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Abstract
Electronic health records (EHRs) have been widely used to help physicians to make decisions by predicting medical events 
such as diseases, prescriptions, outcomes, and so on. How to represent patient longitudinal medical data is the key to making 
these predictions. Recurrent neural network (RNN) is a popular model for patient longitudinal medical data representation 
from the view of patient status sequences, but it cannot represent complex interactions among different types of medical 
information, i.e., temporal medical event graphs, which can be represented by graph neural network (GNN). In this paper, 
we propose a hybrid method of RNN and GNN, called RGNN, for next-period prescription prediction from two views, where 
RNN is used to represent patient status sequences, and GNN is used to represent temporal medical event graphs. Experi-
ments conducted on the public MIMIC-III ICU data show that the proposed method is effective for next-period prescription 
prediction, and RNN and GNN are mutually complementary.
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1 � Background

In the last decade, with the rapid growth of electronic health 
records (EHRs), data-driven studies, such as drug repurpos-
ing and medical event prediction, have become more and 
more popular in the medical domain. An EHR is composed 
of a sequence of a patient’s visits in chronological order, 
each of which contains various medical information, such 
as demographics, vital signs, diagnoses, medications, proce-
dures, laboratory test results, etc. A medical event prediction 
task is to predict some types of medical events, including 
diseases, prescriptions, outcomes, etc., using other types of 

medical information or medical history. For example, next-
period prescription prediction is to predict all medications 
of a patient in the next time using his/her medical history. 
The critical challenge of medical event prediction driven by 
EHRs is how to represent patient longitudinal medical data 
accurately, also known as patient representation.

A large number of methods have been proposed to pre-
dict medical events, As medical data of each patient is time 
series data, the typical time series analysis methods such 
as machine learning methods based on manually-crafted 
features [1] and Autoregressive Integrated Moving Average 
(ARIMA) models applied for medical event prediction [2]. 
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The manually-crafted features used in traditional machine 
learning methods are usually task-specific, and do not cover 
complex relations related to different types of medical infor-
mation and time. In recent years, with the development of 
deep learning methods, a number of them have been gradu-
ally used for medical event prediction and have achieved 
good results.

The basic deep learning methods such as RNN [3] and 
Convolution Neural Networks (CNN) [4] have shown great 
potential for patient representation. However they still have 
limitations in heterogeneous information fusion and tempo-
ral information utilization.

To deal with these limitations mentioned above, research-
ers have attempted to extend the basic deep learning meth-
ods. For example, Jin et al. proposed a new Long Short-Term 
Memory (LSTM, a variant of RNN) learning framework 
to model inter-correlations of different types of medical 
information [5]. They developed three variants of LSTM 
based on demographics, laboratory test results and history 
prescriptions to predict next-period prescriptions. Among 
these variants, the decomposed LSTM that used LSTM to 
model history prescription sequence and integrated labora-
tory test results into each cell achieved the best results. An 
et al. proposed an attention-based LSTM for high-risk pre-
diction [6]. The model first adopted attention-based LSTM 
to individually represent each type of medical information, 
including diagnosis sequence, laboratory sequence, and their 
combination sequence, and then concatenate these three rep-
resentations together for prediction. All these methods aim 
to represent patient status sequences, but without consider-
ing complex interactions among different types of medical 
information, that is, temporal medical event graphs. GNN 
is a potential method to represent temporal medical event 
graphs.

In this study, we focus on next-period prescription predic-
tion, and propose a novel hybrid method of RNN and GNN 
(called RGNN) for this task. In RGNN, RNN and GNN are 
first individually used to represent patient longitudinal medi-
cal data from two views, and then they are combined organ-
ically. The decomposed LSTM, a state-of-the-art method 
for next-period prescription prediction, is used to represent 
patient status sequences, and GNN is used to represent tem-
poral event graphs.

In the case of GNN, we present two methods to represent 
medical event graphs. Experiments conducted on the pub-
lic MIMIC-III ICU data show that the proposed method is 
effective for next-period prescription prediction and RNN 
and GNN are mutually complementary.

In summary, our main contributions are:

•	 We propose a novel hybrid method of RNN and GNN, 
called RGNN, to represent patient longitudinal medical 
data from two views and apply it to next-period prescrip-

tion prediction. In RGNN, RNN is used for patient status 
sequence representation, and GNN for temporal medical 
event graph representation.

•	 We present two methods to build a temporal medi-
cal event graphs and represent them by GNN. We first 
build the graphs according to co-occurrences of differ-
ent types of medical events at two neighbor time points, 
where the nodes are medical events and the edges are co-
occurrences relations, and then further add time intervals 
between medical events as edge weights.

•	 We evaluate the performance of RGNN on the public 
MIMIC-III ICU data. Experiment results demonstrate 
that RGNN can achieve promising performance on next-
period prescription prediction, and RNN and GNN are 
mutually complementary.

2 � Related work

2.1 � Medical event prediction

In the medical domain, medical event prediction is a promis-
ing research topic. The main task of medical event prediction 
is to predict future medical events including risk of diseases 
[6], prescriptions [5], mortality rate [7], hospital readmission 
[8], length of stay in hospital [9], postoperative complica-
tions [10], survival time [11] and so on. In this paper, we 
mainly focus on next-period prescription prediction.

As patient medical data is typical time series data, almost 
all time series data analysis methods can be deployed for 
medical event prediction. They may fall into the following 
three categories: (1) statistic analysis methods such as Cox 
proportional hazards model [12] and hierarchical Associa-
tion Rule Model (HARM) [13]; (2) statistic machine learn-
ing methods based on manually-crafted features such as 
artificial neural network, decision tree, logistic regression, 
Support Vector Machines (SVM) [14, 15]; (3) deep learn-
ing methods such as auto-encode model [16], CNN [11], 
RNN [17], LSTM and Bi-LSTM [18]. For example, in the 
early studies, McCormick et al.’s proposed a Hierarchical 
Association Rule Model (HARM) to predict disease risk 
from medical data using association analysis and Bayesian 
estimation [13]. Deken et al. are investigated ANN, decision 
tree, and logistic regression for breast cancer survival time 
prediction [19]. Choi et al. are presented an RNN-based sys-
tem, i.e., doctor AI, to predict multiple medical events in the 
next time [20]. Baytas et al. proposed a time-aware LSTM 
network, called T-LSTM, for patient subtyping [21]. Among 
the three categories, deep learning methods attract more and 
more attention from researchers in recent years due to their 
excellent ability to model complex non-linear relationships 
within data and their remarkable results [22]. In the case of 
next-period prescription prediction, one of the latest studies 
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is Jin et al.’s work [5]. In this work, they proposed a variant 
LSTM, called decomposed LSTM, that can fuse different 
types of medical information effectively.

2.2 � Graph neural network

Graph neural network (GNN) is a kind of deep neural net-
work powerful for complex graphs [23]. Several methods 
are recently proposed to compute representations of nodes, 
edges, and graphs [24–26]. Among them, Graph Convolu-
tional Network (GCN) that computes the representation of a 
node recursively from its neighbors is the most common one 
[27] and is widely applied to many domains such as natural 
language processing and knowledge graph representation. In 
the medical domain, GCN starts to be applied to many tasks. 
For example, Choi et al.’s deployed GCN to learn medical 
concept representations from the graph of medical ontol-
ogy knowledge [28]. Ma et al.’s recognized the drug–drug 
interaction (DDI) problem as a graph classification prob-
lem and solve it by GCN [29]. Besides GCN, some other 
GNNs also have been proposed recently such as GAMENet 
[30] and Decagon [31]. GAMENet is a Graph Augmented 
Memory Network designed to integrate the DDI knowledge 
graph for the personalized recommendation of medication 
combination. Decagon is a multi-modal GNN for drug side 
effect prediction. Decagon is a multi-modal GNN for drug 
side effect prediction.

3 � Method

3.1 � Task introduction

Next-period prescription prediction can be recognized as 
a multi-label classification problem as follows: given a set 
of patients P = { p1, p2,… , pN } with their medical histo-
ries X = { xp1 , xp2 , …, xpN } and demographics D = { dp1 , 
dp2 , …, dpN  }, we need to predict their prescriptions 
M = {mp1 ,mp2 ,… ,mpN} in the next time. For patient pk, 
xpk is a visit sequence that comprises sequences of different 
types of medical events such as diagnosis sequence, labo-
ratory test sequence, prescription sequence, etc. In this 
study, following Jin et al.’s work, we only consider labora-
tory test sequence and prescription sequence, denoted by 
x
pk
m =

{

x
pk
m1
, x

pk
m2
,… , x

pk
mt

}

 and xpk
l
=

{

x
pk
l1
, x

pk
l2
,… , x

pk
lt

}

 respec-
tively, where xpkmi

 and xpk
li

 are medications and laboratory 
tests at the time i, represented by a one-hot vector of medi-
cation vocabulary (denoted as ∑) and a one-hot vector of 
laboratory test item vocabulary (denoted as L). We adopt 
x
pk
i
=

[

x
pk
mi
, x

pk
li

]

 to denote the status of pk at the time t. In the 
case of M, mpk = x

pk
mt+1

 . Figure 1 gives an example of medi-
cation vocabulary, where the numbers in parentheses are 
indices of items in the vocabularies.

Fig. 1   Example of the medical history of a patient (pk)
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3.2 � Model description

The structure of our proposed hybrid method of decomposed 
LSTM and GNN (RGNN) is shown in Fig. 2. The medical 
history xpk of patient, pk is represented by decomposed LSTM 
and GNN separately, and then the representations from the two 
views are combined in different ways. Subsequently, the final 
representation of xpk (denoted by hpk ) and the demographics 
dpk of patient pk are concatenated, transformed by a Rectified 
Linear Unit (ReLU) activation function, and fed into a Sigmod 
function to predict medications in the next time.

Following the Jin et al.’s work [5], we use the following 
decomposed LSTM (as shown in Fig. 3) to represent the status 
sequence of patient pk

([

x
pk
1
, x

pk
2
,… , x

pk
t

])

:

(1)st = �

(

Ws

[

xpk
mt
, ht−1

]

+ bs

)

,

(2)dt = �
(

WdecompCt−1 + bdecomp
)

,

(3)�Cl
t
= dt ⊙ tanh

(

Wlx
pk
lt
+ bl

)

,

(4)C̃t = tanh
(

Wc

[

xpk
mt
, ht−1

]

+ bc

)

,

where �(.) , tanh(.) and ⊙ denote the logistic function, hyper-
bolic tangent function, and element-wise multiplication, 
respectively; s denotes one of three gates (forget f, input i 
and output o gates); Ws are weight matrices and bs are bias 
vectors.

We propose two methods to build temporal medical event 
graph: (1) co-occurrence graph and (2) time-aware graph. 
In the co-occurrence graph, medical events at the time i 

(5)Ct = ft ⊙
(

Ct−1 +
�Cl
t

)

+ it ⊙
�Ct,

(6)ht = ot ⊙ tanh
(

Ct

)

,

Fig. 2   Structure of the hybrid method of decomposed LSTM and GNN (RGNN)

Fig. 3   Structure of decomposed LSTM
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( xpk
i

 ) are linked to medical events at time i + 1 ( xpk
i+1

 ). The 
graph can be denoted by A ∈

∑

×L × T(T = {1, 2, …, t}) and 
Ai ∈

∑

×L is the adjacency matrix regarding xpk
i

 and xpk
i+1

 . 
After obtaining co-occurrence graph A, we deploy GCN, a 
kind of GNN, to represent A as follows:

where D̃ . is the degree matrix of A, I is the identity matrix, 
Ws are weight matrices, and MEAN{.} is the mean function.

Considering different time intervals between two neigh-
bor time points, we build a time-aware graph A by replacing 
ajk = 1 ∈ Ai by ajk =

1

Δti
∈ Ai , where Δti is the time interval 

between the time i and time i + 1.
We combine the representations from decomposed LSTM 

and GNN in the following three ways:

1.	 Concatenation mechanism:
[

ht, g
]

2.	 Attention mechanism:

3.	 Gate mechanism:�(g)ht

The final medical history representation of pk (i.e.,hpk ) 
and the demographics dpk of patient pk are concatenated and 
transformed into rpk by a ReLU function defined as follows:

where Wr is the weight matrix and br is the bias vector.
At the end of the hybrid method, the medications in the 

next time are predicted by a Sigmod function as follows:

where Wm is the weight matrix and bm is the bias vector.
To obtain model parameters, we employ the cross-entropy 

as the loss function as follows:

(7)Â = D̃
−

1

2 (A + I)D̃
−

1

2 ,

(8)Z = MEAN
{

ÂReLU
(

ÂXW1

)

W2

}

,

(9)

�

�
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�
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exp

�

f
�
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��

∑

1≤k≤t exp
��
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(10)rpk = ReLU
(

Wr

[

hpk , rpk
]
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)

,

(11)x̃pk
m
= �

(

Wmr
pk + bm

)

,

(12)

LOSS
(

x̃pk
m
, xpk

m

)

=
1

N

∑

1≤k≤N

(

x̃pk
m
log xpk

m
+
(

1 − x̃pk
m

)

log
(

1 − xpk
m

))

4 � Experiments

4.1 � Dataset

In this paper, we select the records of a group of patients 
that have at least two visits from MIMIC-III, a publicly 
available dataset that contains realistic medical data of 
53,423 adults (age ≥ 16 years) in the ICU of Beth Israel 
medical center, Massachusetts Institute of technology 
from 2001 to 2012, as well as clinical data of 7787 new-
borns from 2001 to 2008. To avoid sparse data problem, 
we follow previous studies [5, 30] to remove laboratory 
test items appearing less than 50 times and keep the most 
frequent 200 medications. Finally, as shown in Table 1, 
we obtain a dataset of 7121 patients, where there are 
11,269,796 laboratory test items of 462 types, 1,030,083 
medications of 200 types. On average, a patient has 2.68 
visits, each visit has 590 laboratory test items (lab test) 
and 54 prescriptions, each prescription has 6.26 medica-
tions, the time interval between two visit is 2.26 years, 
and the time interval between two prescriptions is 1 day. 
We randomly split the selected dataset into a training set, 
a development set and a test set in patients with a ratio of 
80:10:10. The statistics of the dataset are listed in Table 2, 
where #* is the number of *.

Table 1   Statistics of patient data

Items Value

Patients 7121
Laboratory test 11,269,796
Laboratory test code 462
Medications 1,030,083
Medications code 200
Avg visits per patient 2.68
Avg laboratory test per visit 590
Avg prescriptions per visit 54
Avg medications per prescription 6.26
Avg time interval between two neighbor prescription 1 day
Avg time interval between two neighbor visits 2.26 years

Table 2   Statistics of the dataset used in this study

Dataset #Patient #Visit #Medication #Labtest

Training 4557 13,966 752,960 8,338,978
Development 1139 2278 121,985 1,293,216
Test 1425 2875 155,138 1,637,602
Total 7121 19,094 1,030,083 11,269,796
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4.2 � Evaluation metrics

As next-period medication prediction is a class imbalance 
problem, we utilize the Area Under ROC (Receiver Operat-
ing Characteristic) curve (AUC) and Area Under Precision-
Recall Curve (AUPR) to evaluate model performance. The 
AUC is the primary metric.

4.3 � Experimental settings

We start with the basic LSTM considering different types 
of medical events separately, doctor AI [20], T-LSTM [21], 
decomposed LSTM [5] and GNN, and then compare differ-
ent RGNN variants, denoted by RGNN-G-C, where G∈{“co-
occurrence graph (CG)”, “time-aware graph (TG)”} repre-
sents graph construction method and C∈{“concatenation 
mechanism (CAT)”, “attention mechanism (ATT)”, “gate 
mechanism” (GAT)} represents the way to combine the 
representations from decomposed LSTM and GNN. As the 
same as RGNN, GNN also contains two variants according 
to the graph construction methods, which are denoted by 
GNN-CG and GNN-TG. All methods are implemented in 
TensorFlow and all models are trained three times with the 
following hyperparameters:

•	 Batch size: mini-batch
•	 Optimizer: stochastic Adam
•	 Learning rate: 1 × 10−3

•	 Epoch: 1000
•	 Hidden states in decomposed LSTM: 128
•	 Hidden states in GNN (in Eq. 9): 128
•	 Hidden states in ReLU in Fig. 2: 256

5 � Results

A comparison of our method with other methods is shown in 
Table 3. Among the methods used for comparison, decom-
posed LSTM and GNN designed to fuse different types of 
medical events outperform the other LSTM variants that con-
siders different types of medical events separately by more 
about 2% in AUC. Compared to decomposed LSTM and GNN, 
RGNN that combines them obtains an AUC improvement of 
0.9% to 2.9%. In the case of RGNN, RGNN using TG is a lit-
tle better than RGNN using CG, RGNN using ATT or GAT 
achieves much better performance than RGNN using CAT. 
The AUC difference between RGNN using ATT or GAT and 
RGNN using CAT is around 0.8%. RGNN-TG-ATT achieves 
the highest AUC of 0.8387 and the highest AUPR of 0.2848.

Moreover, we investigate the performance of RGNN-
TG-ATT on the top 10 diagnoses (as shown in Table 4). 
The AUCs of RGNN-TG-ATT on all the top 10 diagnoses 
are higher than 0.81. The highest AUC is 0.8739 on chest 

pain, and the lowest AUC is 0.8130 on altered mental status. 
RGNN-TG-ATT achieves the highest AUPR of 0.3471 on 
coronary artery disease and the lowest AUPR of 0.2427 on 
upper gastrointestinal bleeding.

6 � Discussion

In this study, we investigate two methods for patient longitu-
dinal and heterogeneous medical data representation, that is, 
decomposed LSTM and GNN. A common characteristic of 
them is that the two methods are specially designed to fuse dif-
ferent types of medical information that are dependent on each 
other. As we mentioned in the method section, decomposed 
LSTM is used to represent a patient status sequence, while 
GNN is used to represent the temporal medical event graph. 
The former mainly focuses on patient status at each time, and 
the latter one mainly focuses on the whole medical events. This 
may be the main reason that both decomposed LSTM and GNN 

Table 3   Comparison of our method with other methods

The highest values are highlighted in bold

Method AUC​ AUPR

LSTM 0.7884 ± 0.0155 0.2450 ± 0.0070
GNN-CG 0.8091 ± 0.0003 0.1929 ± 0.0021
GNN-TG 0.8106 ± 0.0007 0.1950 ± 0.0023
Doctor AI [20] 0.7555 ± 0.0008 0.1662 ± 0.0048
T-LSTM [21] 0.7898 ± 0.0049 0.1289 ± 0.0048
Decompos LSTM [5] 0.8194 ± 0.0075 0.2669 ± 0.0097
RGNN-CG-CAT​ 0.8284 ± 0.0038 0.2704 ± 0.0083
RGNN-CG-ATT​ 0.8364 ± 0.0044 0.2741 ± 0.0007
RGNN-CG-GAT​ 0.8365 ± 0.0033 0.2634 ± 0.0043
RGNN-TG-CAT​ 0.8316 ± 0.0025 0.2766 ± 0.0052
RGNN-TG-ATT​ 0.8387 ± 0.0049 0.2848 ± 0.0011
RGNN-TG-GAT​ 0.8381 ± 0.0038 0.2643 ± 0.0038

Table 4   Performance of RGNN-TG-ATT on the top 10 diagnoses

The highest values are highlighted in bold

Diagnosis AUC​ AUPR

Pneumonia 0.8293 ± 0.0084 0.2850 ± 0.0117
Sepsis 0.8225 ± 0.0115 0.3107 ± 0.0226
Congestive heart failure (CHF) 0.8552 ± 0.0061 0.3322 ± 0.0161
Coronary artery disease (CAD) 0.8582 ± 0.0129 0.3471 ± 0.0235
Chest pain (CP) 0.8739 ± 0.0091 0.2855 ± 0.0137
Intracranial hemorrhage (ICH) 0.8136 ± 0.0092 0.2453 ± 0.0156
Altered mental status (AMS) 0.8130 ± 0.0111 0.2481 ± 0.0080
Gastrointestinal bleeding (GIB) 0.8370 ± 0.0081 0.2542 ± 0.0127
Upper GI 0.8514 ± 0.0056 0.2427 ± 0.0135
Abdominal pain 0.8455 ± 0.0105 0.3318 ± 0.0306
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outperform the basic LSTM that considers different types of 
medical information separately as shown in Table 3. Because 
patient medical data is time-sequential data, RGNN using TG 
is a little better than RGNN using CG. To assess the effect 
of time on GNN, we further compare RGNN-TG-ATT with 
RGNN-CG-ATT on the top 10 diagnoses as shown in Table 5, 
where time volatility is the standard deviation of time intervals 
divided by the mean of time intervals. In most cases, the larger 
the time volatility, the effect the time on AUC. For example, 
as the largest time volatility of 2.8871 brings the biggest AUC 
difference of 0.0161, and the smallest time volatility of 2.3731 
brings the smallest AUC difference of − 0.0003. From Table 4, 
we find that the effect of time on GNN is not very remarkable. 
The reason may be that the times in the data used in this study 
are relatively concentrated as the data comes from the ICU of 
Beth Israel medical center, Massachusetts Institute of technol-
ogy. In the case of the combination of the two representations 
from RNN and GNN, the reason why both the attention mecha-
nism and the gate mechanism show better performance than 
the concatenation mechanism is that the two representations 
share some information and are complementary to each other.

Although the proposed method shows promising perfor-
mance, there may be three directions for further improvement: 
(1) considering more types of medical information such as 
diagnosis sequence beside laboratory test sequence and pre-
scription sequence; (2) introducing values into the one-hot vec-
tors of medical history at each time; (3) integrating medical 
knowledge.

7 � Conclusions

In this study, a novel hybrid method of RNN and GNN, 
called RGNN, is proposed for next-period prescrip-
tion prediction. RGNN represents patient longitudinal 

medical data from two views, that is, RNN for patient 
status sequence representation and GNN for temporal 
medical event graph representation. Experiments on a 
benchmark dataset prove the effectiveness of RGNN on 
next-period prescription prediction. RGNN can also be 
applied to other medical event prediction tasks.
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CP 0.8578 ± 0.1057 0.8739 ± 0.0091 0.0161 2.8871
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All 0.8364 ± 0.0044 0.8387 ± 0.0049 0.0023 2.6739
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