a single reference sequence for the human genome. Optimally, a

single source of DNA sequenced for the whole human genome would be a better source. As our tools for

whole-genome sequencing improve and generate credible sequencing data, our computational analysis

can be repeated and confirm our current findings.

Regarding limitations related to our computational approach further optimizations are possible and can be

applied. For example, modification of the COFA index, by including additional metrics or modifying the

form to reflect linear or non-linear relationships, may provide better identification of the dynamics in the

phase space of the DNA system. Furthermore, to the well-known clustering and categorization algorithms

used in our study, other specialized algorithms based on a self-organized neural network, like the self-orga-

nizing feature map, can be used to enhance the performance of the model.

Resource availability

Lead contact

karaka@env.duth.gr.

Materials availability

All data needed to evaluate the results and conclusions are presented in the main text. Scripts related to

this paper are available from the corresponding authors.

Data and code availability

The Genomic compartments we used in this study and the Gene definitions are taken fromNational Center

for Biotechnology Information (NCBI) RefSeq (RefSeq Annotation Release 108, https://www.ncbi.nlm.nih.

gov/genome/annotation_euk/Homo_sapiens/108/).
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Theoretical highlights of complexity theory 

The Complexity theory can give useful quantitative parameters for the description of DNA structure. Such 

quantities are the Tsallis q-triplet (𝑞𝑠𝑒𝑛 , 𝑞𝑟𝑒𝑙, 𝑞𝑠𝑡𝑎𝑡), the Correlation dimensions, the Hurst exponent, the 

Lyapunov exponents, etc. According to Prigogine and Nicolis, far from equilibrium, nature can produce 

spatiotemporal self-organized forms through the extended probabilistic dynamics of correlations in 

agreement with the extended entropy principle (Prigogine, 1978; Nicolis and Prigogine, 1989; Nicolis, 1993; 

Prigogine, 1997; Davies, 2004). Far from equilibrium the entropy principle creates long-range correlations, 

as nature works to maximize the non-equilibrium entropy (Tsallis) function. The entropy principle for the far 

from equilibrium and open physical systems, as the biological systems are, leads to the creation of dissipative 

structures and self-organized multi-level and multi-scale long-range correlated physical forms. The 

maximization of Tsallis q-entropy can explain the formation of DNA structure as a non-equilibrium 

intermittent turbulence structure and a multiplicative self-organization process (Pavlos et al., 2015). From 

this point of view, the DNA structure is a constructed multifractal system of the four DNA bases (A, C, G, 

T) with high information redundancy. This in turn suggests that most, if not all of the DNA sequences are 

purposeful and relevant but not all of this information has been decoded.  

 

The underlying intermittent DNA turbulence which constructs the DNA sequence and the chromosomic high 

ordered system is mirrored in the well-known q-triplet of non-extensive statistical theory of Tsallis including 

three characteristic parameters (𝑞𝑠𝑒𝑛 , 𝑞𝑟𝑒𝑙, 𝑞𝑠𝑡𝑎𝑡). The 𝑞𝑠𝑒𝑛 parameter, describes the entropy production and 

the information redundancy, as the DNA sequence is constructed by the underlying DNA turbulence process, 

as multifractal DNA structure. The 𝑞𝑟𝑒𝑙 parameter describes the relaxation process of the DNA turbulence 

system to the meta-equilibrium stationary state of DNA structure, where the q-entropy (𝑆𝑞) of Tsallis statistics 

is maximized. The meta-equilibrium state with maximized entropy function corresponds to the chromosomic 

DNA system. The 𝑞𝑠𝑡𝑎𝑡 parameter describes the statistical probability distribution function of the DNA 

complex or random structure at the DNA turbulent stationary state. The DNA turbulence system can be 

described dynamically as an anomalous random walk process creating the DNA bases series. This dynamic 

can include critical points where the DNA turbulence dynamics can change. This constructive biological 

evolutionary phase transition process can develop the entire self-organized multifractal dynamical system. 

The variations of the Tsallis q-triplet along the DNA sequence is the quantitative manifestation of the 

biological evolution process throughout the constructive scenario of critical DNA turbulent phase transition 

processes. 

 

The multifractal character of this biological evolutionary process is mirrored at the evolution of the Hurst 

exponent along the DNA sequence. As the Hurst exponent changes along the DNA sequence it mirrors the 

degree of the multifractal character along the DNA structure. 

 

The DNA structure can be explained as the dynamical evolution of the biological complex system in the 

underlined natural state space to the DNA turbulence dynamics. This state space can be reconstructed by 

numbering the DNA sequence, supposing that the constructed DNA sequence corresponds also to the 

temporal aspect of the DNA sequence. This means that the natural numbering of DNA bases corresponds to 

the temporal evolution of DNA structuring. This permit us, to use the embedding theory of Takens (Takens, 

1981) for the multidimensional reconstruction of the state space underlying to the DNA dynamical process. 

This reconstructed state space describes the entire temporal biological evolution physical process. The DNA 

sequence is the one-dimensional time projection of the DNA Turbulence phase space in the form of the DNA 



“time series”. The DNA reconstructed state space can explain the multifractal structuring of DNA sequence 

and mirrors the sequence of evolutionary phase transition biological process as the topological phase 

transition process of the biological dynamical state space topology. The DNA correlation dimension can be 

estimated in the reconstructed DNA state space, as well as, other useful geometrical and dynamical 

parameters of the biological evolution, can also be estimated (Pavlos et al., 2015; Karakatsanis et al., 2018). 

After all, the DNA structure mirrors also the multifractal topology of the underlying DNA turbulence state 

space, as well as the critical DNA phase transition process during the biological evolution of species related 

to the DNA construction through non-linear strange dynamics. Moreover, the self-consistently to the DNA 

strange dynamics maximization of Tsallis q-entropy, structures the DNA state space multifractal topology. 

According to these theoretical concepts, in this study we use the sizes of DNA regions for the reconstruction 

of DNA state space according to Takens embedding theory. All the estimated parameters are related with the 

fractal topology of DNA state space. The changes of the complexity metrics correspond to the evolutionary 

topological phase transition process of the DNA state space, as well as of the underlying intermittent 

turbulence process of the chromosomic dynamical self-organization.  

Source of DNA Sequences 

The Genomic compartments we used in this study and the Gene definitions are taken from National Center 

for Biotechnology Information (NCBI) (RefSeq Annotation Release 108, 

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Homo_sapiens/108/). This data base provides both, 

the gene and exon definitions. Based on these definitions we generated the intronic and intergenic region 

coordinates. For the repeat individual we used the Repeat Masker. We then merged the repeat individual to 

generate the repeat merge data. Coordinates for the non-repeat sequences were the complementary to merged 

repeat sequences. Using both the curated and derived definitions we generated the data as shown in Figure 

1. 

 

Transparent Methods 

Methodology of data analysis 

The methodology of the analysis of data are supported from metrics in physical and phase space. In order to 

unravel the symmetries and the order of information on the distribution of the lengths of the regions in the 

entire genome, we used complexity theory tools for data analysis such as: a) q-triplet estimation, b) estimation 

of correlation dimension and c) estimation of Hurst exponent on these data. A new technical factor, which 

we name the complexity factor (COFA), and tools from machine learning (ML) algorithms are used to better 

describe the variation of the metrics between genomic entities, with the ultimate goal of improving our depth 

of understanding of the DNA system. 

 

The dynamics of the DNA system in the phase space determines in the physical space the position of the 

fundamental four bases in the DNA chains in all genome entities. We understand that these positions included 

the necessary information for the following functions of DNA chains with an extended conclusion that the 

distribution of the genomic entities are not random, but it is a part of the dynamics. The information we get 

from a measured quantity from the physical space, is a part of the projection of the dynamics which produced 

this physical and measured quantity. The complexity metrics we used in the analysis reflected every time 

part of the dynamics in the physical or phase space. The statistics of the information and the dynamics are 

inextricably linked in a continuous interaction from physical space to phase space and vice versa. The 

dynamics produces in the phase space objects with strange geometry like strange attractors, islands, long 

range correlations, diffusion, multifractal behavior etc. Staying in that line of thinking, we supposed that the 

variations of the metrics for different entities of the whole genome corresponds to changes of the strange 

dynamics in the phase space, marking entities like regions, words, etc in the genome with the scope to input 

such information in supervised or unsupervised ML models and help us to uncover patterns and symmetries 

of information in the whole genome.  

  

An integrated analysis method of DNA entities 

 



We present in algorithmic steps the whole methodology: 

 

a) We prepare the arithmetic or text data from DNA system. If the data are text (independence bases, words, 

etc) we apply specific routines: like the distance a base to the next similar base or other methods, to transform 

the text data in arithmetic data, else we go to the next algorithmic step. b) We apply on arithmetic data the 

complexity metrics like: Hurst exponent, q-triplet of Tsallis, correlation dimension, etc (other complexity 

metrics). c) We produce the table of results for the whole data set. The results are then used to estimate the 

COFA index, which will be used as an external classifier for the ML models. d) Next, we choose the attributes 

(Hurst, q-triplet, etc) that will be used for various ML models. e) We apply ML models for classification, 

clustering and prediction based on the external classifier COFA. f) We produce the table of accuracy from 

the previous step. If the accuracy is not acceptable, we return to step d) and we repeat the procedure until the 

accuracy is acceptable. g) Once the accuracy of the model is acceptable, we present the final results from ML 

models and extract the final symmetries and laws of information from the analysis of the whole data set. 

Theoretical Framework 

The DNA chromosomic system taking into account the nonlinear and strange dynamics can be described 

from the general equation: 
𝑑𝑋⃗ (𝑟 ,𝑡)

𝑑𝑡
= 𝐹𝜆(𝑋 ,𝑊)     (S1) 

 

where the vector 𝑋  describes the state of the chromosomic chemical system, while the nonlinear function 

𝐹(𝑋 ,𝑊) describes the temporal change 𝑑𝑋 𝑑𝑡⁄  of the state vector. The state vector evolves temporarily in 

the state space of the biological evolution process. The control parameter 𝜆 describes the degree of physical 

connection of the DNA system with its biological and chemical environment while the quantity 𝑊 

corresponds to the temporal evolution of the system connection with its environment. The environment state 

function 𝑊 can be high or low dimensional. The dimension of the DNA state vector 𝑋  and the topology of 

the correspondent DNA state space can change according to the control parameter values. As the control 

parameter  𝜆 changes the profile of the dynamics of the system change also through phase transition self-

organization of the entire system. Complexity theory is related with the nonlinear and strange dynamics 

included to the equation (S1) and the statistical character of the system evolution in the state space. The 

multifractal topology of the state space is created through the entropy maximization principle (Pavlos et al., 

2015; Karakatsanis et al., 2018). 

1. Non-extensive statistical mechanics 

The non-extensive statistical theory is based mathematically on the nonlinear equation: 

 
𝑑𝑦

𝑑𝑥
= 𝑦𝑞 , (𝑦(0) = 1, 𝑞 ∈ 𝑅      (S2) 

with solution the q-exponential function such as: 𝑒𝑞
𝑥 = [1 + (1 − 𝑞)𝑥]

1

1−𝑞. For further characterizing the non-

Gaussian character of the dynamics, we proceed to the estimation of Tsallis q-triplet based on Tsallis 

nonextensive statistical mechanics. Nonextensive statistical mechanics includes the q-analog (extensions) of 

the classical Central Limit Theorem (CLT) and α-stable distributions corresponding to dynamical statistics 

of globally correlated systems. The q-extension of CLT leads to the definition of statistical q-parameters of 

which the most significant is the q-triplet(𝑞𝑠𝑒𝑛 , 𝑞𝑟𝑒𝑙, 𝑞𝑠𝑡𝑎𝑡), where the abbreviations 𝑠𝑒𝑛, 𝑟𝑒𝑙, and 𝑠𝑡𝑎𝑡, stand 

for sensitivity (to the initial conditions), relaxation and stationary (state) in nonextensive statistics 

respectively (Tsallis, 2004; Umarov et al., 2008; Tsallis, 2011). These quantities characterize three physical 

processes: a) q-entropy production (𝑞𝑠𝑒𝑛), (b) relaxation process (𝑞𝑟𝑒𝑙), c) equilibrium fluctuations (𝑞𝑠𝑡𝑎𝑡). 

The q-triplet values characterize the attractor set of the dynamics in the phase space of the dynamics and they 

can change when the dynamics of the system is attracted to another attractor set of the phase space. Equation 

(S2) for 𝑞 = 1 corresponds to the case of equilibrium Gaussian (Boltzmann-Gibbs (BG)) world (Tsallis, 

2009). In this case, the q-triplet of Tsallis simplifies to 𝑞𝑠𝑒𝑛 = 1, 𝑞𝑠𝑡𝑎𝑡 = 1, 𝑞𝑟𝑒𝑙 = 1. 

2. q-triplet of Tsallis theory (𝒒𝒔𝒆𝒏, 𝒒𝒓𝒆𝒍, 𝒒𝒔𝒕𝒂𝒕) 
 

(a) 𝑞𝑠𝑡𝑎𝑡 index 



A long-range-correlated meta-equilibrium non-extensive process can be described by the nonlinear 

differential equation (Tsallis, 2004; 2009): 

 
d(𝑝𝑖Z𝑞𝑠𝑡𝑎𝑡)

dEi
= −𝛽𝑞𝑠𝑡𝑎𝑡

(𝑝𝑖Z𝑞𝑠𝑡𝑎𝑡
)
𝑞𝑠𝑡𝑎𝑡

,     (S3) 

 

where stat stands for stationary state, and 𝛽𝑞𝑠𝑡𝑎𝑡
 is the adequate inverse temperature. The solution of this 

equation corresponds to the probability distribution: 

 

𝑝𝑖 =
𝑒𝑞𝑠𝑡𝑎𝑡

−𝛽𝑞𝑠𝑡𝑎𝑡𝐸𝑖

𝑍𝑞𝑠𝑡𝑎𝑡

      (S4) 

 

where 𝛽𝑞𝑠𝑡𝑎𝑡
≡

1

𝐾𝑇𝑠𝑡𝑎𝑡
 , and 𝑍𝑞𝑠𝑡𝑎𝑡

= ∑ 𝑒𝑞𝑠𝑡𝑎𝑡

−𝛽𝑞𝑠𝑡𝑎𝑡𝐸𝑗
𝑗 . Then the probability distribution is given: 

 

pi ∝ [1 − (1 − q)β𝑞𝑠𝑡𝑎𝑡
Ei]

1 𝑞𝑠𝑡𝑎𝑡−1⁄      (S5) 

 

for discrete energy states {𝐸𝑖} and by 

 

p(x) ∝ [1 − (1 − q)β𝑞𝑠𝑡𝑎𝑡
𝑥2]1 𝑞𝑠𝑡𝑎𝑡⁄ −1    (S6) 

 

for continuous 𝑥 states of {𝑋}, where the values of the magnitude 𝑋 correspond to the state points of the 

phase space. Distribution functions (S5) and (S6) correspond to the attracting stationary solution of the 

extended (anomalous) diffusion equation related to the nonlinear dynamics of the system. The stationary 

solutions 𝑃(𝑥) describe the probabilistic character of the dynamics on the attractor set of the phase space. 

The non-equilibrium dynamics can evolve on distinct attractor sets, depending upon the control parameters, 

while the 𝑞𝑠𝑡𝑎𝑡 exponent can change as the attractor set of the dynamics change. For the estimation of Tsallis 

q-Gaussian distributions we use the method described in Ferri (Ferri et al., 2010). 

 

In the following we show the flow chart of the methodology of the 𝑞𝑠𝑡𝑎𝑡 index: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure s1: “The flow chart of the index qstat, Related to Figure 5” 

 
 



(b) 𝑞𝑠𝑒𝑛 index 

Entropy production is related to the general profile of the attractor set of the dynamics. The profile of the 

attractor can be described by its multi-fractality as well as by its sensitivity to initial conditions. The 

sensitivity to initial conditions can be expressed as: 

 
d𝜉

dt
= λ𝑞𝑠𝑒𝑛

ξ𝑞𝑠𝑒𝑛       (S7) 

 

where 𝜉 is the trajectory deviation in the phase space: ξ ≡ log𝛥𝑥(0)→0 𝛥𝑥(𝑡) 𝛥𝑥(0)⁄ , where 𝛥𝑥(𝑡) is the 

distance between neighbouring trajectories (Tsallis, 2004). The solution of equation (S7) is given by: 

 

ξ(t) = 𝑒𝑞𝑠𝑒𝑛

𝜆𝑞𝑠𝑒𝑛𝑡
,    

 (S8) 

 

where sen stands for sensitivity.  

 

The 𝑞𝑠𝑒𝑛exponent is related to the multi-fractal profile of the attractor set according to 

 

 
1

1−qsen
=

1

αmin
−

1

αmax
,     (S9) 

 

where 𝛼𝑚𝑖𝑛 , 𝛼𝑚𝑎𝑥 corresponds to zero points of the multi-fractal exponent spectrum 𝑓(𝛼), that is 𝑓(𝛼𝑚𝑖𝑛) =
𝑓(𝛼𝑚𝑎𝑥) = 0. For the estimation of the multifractal spectrum we use the method described in Pavlos (Pavlos 

et al., 2014). 

 

By using 𝐷𝑞̅ spectrum we estimate the singularity spectrum 𝑓(𝛼) using the Legendre transformation: 

 

𝑓(𝛼) = 𝑞̅𝑎 − (𝑞̅ − 1)𝐷𝑞̅,     (S10) 

 

where 𝛼 =
𝑑𝜏(𝑞̅)

𝑑𝑞̅
. We note that the Tsallis q-entropy number is a special number corresponding to the 

extremization of Tsallis entropy of the system, while the 𝑞̅ describe the range of real values of generalized 

dimension spectrum 𝐷𝑞̅. 

 

The degree of multifractality is given by: 

 

𝛥𝑎 = 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛     (S11) 

 

and the degree of asymmetry A can be estimated by the relation: 

 

𝐴 =
𝑎0−𝑎𝑚𝑖𝑛

𝑎𝑚𝑎𝑥−𝑎0
      (S12) 

 

In particular, 𝛼0 corresponds to the largest fractal dimension, which in this case is 𝑓(𝛼) = 1. It is important 

to note here that the singularity exponents 𝛼 of the singularity spectrum 𝑓(𝛼) corresponds to the Holder 

exponent and reveal the intensity of the topological singularity of the phase space as well as how irregular 

are the physical magnitudes defined in the phase space of the system. The value 𝛼0, separates the values of 

𝛼 in two distinct intervals, 𝛼 < 𝛼0 and 𝛼 > 𝛼0 with different physical meaning. In particular, the left part of 

singularity spectrum 𝑓(𝛼) is related with values 𝛼 lower than the value 𝛼0, and correspond to the low 

dimensional regions of the phase space, which is described by the right part of 𝐷𝑞̅ spectrum. Similarly, the 

right part of the singularity spectrum 𝑓(𝛼) is related with values 𝛼 higher than 𝛼0 and correspond to the high 

dimensional regions of the phase space, which is described by the left part of the curve 𝐷𝑞̅ of the generalized 

dimension spectrum. 

 

According to these characteristics of 𝑓(𝛼) and 𝐷𝑞̅ spectra, the high dimensional regions of phase space 

includes smoother fractal topology than the low dimensional regions, where the fractal character is stronger. 



Low dimensional regions of phase space cause strong fractional acceleration and anomalous diffusion 

processes of the experimental TMS. The estimation of  ∆𝐷𝑞̅ between the low (𝑞̅ → +∞)  and high (𝑞̅ → −∞) 

dimensional regions of the phase space reveals the multifractal behavior of the system. High (Low) values of 

∆𝐷𝑞̅ shows strong (weak) multifractality. 

 

In the following we show the flow chart of the methodology of the 𝑞𝑠𝑒𝑛 index: 

 

 

Figure s2: “The flow chart of the index qsen, Related to Figure 7” 

 
 



 

(c) 𝑞𝑟𝑒𝑙 index 

Thermodynamic fluctuation-dissipation theory is based on the Einstein original diffusion theory (Brownian 

motion theory). Diffusion is a physical mechanism for extremization of entropy. The Einstein-Smoluchowski 

theory of Brownian motion was extended to the general Fokker Planck (FP) diffusion theory of non-

equilibrium processes. The potential of FP equation may include many meta-equilibrium stationary states 

near or far away from thermodynamical equilibrium. Macroscopically, relaxation to the equilibrium 

stationary state of some dynamical observable 𝑂(𝑡) related to system evolution in the phase space can be 

described by the form of general form: 

 
dΩ

dt
= −

1

τ
Ω,      (S13) 

 

where 𝛺(𝑡) ≡ [𝑂(𝑡) − 𝑂(∞)]/[𝑂(0) − 𝑂(∞)] describes the relaxation of the macroscopic observable 𝑂(𝑡) 
towards its stationary state value and τ being the relaxation time (Tsallis, 2004). The non-extensive 

generalization of fluctuation-dissipation theory is related to the general correlated anomalous diffusion 

processes (Tsallis, 2009). The equilibrium relaxation process (S13) is transformed to the meta-equilibrium 

non-extensive relaxation process according to: 

 
𝑑𝛺

𝑑𝑡
= −

1

𝜏𝑞𝑟𝑒𝑙

𝛺𝑞𝑟𝑒𝑙 ,     (S14) 

 

where rel stands for relaxation.  

 

Τhe solution of this equation is given by: 

 

Ω(t) = eqrel

−t/τ𝑞𝑟𝑒𝑙       (S15) 

 

The autocorrelation function 𝐶(𝑡) or the mutual information 𝐼(𝑡) can be used as candidate observables 𝛺(𝑡) 

for estimation of 𝑞𝑟𝑒𝑙. However, in contrast to the linear profile of the correlation function, the mutual 

information includes the nonlinearity of the underlying dynamics and it is proposed as a more faithful index 

of the relaxation process and the estimation of the Tsallis exponent 𝑞𝑟𝑒𝑙. 

 

In the following we show the flow chart of the methodology of the 𝑞𝑟𝑒𝑙 index: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure s3: “The flow chart of the index qrel, Related to Figure 6” 

 

 

3. Correlation Dimension (𝑫𝟐) 
In order to provide information for the dynamical degrees of freedom of the dynamics underlying the 

experimental time series we estimate the correlation dimension (D2) defined as: 

  

     D2 = lim
r→0

d[lnC(r)]

d[ln(r)]
      

 (S16) 

 

where C(r) is the so-called correlation integral for a radius r in the reconstructed phase space. When an 

attracting set exists then C(r) reveals a scaling profile: 

 



     C(r)  rd   for  r → 0.                                                

 (S17) 

 

The correlation integral depends on the embedding dimension m of the reconstructed phase space and is 

given by the following relation: 

    C(r,m) =
2

N(N−1)
∑ ∑ Θ(r − ‖x(i) − x(j)‖)N

j=1+1
N
i=1   

 (S18) 

 

where Θ(a)=1 if a>0 and Θ(a)=0 if a  1, and N is the length of the time series. The low value saturation of 

the slopes of the correlation integrals is related to the number (d) of fundamental degrees of freedom of the 

internal dynamics. For the estimation of the correlation integral we used the method of Theiler (Theiler, 1991) 

in order to exclude time correlated states in the correlation integral estimation, thus discriminating between 

the dynamical character of the correlation integral scaling and the low value saturation of slopes 

characterizing self-affinity (or crinkliness) of trajectories in a Brownian process. When the dynamics 

possesses a finite (small) number of degrees of freedom, we can observe saturation to low values D2 of the 

slopes Dm for a sufficiently large embedding m. The dimension of the attractor of the dynamics is then at 

least the smallest integer D0 larger than D2 or at most 2D0+1, according to Taken’s theorem (Takens, 1981). 

4. Hurst Exponent (𝒉) 
The Hurst exponent (ℎ) related to the fractal dimension (𝐷). The relationship between the fractal dimension 

and the Hurst exponent is: 

 

𝐷 = 2 − ℎ      (S19) 

 

The fractal dimension shows how rough a surface is. A small value of Hurst exponent shows a higher fractal 

dimension and a rougher surface. A larger Hurst exponent shows a smaller fractional dimension and a 

smoother surface. The values of the Hurst exponent range between 0 and 1. A value of 0.5 indicates a true 

random process (a Brownian time series). A Hurst exponent value ℎ, 0.5 < ℎ < 1 indicates "persistent 

behavior". Here an increase (decrease) probably followed by an increase (decrease). A Hurst exponent value 

0 < ℎ < 0.5 indicates "anti-persistent behavior". Here an increase (decrease) probably followed by a 

decrease (increase). For the estimation of the Hurst exponent (ℎ) in this study we use Rescaled Range 

Analysis (R/S) (Weron, 2002). The Hurst exponent (ℎ), is defined in terms of the asymptotic behavior of the 

rescaled range (R/S) as a function of the time span of a time series as follows: 

 

𝐸 [
𝑅(𝑛)

𝑆(𝑛)
] = 𝐶𝑛ℎ , 𝑛 → ∞,     (S20) 

 

where, 𝑅(𝑛) is the range of the first 𝑛 values and 𝑆(𝑛) is their standard deviation, 𝐸(𝑥) is the expected value, 

𝑛 is a number of data points in a time series and 𝐶 is a constant. 

5. Machine Learning Analysis 

(a) Clustering 

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same 

group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). 

It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in 

many fields, including machine learning, pattern recognition, image analysis, information retrieval, 

bioinformatics, data compression, and computer graphics.  

 

(b) k-means model 

k-means clustering is one of the simplest and popular unsupervised machine learning algorithms. Is a method 

of vector quantization, originally from signal processing. k-means clustering aims to partition n observations 

(Examples) into k clusters in which each observation belongs to the cluster with the nearest mean, serving as 

a prototype of the cluster. Clustering can be used on unlabeled data. 

The k-means algorithm determines a set of k clusters and assigns each Examples to exact one cluster. The 

clusters consist of similar Examples. The similarity between Examples is based on a distance measure 

between them. A cluster in the k-means algorithm is determined by the position of the center in the n-



dimensional space of the n Attributes of the Example Set. This position is called centroid. It can, but do not 

have to be the position of an Example of the Example Sets. The k-means algorithm starts with k points which 

are treated as the centroid of k potential clusters. All Examples are assigned to their nearest cluster (nearest 

is defined by the measure type). Next the centroids of the clusters are recalculated by averaging over all 

Examples of one cluster. The previous steps are repeated for the new centroids until the centroids no longer 

move or max optimization steps is reached. The procedure is repeated max runs times with each time a 

different set of start points. The set of clusters is delivered which has the minimal sum of squared distances 

of all examples to their corresponding centroids. The objective function for the k-means clustering algorithm 

is the squared error function: 

 

𝐽 = ∑ ∑ (‖𝑥𝑖 − 𝑢𝑗‖)
2𝑛

𝑗=1 = 1𝑘
𝑖=1 ,     (S21) 

 

where ‖𝑥𝑖 − 𝑢𝑗‖ is the Euclidean distance between a point, 𝑥𝑖 and a centroid, 𝑢𝑗 , iterated over all 𝑘 points 

in the 𝑖𝑡ℎ cluster, for all 𝑛 clusters. In simpler terms, the objective function attempts to pick centroids that 

minimize the distance to all points belonging to its respective cluster so that the centroids are more symbolic 

of the surrounding cluster of data points. K-means clustering is a fast, robust, and simple algorithm that gives 

reliable results when data sets are distinct or well separated from each other in a linear fashion. It is important 

to keep in mind that k-means clustering may not perform well if it contains heavily overlapping data, if the 

Euclidean distance does not measure the underlying factors well, or if the data is noisy or full of outliers. 

In the following we show the flow chart for the clustering method using in this study: 

 

Figure s4: “The flow chart of the clustering process, Related to Figures 10-12” 

 

 



 

(c) Supervised classification (Naive Bayes classifier)  

For this work we used the Naive Bayes classifier for the classification process. Naive Bayes is a high-bias, 

low-variance classifier, and it can build a good model even with a small data set. It is simple to use and 

computationally inexpensive. Typical use cases involve text categorization, including spam detection, 

sentiment analysis, and recommender systems. The Naive Bayes Classifier technique is based on the so-

called Bayesian theorem and is particularly suited when the dimensionality of the inputs is high. Despite its 

simplicity, Naive Bayes can often outperform more sophisticated classification methods. Naive Bayes 

classifiers can handle an arbitrary number of independent variables whether continuous or categorical. Given 

a set of variables, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑑}, we want to construct the posterior probability for the event Cj among 

a set of possible outcomes 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑑}. In a more familiar language, 𝑋 is the predictors and 𝐶 is the 

set of categorical levels present in the dependent variable. Using Bayes' rule: 

 

𝑝(𝐶𝑗 ∨ 𝑥1, 𝑥2, … , 𝑥𝑑) ∝ 𝑝(𝑥1, 𝑥2, … , 𝑥𝑑 ∨ 𝐶𝑗)𝑝(𝐶𝑗),   (S22) 

 

where 𝑝(𝐶𝑗 ∨ 𝑥1, 𝑥2, … , 𝑥𝑑) is the posterior probability of class membership, i.e., the probability that 𝑋 

belongs to 𝐶𝑗. Since Naive Bayes assumes that the conditional probabilities of the independent variables are 

statistically independent, we can decompose the likelihood to a product of terms: 

 

𝑝(𝑋 ∨ 𝐶𝑗) ∝ ∏ 𝑝(𝑥𝑘 ∨ 𝐶𝑗)
𝑑
𝑘=1      (S23) 

 

and rewrite the posterior as: 

 

𝑝(𝐶𝑗 ∨ 𝑋) ∝ 𝑝(𝐶𝑗)∏ 𝑝(𝑥𝑘 ∨ 𝐶𝑗)
𝑑
𝑘=1     (S24) 

 

Using Bayes' rule above, we label a new case 𝑋 with a class level 𝐶𝑗 that achieves the highest posterior 

probability. 

Although the assumption that the predictor (independent) variables are independent is not always accurate, 

it does simplify the classification task dramatically, since it allows the class conditional densities p(xk ∨ Cj) 

to be calculated separately for each variable, i.e., it reduces a multidimensional task to a number of one-

dimensional ones. In effect, Naive Bayes reduces a high-dimensional density estimation task to a one-

dimensional kernel density estimation. Furthermore, the assumption does not seem to greatly affect the 

posterior probabilities, especially in regions near decision boundaries, thus, leaving the classification task 

unaffected. 

 

In the following we show the flow chart for the classification method using in this study: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure s5: “The flow chart of the classification process, Related to Figures 15-15” 

 

 

6. Evaluation - Split Test 

For the classifier’s evaluation we used a 60/40 train/test set split. The split of the dataset is a simple way to 

use one dataset to both train and estimate the performance of the classifier. We split the dataset into a training 

dataset and a test dataset. Our model randomly selects 60% of the instances for training and use the remaining 

40% as a test dataset.  
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