
ORIGINAL RESEARCH ARTICLE
published: 26 December 2011

doi: 10.3389/fgene.2011.00093

Thousands of novel transcripts identified in mouse
cerebrum, testis, and ES cells based on ribo-minus RNA
sequencing

Wanfei Liu1,2†,Yuhui Zhao1,2†, Peng Cui 1,3†, Qiang Lin1,2, Feng Ding1,3, Chengqi Xin1,2, XinyuTan1,

Shuhui Song1*, JunYu1* and Songnian Hu1*

1 CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
2 Graduate University of Chinese Academy of Sciences, Beijing, China
3 Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA

Edited by:

Philipp Kapranov, St. Laurent
Institute, USA

Reviewed by:

Philipp Kapranov, St. Laurent
Institute, USA
John Stanley Mattick, The University
of Queensland, Australia
Piero Carninci, RIKEN, Japan

*Correspondence:

Shuhui Song, CAS Key Laboratory of
Genome Sciences and Information,
Beijing Institute of Genomics,
Chinese Academy of Sciences, No.7,
Beitucheng West Road, Chaoyang
District, Beijing 100029, China.
e-mail: songshh@big.ac.cn;
Jun Yu, CAS Key Laboratory of
Genome Sciences and Information,
Beijing Institute of Genomics,
Chinese Academy of Sciences, No.7,
Beitucheng West Road, Chaoyang
District, Beijing 100029, China.
e-mail: junyu@big.ac.cn;
Songnian Hu, CAS Key Laboratory of
Genome Sciences and Information,
Beijing Institute of Genomics,
Chinese Academy of Sciences, No.7,
Beitucheng West Road, Chaoyang
District, Beijing 100029, China.
e-mail: husn@big.ac.cn
†Wanfei Liu, Yuhui Zhao and Peng Cui
have contributed equally to this work.

The high-throughput next-generation sequencing technologies provide an excellent oppor-
tunity for the detection of less-abundance transcripts that may not be identifiable by previ-
ously available techniques. Here, we report a discovery of thousands of novel transcripts
(mostly non-coding RNAs) that are expressed in mouse cerebrum, testis, and embryonic
stem (ES) cells, through an in-depth analysis of rmRNA-seq data. These transcripts show
significant associations with transcriptional start and elongation signals. At the upstream of
these transcripts we observed significant enrichment of histone marks (histone H3 lysine
4 trimethylation, H3K4me3), RNAPII binding sites, and cap analysis of gene expression
tags that mark transcriptional start sites. Along the length of these transcripts, we also
observed enrichment of histone H3 lysine 36 trimethylation (H3K36me3). Moreover, these
transcripts show strong purifying selection in their genomic loci, exonic sequences, and
promoter regions, implying functional constraints on the evolution of these transcripts.
These results define a collection of novel transcripts in the mouse genome and indicate
their potential functions in the mouse tissues and cells.

Keywords: novel transcripts, non-coding RNA, ribo-minus RNA-seq, next-generation sequencing

INTRODUCTION
The mammalian transcriptomes are much more complex than
what we have been anticipated according to the related research
activities over the past decade. Recently, novel transcripts have
been continuously identified in mammalian genomes. Bertone
et al. (2004) found 10,595 novel transcribed sequences in human
liver tissue. Carninci et al. (2005) demonstrated that the major-
ity of the mammalian genome is transcribed and reported 16,247
new mouse protein-coding transcripts. The ENCODE pilot project
reported that the human genome is pervasively transcribed and
discovered the relationship between transcripts and chromatin
accessibility features (Birney et al., 2007). According to the
chromatin-state maps, about 1,600 large multi-exonic RNAs were
identified by Guttman et al. (2009) in mouse. Cabili et al. (2011)

presented an integrative approach and defined >8,000 human lin-
cRNAs. Trapnell et al. (2010) got 3,724 previously un-annotated
transcripts in mouse and 62% of them were supported by indepen-
dent expression data or homologous genes in other species. These
novel transcripts are called the “dark matter” RNAs, which include
any RNAs whose functions are still unknown (Kapranov et al.,
2010). Kapranov et al. (2010) concluded that the “dark matter”
RNA can be greater than protein-encoding transcripts and a large
number of long non-coding RNA reside in intergenic regions.

However, controversial opinions still exist. It has been sug-
gested that most novel transcribed regions are associated with
known neighboring gene models. For example, by mapping and
quantifying mouse transcriptome using poly(A) selected RNA-
seq data, 92% of novel transcription regions can be assigned to
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their neighboring genes in a recent study (Mortazavi et al., 2008).
van Bakel et al. (2010) also concluded that most non-exonic tran-
scribed sequence fragments (seqfrags) probably are indeed partial
fragments of pre-mRNA with introns, new exons of known genes
in intergenic sequences, or promoter- and terminator-associated
transcripts. Clark et al. (2011) and van Bakel et al. (2011) have dis-
cussed possible mechanisms of the pervasive transcription and
some of the arguments are focused on universality and func-
tionality of these novel transcripts (Jarvis and Robertson, 2011).
In addition, studies have suggested that non-coding RNAs are
important in transcriptional and post-transcriptional regulations,
chromatin-modification, development and diseases, such as can-
cers (Gupta et al., 2010; Mattick et al., 2010; Glass et al., 2011;
Kogo et al., 2011) and indeed fundamental to eukaryotic evolution
(Mattick, 2010).

Recently, RNA-seq methods, mRNA-based, or ribo-minus (rm)
based on the next-generation sequencing technologies, are con-
sidered to be more accurate and comprehensive for transcriptome
profiling (Wang et al., 2009). They are supreme over other tran-
scriptomic methods, including expressed sequence tag (EST), ser-
ial analysis of gene expression (SAGE), and microarray, in dynamic
range, sampling depth, and material processing. The methods
allow researchers to acquire adequate amount of data to char-
acterize novel transcripts, and moreover, when combined with
other complementary data, such as those from cap analysis of gene
expression (CAGE), histone modification, and RNAPII, as well as
sequence conservation analysis, they provide stronger evidence for
identifying novel transcription.

In this study, we used publicly available rmRNA-seq data from
the mouse cerebrum, testis, and embryonic stem (ES) cells to
excavate new transcripts and verify their existence in the mouse
genome, with an anticipation that rmRNA-seq data are expected
to contribute more coding and non-coding transcripts, which
lack polyA tails (Cui et al., 2010). We built a pipeline to iden-
tify expressed regions and candidate exons in the entire genome
to define novel transcripts through comparison to known tran-
scripts and carried out a combined analysis on relevant public
data, including CAGE (Kawaji et al., 2006), histone modifications
(H3K4me3, H3K27me3, and H3K36me3) and RNAPII (Mikkelsen
et al., 2007), and sequence conservation values (Fujita et al., 2011).
We also examined potential functions of these novel transcripts
according to their sequence structures and characteristics. We
expect to provide useful insights into the “dark matter” of the
mouse genome.

MATERIALS AND METHODS
DATASETS
The transcriptome profiling of mouse cerebrum, testis, and ES
cells, as well as data for histone modifications (H3K4me3 and
H3K27me3) of mouse cerebrum and testis were from NCBI SRA
database, SRA039962 and SRX005943, which were produced by
our group previously. We also retrieved ChIP-seq data of RNAPII,
H3K4me3, H3K27me3, and H3K36me3 from mouse ES cells1

(Mikkelsen et al., 2007) and 5′ CAGE tags from multiple mouse

1ftp://ftp.broad.mit.edu/pub/papers/chipseq/

tissues published by the Fantom3 project2 (Kawaji et al., 2006).
In addition, we obtained conservation scores from the UCSC
database3 (Fujita et al., 2011).

EXON OR TRANSCRIPTION UNIT (TU) IDENTIFICATION BASED ON
rmRNA-seq DATA
We built an efficient pipeline for TU identification (Figure A1
in Appendix; File S3 in Supplementary Material). First, RNA
sequencing reads were mapped to the mouse genome assembly
(mm9) by using TopHat (Langmead et al., 2009; Trapnell et al.,
2009) and the coverage files were created based on mapping results
by using a custom-designed perl script. Second, according to the
coverage files, we obtained average coverage of all Refgene introns
and set a cutoff value of the coverage to exclude 95% of introns
(3, 4, and 7 for cerebrum, ES cells, and testis, respectively). To
define the expressed regions, we limited each region to have at least
55-bp consecutive length and all these positions must be equal or
above the cutoff value. If the distance of adjacent expressed regions
(exons) is equal or smaller than the length of 95 bp (95% intron
lengths are larger than 95 bp), we combined the adjacent expressed
regions into one. We also revised the boundaries of exons using the
split read feature from TopHat. Third, we evaluated the accuracy
of exon identification, calculated the average coverage for exons
defined in Refgene introns and removed exons whose coverage
below the cutoff value. Fourth, we annotated and removed cer-
tain exons by comparing our putative exons with several databases
(UCSC, ENSEMBL, NONCODE, RNAdb, fRNAdb, Rfam, miR-
Base, tRNAdb, and ncRNAdb). Fifth, we constructed TUs for exons
found in intergenic regions according to the distance between
exons, RNAPII signals, and H3K36me3 signals. Sixth, to assess
the accuracy of this method, we compared our TUs (by using all
exons in intergenic regions) with the Fantom3 RNAs.

IDENTIFICATION OF ENRICHED INTERVALS OF ChIP-seq DATA
We defined H3K4me3- and H3K27me3-enriched intervals by
using SICER program (v1.03; Zang et al., 2009). The parame-
ters were set as follows: (1) 200-bp window, 200-bp gap, and 0.001
for False Discovery Rate of H3K4me3; (2) 200-bp window, 600-
bp gap, and 0.001 for False Discovery Rate of H3K27me3. The
sequencing reads from a pan-H3 experiment was used as a back-
ground control for H3K4me3 and H3K27me3. The H3K36me3
and RNAPII enrichment intervals were downloaded from the web-
site at the Broad Institute (see text footnote 1; Mikkelsen et al.,
2007). Chromatin states of exons or TUs were determined based
on overlapping regions where H3K4me3, H3K27me3, H3K36me3,
and RNAPII are all enriched.

CONSERVATION OF EXONS, TUs, AND THEIR PROMOTERS
To estimate sequence conservation of exons, TUs, and their pro-
moters, we used conservation scores derived from an alignment of
29-vertebrate-to-mouse genomes from the UCSC database (Fujita
et al., 2011). We calculated the conservation score in a 12-bp slid-
ing window with a step length of 1 bp and selected the maximal
value as the conservation score. The sequences that have higher
conservation scores are more conservative than other sequences.

2http://fantom3.gsc.riken.jp/db/
3http://genome.ucsc.edu/
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CORRELATION BETWEEN SENSE AND ANTISENSE GENE EXPRESSION
We extracted the information for sense–antisense gene pairs and
calculated the RPKM value for the sense and antisense genes based
on mapping results. We subsequently divided the sense–antisense
gene pairs into two portions according to their expression ratios
between two samples for the sense and antisense expression. The
expression ratio is equal to the sample 2 expression divided by the
sample 1 expression. We classified them as positive if the log10
value of both sense and antisense expression ratios are greater or
less than zero. Otherwise, we classified them as negative. We corre-
lated the positive and negative types of sense–antisense gene pairs
using the expression ratio.

RESULTS
IDENTIFICATION OF ACTIVELY TRANSCRIBED REGIONS (EXONS)
We obtained rmRNA-seq data from the mouse cerebrum, testis,
and ES cells which were generated based on the SOLiD sequencing
platforms using a strand-specific rmRNA-seq method (Cui et al.,
2010), and mapped rmRNA-seq reads onto the mouse genome
assembly (mm9) using TopHat software (Table A1 in Appendix).
Based on the mapped reads, we assessed sequencing saturation
according to the increase of read start-points with increasing
mapped read (Figure 1). To define actively transcribed regions,
we calculated the coverage per nucleotide position and used those
positions whose coverage values are equal or larger than the cutoff
values (3, 4, and 7 for cerebrum, ES cells, and testis, respectively;
also see Materials and Methods for details; Figure 2A). Moreover,
due to sequencing bias, we required that each region to have at least
55 bp consecutive sequence above the cutoff value of coverage and
the distance of adjacent regions is larger than 95bp (Figures 2C,B).
Consequently, we obtained 395,546, 465,149, and 194,996 puta-
tive exons in the total in the three libraries, respectively (Table 1;
File S1 in Supplementary Material). For assessing the accuracy of
exon identification, we compared the defined actively transcribed
regions to Refgene exons (Karolchik et al., 2004), and found that
most Refgene exons (∼94.12%) have been identified and that the
aligned length is up to ∼88.71%. Furthermore, ∼93.81% RefSeq-
defined exons are shown to be one-to-one matches (Table A2 in
Appendix). These statistics proved the viability of our pipeline
for this analysis. Moreover, we found that different samples have
different percentages of reads assembled into exons (Table A3 in
Appendix). We believe that such variability is related to read length,
read coverage, and the cutoff value of the read coverage.

ANNOTATION OF NOVEL EXONS
To annotate novel transcripts, we first removed known exons
according to the Refgene collection. We then removed all other
known exons that have matches to other databases, such as the
NCBI nr database (Johnson et al., 2008) based on sequence align-
ment using the BLAST software packages. The repeat regions of the
mouse genome were avoided according to the repeat annotation at
UCSC (Fujita et al., 2011). We also built a custom-designed ncRNA
database through integrating several databases that include mouse
ncRNA data in ENSEMBL (Flicek et al., 2011), UCSC (Fujita et al.,
2011), NONCODE (He et al., 2008), RNAdb (Pang et al., 2007),
fRNAdb (Kin et al., 2007), ncRNAdb (Szymanski et al., 2007),
Rfam (Griffiths-Jones et al., 2005), miRBase (Griffiths-Jones et al.,

FIGURE 1 |The saturation curve for the number of start-points of

mapped reads. x -Axis shows the number of the mapped reads and y -axis
displays the start-points number (million) of mapped reads.

2006), and tRNAdb (Juhling et al., 2009; Table A4 in Appendix).
Moreover, we filtered the newly identified exons of known genes
using the split reads from the TopHat result. We also predicted
the function of novel exons (unannotated) by comparing them to
the Rfam database. Most Rfam-predicted exons are snoRNAs, but
some are miRNAs, tRNAs, and snRNAs. Finally, we obtained three
sets of putative novel exons (Table 2).

BUILDING NOVEL TRANSCRIPTION UNITS (TU) IN INTERGENIC REGION
Since well-defined actively transcribed regions exhibit obvious
gene structure features, we tried to connect the neighboring active
regions into the same transcription units (TUs). When we cal-
culated the distance of adjacent actively transcribed regions, we
found that there are two main peaks in the density plots and this
feature can be used for building novel TUs (Figure 3). In addition,
there is a small peak appeared around 100 bp in length, which is a
characteristic of the minimal intron (∼100 bp in length) described
in our previous publications (such as Zhu et al., 2010). The first
major peak represents the distance of adjacent exons inside TUs
and the second major peak is related to the distance of exons
between adjacent TUs. Moreover, we downloaded the RNAPII
and H3K36me3 data of ES cell, which were used to define the
transcription start and the elongation of the transcripts, respec-
tively. We finally constructed TUs for novel exons in intergenic
regions according to the information from the distance between
exons, RNAPII signals, and H3K36me3 signals, producing 17,931,
18,512, and 6,966 annotated TUs in cerebrum, testis, and ES cells,
respectively (File S2 in Supplementary Material).

To evaluate our processing algorithm, we compared our TUs
with the intergenic RNAs annotated by the Fantom3 project. As
expected, the one-to-one matching rate is about 95.62%, but the
aligned length is a little bit lower, ∼70.99% (Table A5 in Appen-
dix). The reason why the aligned length is not as high as the
matching rate is that we may lose some exonic sequences due
to their low coverage in the real data. It can be improved when
more rmRNA-seq data are added. Nevertheless, the matching rate
encouraged us to proceed.
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FIGURE 2 | Parameters used in exon identification. (A) The
cutoff value of coverage in the mouse cerebrum, testis, and ES
cells. The cutoff value (blue) of coverage (3, 4, and 7 for cerebrum,
ES cells, and testis, respectively) is labeled on the x -axis and the
corresponding accumulative frequency (0.95, colored in green) is
labeled on the y -axis. (B) The minimal intron length used in exon

identification. The value (blue) on x -axis is identified as minimal intron length
(95) and the value (green) on y -axis is the corresponding accumulative
frequency (0.05). (C) The minimal exon length used in exon identification. The
value (blue) on the x -axis is identified as minimal exon length (55) and the
value (green) on the y -axis is the corresponding accumulative frequency
(0.05).

Table 1 | Summary of novel exons identified in our analysis.

Sample Cerebrum Testis ES cell

Identified exons1 395,546 (105,657,702, 100%)3 465,149 (109,695,106, 100%) 194,996 (28,838,854, 100%)

Refgene exons 106,218 (25,924,734, 24.54%) 98,065 (38,325,083, 34.94%) 84,792 (18,396,077, 63.79%)

Refgene introns 233,775 (33,864,388, 32.95%) 243,879 (32,067,720, 29.23%) 75,426 (7,308,663, 25.34%)

Intergenic regions 69,971 (45,868,580, 43.41%) 135,644 (39,302,303, 35.83%) 43798 (3,134,114, 10.87%)

Refgene introns (filtered)2 33,053 (27,401,823, 25.93%) 28,931 (15,245,705, 13.9%) 10,011 (3,107,050, 10.77%)

1Because there are some overlaps among Refgene exons, Refgene introns, and intergenic regions due to gene alternatively spliced isoforms, the identified exons is

less than the sum of Refgene exons, Refgene introns, and intergenic regions. 2We removed the exons whose average coverage is below the cutoff value to reduce

the errors of exon identification. 3The numbers of identified regions are listed, and the numbers of reads and percentages of the region-specific reads over all reads

are in the parentheses.

We subsequently compared our intergenic TUs with the
intergenic vlinc regions identified by Kapranov et al. (2007)
in human. The coordinates of the 580 vlinc RNA domains
were transformed from the hg18 to the mm9 version of the
mouse genome, and we converted 486 vlinc RNAs success-
fully. The total matched vlinc RNAs and the total one-to-one
matched vlinc RNA are 316 and 278, respectively (Table A6

in Appendix). This result implicated that many intergenic TUs
are conserved among mammalian genomes. The one-to-one
matching rate between intergenic TUs and vlinc RNAs is lower
than what between intergenic TUs and the Fantom3 RNAs,
and it may be resulted from expression regulation of inter-
genic TUs and the evolution of intergenic TUs among different
species.
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Table 2 |The exon annotation based on Refgene intron (filtered) and intergenic regions.

Sample Cerebrum Testis ES cell

Total exons1 103,024 (73,270,403, 100%)2 164,575 (54,548,008, 100%) 53,809 (6,241,164, 100%)

nr 14,333 (7,613,882, 10.39%) 24,343 (19,326,301, 35.43%) 13,556 (1,803,672, 28.90%)

ncRNA 3,933 (2,372,724, 3.24%) 7,862 (4,096,291, 7.50%) 4,547 (97,395, 1.56%)

Repeat 19,116 (15,226,166, 20.78%) 34,015 (11,659,836, 21.38%) 13,109 (971,411, 15.56%)

New exons of known genes 1,073 (46,792, 0.06%) 1,404 (64,663, 0.12%) 1,101 (8,593, 0.14%)

Rfam prediction 207 (4,306,737, 5.90%) 219 (617,575, 1.13%) 104 (15,076, 0.24%)

Remaining 64,357 (43,704,102, 59.63%) 96,607 (18,783,342, 34.44%) 19,790 (3,345,017, 53.60%)

1Total number of exons equals to the sum of exons in Refgene intron (filtered) and intergenic regions. Because there are overlaps among Refgene introns and

intergenic regions due to alternative spliced isoforms, the total number of exons found in Refgene introns and intergenic regions is more than the total number

of annotated exons. 2The numbers of identified regions are listed, and the numbers of reads and percentages of the region-specific reads over all reads are in the

parentheses.

FIGURE 3 | Density distribution for distances between adjacent exons in

intergenic regions. x -Axis shows the distance between adjacent exons and
y -axis displays the density. There is a small peak appeared around 100 bp

length and this peak implies the minimal introns. In addition, the first main
peak represents the distance of general adjacent exons inside TUs and the
second main peak is related to the distance of exons between adjacent TUs.

THE EVIDENCE OF NOVEL TUs IN INTERGENIC REGION
To define the function of novel TUs, we examined the distribu-
tion of 5′ CAGE tags (Kawaji et al., 2006) and RNAPII (Mikkelsen
et al., 2007), histone modifications (H3K4me3, H3K27me3, and
H3K36me3; Mikkelsen et al., 2007) around the TUs, and evalu-
ated their sequence conservation value (Fujita et al., 2011). First,
we found that there is a significant enrichment of 5′ CAGE tags
at the TU start in all three samples (Figure 4A), suggesting that
these TUs have 5′ 7-methylguanosine caps and possess transcrip-
tional start sites. Moreover, we investigated the binding of RNAPII
within upstream of these TUs using RNAPII data from mouse
ES cells and observed an obvious enrichment of RNAPII around
their TSS (Figure 5A), suggesting that the TUs have their own
promoters for regulating transcriptional initiation. Second, based
on ChIP-seq data for the three mouse samples, we examined
H3K4me3, H3K27me3, and H3K36me3 statuses around the TUs
(Figures 4B–D) and observed that H3K4me3 and H3K27me3 are
enrichment at the upstream of the TUs and their densities are cor-
related well with gene expression. Moreover, H3K36me3 are also
enriched across the TUs and marked the transcriptional elonga-
tion sites. These lines of evidence suggested that these novel TUs
may be indeed independently transcribed in the samples. Finally,
we investigated the sequence conservation of the novel TUs (see

Materials and Methods) by calculating their conservation scores
of the exonic sequences in comparison with Refgene protein exons
and random sequences as controls. The conservation scores of the
novel TU exons are highly similar to those of the Fantom3 RNA-
defined exons (Figure 5B) and similar results were observed in
the promoter conservation scores (Figure 5C). Results from both
analyses suggest possible functionality of the novel TUs.

To illustrate the related characteristics of the novel TUs, we
showed an intronic TU and an intergenic TU in Figure A2 in
Appendix. Both TUs are significantly expressed in the tissues and
cell. Moreover, the exons of both TUs have homologous sequences
according to their conservation scores (0 means no conservation
and 1 means highly conserved).

CLASSIFICATION AND FUNCTION ANALYSIS OF NOVEL TUs AND EXONS
In order to explore the functionality of the novel TUs, we pre-
dicted their protein-coding capability based on PhyloCSF result
(Table 3; Lin et al., 2011). We obtained their amino acid sequences
(for single exon TUs) according to ORF prediction and aligned
the amino acid sequences to the NCBI nr database. We found
that most of these protein-coding TUs are similar to either known
(such as ribosomal proteins and dehydrogenase) or hypotheti-
cal proteins (such as hypothetical and unnamed proteins). For
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FIGURE 4 | 5′ CAGE and histone modification around novelTU–TSS or gene bodies in the mouse cerebrum, testis, and ES cell. (A–D) Profiles of 5′

CAGE, H3K4me3, H3K27me3, and H3K36me3.

exploring whether these protein-coding TUs are pseudogenes, we
compared them to the Vega pseudogene annotations, and only
about 8.85% of them are likely to be pseudogenes (Table A7 in
Appendix). Moreover, we selected two protein-coding transcripts

and predicted their secondary structures. One of them is similar
to mouse mCG1041001 protein and is predicted to be extracellu-
larly located. The other is similar to mouse EG382421 protein and
possesses nuclear localization sequence.
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FIGURE 5 |The RNAPII around novelTU–TSS and sequence

conservation ofTU exon and promoters. (A) Profile of RNAPII, (B)

cumulative distribution of sequence conservation for TU exon, protein exon,

Fantom3 RNA exon, and random region, and (C) cumulative distribution of
sequence conservation for TU promoter, protein promoter, Fantom3 RNA
promoter, and random region.

We looked into the antisense regulation of the novel TUs.
According to the PhyloCSF prediction, 65.93% of the novel TUs
can be defined as non-coding RNAs due to lacking protein-
coding characteristics (Table 4). To further examine them,
we extracted the antisense RNAs by comparing the location
of the TUs to known genes as putative cis-antisense RNAs

(ncerebrum = 2,614, ntestis = 2,756, and nES = 732) and their tar-
get genes (ncerebrum = 2,324, ntestis = 2,356, and nES = 689). Since
previous studies have suggested that sense–antisense gene pairs
may play potential regulatory roles (Okada et al., 2008), we clus-
tered the sense–antisense regulated genes using DAVID website
(Huang da et al., 2009; Huang et al., 2009) and found that most
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Table 3 | Summary of coding and non-coding exons andTUs.

Sample Cerebrum Testis ES cell

New exons1 64,357 96,607 19,790

Intron exons 19,986 16,263 3,703

Coding exons2 3,911 (3,625,424)6 3,308 (579,368) 1,716 (73,420)

Non-coding exons2 15,973 (2,865,243) 12,866 (1,583,086) 1,952 (108,833)

Unknown exons2 102 (3,526,680) 89 (14,187) 35 (215)

Intergenic exons 44,525 80,489 16,153

Coding exons3 7,440 (4,073,104) 8,717 (535,205) 2,703 (28,257)

Non-coding exons3 36,363 (15,469,822) 69,193 (4,068,501) 12,690 (238,595)

Unknown exons3 722 (150,523) 2,579 (214,720) 760 (2,599)

Intergenic TUs 17,931 18,512 6,966

Coding TUs3 5,441 (4,100,203) 4,794 (1,144,421) 2,005 (54,654)

Non-coding TUs3 11,735 (11,077,673) 12,230 (2,212,637) 4,618 (193,861)

Unknown TUs3 426 (1,286,476) 698 (559,251) 281 (8,639)

Inconsistent TUs3,4 329 (174,288) 790 (814,202) 62 (8,232)

Modified non-coding TUs5 12,445 (11,077,673) 13,199 (2,212,637) 4,963 (193,861)

1Because there are overlaps among Refgene intronic and intergenic regions due to alternative spliced isoforms, the number of novel exons is more than the total

of intronic exons and intergenic exons. 2These exons are in known introns. 3These exons reside in intergenic regions. 4Inconsistent TUs means those have abnormal

exon-patterns, such as non-coding-coding-non-coding-coding. 5Because sometimes two adjacent TUs are combined into one in intergenic regions, we correct them

manually to yield modified non-coding TUs. 6The number of identified regions and their reads are outside and inside the parentheses, respectively.

Table 4 |The classification of ncRNAs in intronic and intergenic regions.

Sample Cerebrum Testis ES cell

Intron RNAs 15,973 (2865243, 100%)3 12,866 (1,583,086, 100%) 1,952 (108,833, 100%)

Antisense RNAs1 141 (4,347, 0.15%) 156 (12,829, 0.81%) 19 (626, 0.58%)

Small ncRNAs1 14,196 (1,781,616, 62.18%) 10,483 (764,884, 48.32%) 1,467 (30,496, 28.02%)

Long ncRNAs1 1,636 (1,079,280, 37.67%) 2,227 (80,5373, 50.87%) 466 (77,711, 71.40%)

Intergenic RNAs 12,445 (11,077,673, 100%) 13,199 (2,212,637, 100%) 4,963 (193,861, 100%)

Antisense RNAs2 2,614 (792,653, 7.16%) 2,756 (440,655, 19.92%) 732 (27,289, 14.08%)

Small ncRNAs2 6,502 (9,716,663, 87.71%) 5,072 (624,312, 28.22%) 2,271 (27,232, 14.05%)

Long ncRNAs2 3,329 (568,357, 5.13%) 5,371 (1,147,670, 51.86%) 1,960 (139,340, 71.87%)

1These ncRNAs are intronic. 2These ncRNAs are intergenic. 3The numbers are those of the identified regions. The numbers in the parentheses are the read number

of a region and its rate over all reads in the regions.

of these antisense regulated genes are associated with synapse, ion
binding/transport, cell junction, cytoskeletal, membrane, and sig-
nal transduction in the three samples (S1–S3 in Supplementary
Material). Moreover, we found that the genes in cerebrum and
testis are related to cardiomyopathy, cancer, endocytosis, cell junc-
tion, and signal pathway (S4 and S5 in Supplementary Material).
The expression levels of the sense–antisense transcripts are either
positively or negatively correlated among different tissues and cell
lines (Katayama et al., 2005; Okada et al., 2008). We also com-
pared the sense–antisense expression in a pairwise fashion among
the three samples (see Materials and Methods) and found that
the antisense expression is either positively or negatively associ-
ated with the sense expression (Figure 6). This characteristic is
in agreement with previous studies (Katayama et al., 2005; Okada
et al., 2008).

We examined the novel TUs to see if some of them are actually
non-coding RNAs. We divided the remaining (non-exonic) novel
ncRNAs into long or small ncRNAs according to their sizes. About
43.87% of the remaining ncRNAs are larger than 200 bp in size,
which were defined as long ncRNAs. There are 3,329, 5,371, and
1,960 novel long ncRNAs identified in the cerebrum, testis, and
ES cells, respectively (Table 4). Comparing our long ncRNAs to
lincRNAs identified by Guttman et al. (2009), we found 724 lin-
cRNAs in our three samples, which are accounted for 43.48% of
all lincRNAs. There are about 21% of lincRNAs found in each of
our samples (ncerebrum = 359, ntestis = 391, and nES = 304).

We defined the rest of the ncRNAs as small ncRNAs, ranging
from 55 to 200 bp in length; the majority of these small ncR-
NAs (∼24.04%) are from 55 to 65 bp in size (Figure 7A). This
size range of small ncRNAs is related to the insert size of the
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FIGURE 6 |The correlation between sense and antisense expression ratio in sense–antisense gene pairs. Red and green points represent the
sense–antisense gene pairs in positive and negative types. “P” stands for the positive type and “N” stands for the negative type.

libraries and data processing parameters. First, we selected RNA
fragments in a length range of 50–150 bp for analysis. Second,
we filtered the small RNAs whose lengths are less than 55 bp and
have overlapping sequences so that some of the smaller RNAs
were eliminated in data processing procedures. For these small
ncRNAs, we predicted their motifs using MEME software (Bai-
ley and Elkan, 1994) and some conserved motifs were identified
(Figures 7B–D), which were accounted for ∼20% of all small ncR-
NAs. To explore the relationship between conserved motifs and
RNA structures, we calculated two distances: one is what between
the RNA 5′ end and the motif start and the other is what between
the motif end and RNA 3′ end; we did not observe any obvious
patterns in the motif distribution (Figure A3 in Appendix). We
also compared the novel ncRNAs among the three samples and
found that the ratios of the tissue- or cell-specific novel ncR-
NAs are larger than the ratio of known genes (Figure A4 in
Appendix). The biased distribution of the novel ncRNAs indi-
cates their possible functional roles in different tissues or cell
types. More ncRNA expression data from a broader tissue spec-
trum are certainly needed to decipher the functionality of the
ncRNAs.

ACTIVELY TRANSCRIBED INTRONIC REGIONS
Based on the PhyloCSF prediction (Table 3), we identified about
79.52% ncRNA exons in the intronic regions of the cerebrum and
testis, whereas only 52.71% ncRNA exons in the intronic regions
of ES cells. Whether most of the predicted protein-coding exons
are actually parts of known genes remains to be elucidated. For the
analysis of ncRNAs in the intronic regions, we also divided them
into three portions: antisense RNAs, small ncRNAs, and long ncR-
NAs (Table 4). Unlike ncRNAs in intergenic regions, most intronic
ncRNAs are small ncRNAs: 88.88, 81.48, and 75.15% in the mouse
cerebrum, testis, and ES cell, respectively. Since the intronic expres-
sions are mostly weak and interfered by background expression,
more efforts are to be devoted in the future for exploring their
functions.

DISCUSSION
In this study, we attempted to identify novel transcripts using
rmRNA-seq data from two mouse transcript-rich tissues, the cere-
brum and testis, and ES cells. Compared to what generated from
polyA-based mRNA-seq method, rmRNA-seq data are expected to

harbor more novel transcripts that do not have the polyA tails typi-
cal for eukaryotic mRNA (Cui et al., 2010). In addition, we took the
advantage of a strand-specific nature of the method, which is read-
ily done using the SOLiD platform and allows us to define sense
and antisense transcript pairs of the antisense regulated genes.

Using a custom-designed data processing pipeline, we carefully
identified several to twenty thousands of novel TUs from different
mouse tissues and cells and analyzed their distributions in both
intronic and intergenic regions. We also used other supporting evi-
dence from transcriptional initiation and epigenetic signals as well
as one of the common evolutionary strategies – sequence conser-
vation. These features helped us to argue for their functional roles
in the tissues and cells. Our pipeline is able to recover ∼94.12%
Refgene exons (average coverage is equal or larger than the cutoff
value) from the dataset and the method is capable of driving mam-
malian transcriptome annotation to a completion if coupled with
a protocol for characterizing even smaller RNAs, such as miRNAs.

The annotation of these novel UTs remains challenging. First,
when aligning these TUs that are characteristic of amino acid
sequences, such as single exons, to sequences in the NCBI nr
database, we can readily annotate about 24% of the novel protein-
coding TUs. Although some of them are annotated to be structural
proteins, such as those similar to ribosomal proteins and house-
keeping enzymes, most of them are actually matching to unknown
proteins. Second, we identified a large number of ncRNAs, includ-
ing antisense RNAs, small ncRNAs, and long ncRNAs. According
to the analysis on the targeted genes of antisense RNAs, we found
that they are associated with synapse, ion binding-transport, cell
junction, cytoskeletal, membrane, and signal transduction. Sur-
prisingly, these genes are enriched in disease related pathways, such
as cardiomyopathy and cancer. We believe that such enrichment is
largely an artifact due to the fields of intensive research activities.
In addition, we found that antisense expression is either positively
or negatively associated with sense expression of sense–antisense
gene pairs. Furthermore, numerous long ncRNAs are identified in
intergenic regions, providing a basis for future functional stud-
ies. Moreover, we found that the majority of small ncRNAs are
in a length range of 55–65 bp in intergenic regions, which may
represent a novel class of ncRNAs since conserved motifs were
found among the sequences. In addition, most novel exons we
found in intronic regions are small ncRNAs of the same size
range.

www.frontiersin.org December 2011 | Volume 2 | Article 93 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Non-Coding_RNA/archive


Liu et al. Characterization of novel mouse transcripts

FIGURE 7 | Histograms and motif logo of small RNAs in intergenic

regions. (A) the histogram of small RNA length, (B) a motif logo of small
RNAs in cerebrum (16.13% of 65 bp small RNAs involved in this motif), (C) a

motif logo of small RNA in testis (41.54% of 64 bp small RNAs involved in this
motif), and (D) a motif logo of small RNAs in ES cell (25.97% of 56 bp small
RNAs involved in this motif).

CONCLUSION
In this study, we identified a large number of novel exons and
TUs using three strand-specific rmRNA-seq datasets. We also
evaluated the universality and functionality of these novel TUs
to demonstrate their features as actively transcribed genes based
on an analysis that combines data from transcription start site,
histone modification, RNAPII binding site, and sequence conser-
vation. Our efforts in annotating these novel TUs revealed their
possible functional features, resembling sequences of protein-
coding and sense–antisense regulated genes as well as long and

small ncRNAs. This study also provides a practical approach
for the identification of most, if not all, genes of mammalian
genomes.
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APPENDIX

Table A1 |The sequence mapping summary of rmRNA-seq data.

Tissue/cell Total reads Multiple mapping reads Unique mapping reads Average coverage

(whole genome)

Average coverage

(identified exons)

Mapping percent

Cerebrum 428,434,624 124,991,301 120,041,080 2.19 69.46 29.17

Testis 497,996,641 144,583,797 136,348,798 2.37 55.97 29.03

ES cell 126,791,595 52,476,546 35,829,866 0.67 31.15 41.38

Table A2 |The evaluation of exon identification.

Sample RefGene exons1 Aligned exons (percent) Percent of aligned length One-to-one percent

Cerebrum 93,947 87,501(93.14%) 86.13% 93.57

Testis 99,332 93,834(94.47%) 88.66% 95.82

ES cell 82,942 78,580(94.74%) 91.34% 96.80

1The number of RefGene exons whose coverage is equal or greater than the cutoff value of coverage.

Table A3 |The percentage of exon reads in all mapped reads.

Tissue/cell Total reads Identified exon reads Exon reads percent

Cerebrum 124,991,301 105,657,702 84.53

Testis 144,583,797 109,695,106 75.87

ES cell 524,76,546 28,838,854 54.96

Table A4 |The summary of ncRNA database records.

Sub-database Records

ENSEMBL 8,269

UCSC 1,432

NONCODE 107,090

RNAdb 38,227

fRNAdb 510,055

Rfam 4,253

miRBase 579

tRNAdb 433

ncRNAdb 31,136

Table A5 |The evaluation ofTU building based on the Fantom3 RNAs with multiple exons.

Sample Fantom3 RNA1 Percent of aligned length One-to-one percent

Cerebrum 443 71.96 95.49

Testis 605 75.51 94.88

ES cell 143 65.51 96.50

1The number of intergenic Fantom3 RNAs aligned with ourTUs and their RPKM value of expression is larger than cutoff value (RPKMcereburm = 0.4242, RPKMtestis = 0.8199,

and RPKMES = 0.7360).

Table A6 |The evaluation ofTU building based on the vlinc RNA.

Sample Vlinc RNA Matching number Matching percent One-to-one number One-to-one percent

Cerebrum 486 236 48.56 156 32.10

Testis 486 215 44.24 157 32.30

ES cell 486 95 19.55 62 12.76
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Table A7 |The pseudogenes in novel intergenicTUs.

Sample Protein-codingTUs in intergenic region Matched pseudogenes Matched percent

Cerebrum 5,441 329 6.05

Testis 4,794 278 5.80

ES cell 2,005 295 14.71

FIGURE A1 | A flowchart of gene identification process. We mapped the
ribo-minus RNA-seq data using TopHat and created the coverage file for
genome and identified exons according to the coverage of each position
(>= cutoff value). Since 95% intron lengths are > or =95 bp, we merged
small exons (distance < or =95 bp). Moreover, since 95% exon lengths are
> or =55, we only keep the exons whose length is equal or larger than
55 bp to reduce false positives. We remove low coverage exons to reduce
errors. We also filter known exons and build novel TUs on the basis of
H3K36me3, RNAPII, and the different distance of adjacent exons between
internal of TUs and adjacent TUs. We evaluate the accuracy of TU building
by comparing our TUs with Fantom3 RNAs of intergenic regions.
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FIGURE A2 | A snapshot forTUs in Refgene intron and

intergenic region. The upper panel is a TU in an intron of the
transmembrane protein gene, Tmem180, and lower panel is a TU
adjacent to Sap130 gene. SAP130 is a subunit of the histone
deacetylase-dependent SIN3A co-repressor complex which acts as a

transcriptional repressor. The TU in plus and minus strands is shown
as red and blue horizontal bars, respectively. For each TU, we
show RNA expression level (vertical bars in red and blue), identified TU,
Refgene, RNAPII signal (green), H3K36me3 signal (purple), and conservation
score (yellow).
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FIGURE A3 |The distances between (1) motif start and RNA 5′ end and

(2) between motif end and RNA 3′ end. The histogram shows the distance
between motif start and RNA 5′ end (left), the distance between motif end
and RNA 3′ end (middle), and the density of both (right).

FIGURE A4 | Venn diagram of newly identified non-codingTUs among

mouse the cerebrum, testis, and ES cells.
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