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Abstract: Heterocyclic compounds containing nitrogen and sulfur, especially those in the thiazole
family, have generated special interest in terms of their synthetic chemistry, which is attributable to
their ubiquitous existence in pharmacologically dynamic natural products and also as overwhelm-
ingly powerful agrochemicals and pharmaceuticals. The thiazolidin-2,4-dione (TZD) moiety plays
a central role in the biological functioning of several essential molecules. The availability of substi-
tutions at the third and fifth positions of the Thiazolidin-2,4-dione (TZD) scaffold makes it a highly
utilized and versatile moiety that exhibits a wide range of biological activities. TZD analogues exhibit
their hypoglycemic activity by improving insulin resistance through PPAR-γ receptor activation, their
antimicrobial action by inhibiting cytoplasmic Mur ligases, and their antioxidant action by scavenging
reactive oxygen species (ROS). In this manuscript, an effort has been made to review the research
on TZD derivatives as potential antimicrobial, antioxidant, and antihyperglycemic agents from the
period from 2010 to the present date, along with their molecular mechanisms and the information on
patents granted to TZD analogues.

Keywords: thiazolidin-2,4-dione derivatives; antimicrobial activity; antioxidant activity; antihyper-
glycemic activity; patents granted; mechanism of action

1. Introduction

Small heterocyclic structures containing nitrogen and sulfur have been under inves-
tigation for a long time owing to their therapeutic relevance. They offer a wide range
of structural varieties and also possess a proven range of diversified therapeutic poten-
tials. Amongst the extensive variety of heterocyclic scaffolds explored in the search for
potent bioactive molecules in the process of drug discovery, the thiazolidin-2,4-dione
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(TZD) (Figure 1) ring system has been acknowledged as a significant scaffold in medicinal
chemistry [1].
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Figure 1. Structure of the thiazolidine-2,4-dione scaffold. 

Thiazolidin-2,4-dione (Figure 1), also called glitazone, is a heterocyclic moiety that 
consists of a five-membered saturated thiazolidine ring with sulfur at 1 and nitrogen at 3, 
along with two carbonyl functional groups at the 2 and 4 positions. Substitutions of 
various moieties are possible only at the third and fifth positions of the Thiazolidin-2,4-
dione (TZD) scaffold. The analogues of TZD offer a wide range of structural varieties [2] 
and also possess a proven range of diversified therapeutic potentials, such as antidiabetic 
[3–5], analgesic, anti-inflammatory [6–8], wound healing [9], antiproliferative [10–14], 
antimalarial [15], antitubercular [16,17], hypolipidemic [18], antiviral [19], antimicrobial, 
antifungal [20–23], and antioxidant properties [24,25], etc. 

2. The History of Glitazones as Antidiabetics 
TZDs are primarily used as hypoglycemic agents over a long time. Ciglitazone is the 

prototype of the TZD class, which was developed by Takeda Pharmaceuticals (Japan) in 
the early 1980s but has never been used as a medication due to its hepatotoxicity. In the 
year 1988, another TZD analog, named troglitazone, was developed by the Sankyo 
Company (Japan) as an antidiabetic agent, but it was also banned in the year 2000 due to 
its hepatic toxicity. In 1999, Pfizer (USA) and Takeda (Japan) jointly developed two 
molecules, pioglitazone (patented in 2002), and englitazone, and subsequently, Pfizer and 
Smithkline also developed rosiglitazone and darglitazone in the same year. Englitazone 
and darglitazone were discontinued due to their hepatotoxicity. However, pioglitazone 
was reported to be safe for use in the hepatic system and is currently in use as an 
antidiabetic agent. In 2001, rosiglitazone was reported to cause heart failure due to fluid 
retention and, hence, the Food and Drug Administration (FDA) restricted its use in the 
year 2010. However, in the year 2013, the restriction was removed by the FDA after a series 
of trials proved that there was no effect on the heart due to fluid retention. Another drug, 
lobeglitazone, was developed by Chong Kun Dang Pharmaceuticals (Korea) in 2013, 
which was approved by the Ministry of Food and Drug Safety of Korea. Some other 
molecules, such as netaglitazone, rivoglitazone, and balaglitazone, were also developed 
but then withdrawn during the clinical trial due to their severe toxicities, and these never 
came to the market. The structures of various TZDs are shown in Figure 2 [26,27].  

Figure 1. Structure of the thiazolidine-2,4-dione scaffold.

Thiazolidin-2,4-dione (Figure 1), also called glitazone, is a heterocyclic moiety that
consists of a five-membered saturated thiazolidine ring with sulfur at 1 and nitrogen at 3,
along with two carbonyl functional groups at the 2 and 4 positions. Substitutions of various
moieties are possible only at the third and fifth positions of the Thiazolidin-2,4-dione (TZD)
scaffold. The analogues of TZD offer a wide range of structural varieties [2] and also possess
a proven range of diversified therapeutic potentials, such as antidiabetic [3–5], analgesic,
anti-inflammatory [6–8], wound healing [9], antiproliferative [10–14], antimalarial [15],
antitubercular [16,17], hypolipidemic [18], antiviral [19], antimicrobial, antifungal [20–23],
and antioxidant properties [24,25], etc.

2. The History of Glitazones as Antidiabetics

TZDs are primarily used as hypoglycemic agents over a long time. Ciglitazone is the
prototype of the TZD class, which was developed by Takeda Pharmaceuticals (Japan) in the
early 1980s but has never been used as a medication due to its hepatotoxicity. In the year
1988, another TZD analog, named troglitazone, was developed by the Sankyo Company
(Japan) as an antidiabetic agent, but it was also banned in the year 2000 due to its hepatic
toxicity. In 1999, Pfizer (USA) and Takeda (Japan) jointly developed two molecules, piogli-
tazone (patented in 2002), and englitazone, and subsequently, Pfizer and Smithkline also
developed rosiglitazone and darglitazone in the same year. Englitazone and darglitazone
were discontinued due to their hepatotoxicity. However, pioglitazone was reported to be
safe for use in the hepatic system and is currently in use as an antidiabetic agent. In 2001,
rosiglitazone was reported to cause heart failure due to fluid retention and, hence, the Food
and Drug Administration (FDA) restricted its use in the year 2010. However, in the year
2013, the restriction was removed by the FDA after a series of trials proved that there was
no effect on the heart due to fluid retention. Another drug, lobeglitazone, was developed by
Chong Kun Dang Pharmaceuticals (Korea) in 2013, which was approved by the Ministry of
Food and Drug Safety of Korea. Some other molecules, such as netaglitazone, rivoglitazone,
and balaglitazone, were also developed but then withdrawn during the clinical trial due to
their severe toxicities, and these never came to the market. The structures of various TZDs
are shown in Figure 2 [26,27].
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Figure 2. Antidiabetic molecules developed with the thiazolidin-2,4-dione moiety.

3. Mechanism of Action

TZDs produce their biological response by stimulating the PPARγ receptor (antidia-
betic activity) and cytoplasmic Mur ligase enzyme (antimicrobial activity), and by scaveng-
ing ROS (antioxidant activity).

• Family of PPARs:

PPARs are a subfamily of transducer proteins that act as transcriptional factors, belong-
ing to the nuclear superfamily of retinoic acid receptors (RARs)/steroid receptors/thyroid
hormone receptors (TRs), which are involved in different processes and also help in the regu-
lation and expression of various genes that are vital for glucose and lipid metabolism [28,29].
These nuclear receptors were first identified in rodents in the year 1990s [26].

• Isoforms of PPARs:

To date, three different types of PPARs have been identified, i.e., PPAR-α (NR1C1),
PPAR-β/δ (NR1C2), and PPAR-γ (NR1C3), which are encoded by different genes.

• Structure and biological functions of PPARs:

All of the PPAR isoforms have similar functional and structural features. The structure
of PPAR has four principal functional domains, known as A/B, C, D, and E/F (Figure 3).
The domain A/B, located at the NH2-terminal, comprises ligand-independent activation
function 1 (AF-1) and causes the phosphorylation of PPAR. The domain C, also called the
DNA-binding domain (DBD), has two zinc atoms that promote the binding of the perox-
isome proliferator response element (PPRE) to PPAR in the target gene promoter region.
The D site functions as a docking domain for the binding of the coactivators/corepressors
to the DNA receptors. The E/F domain near the AF-2 region, also called the ligand-binding
domain (LBD), is used to specify the ligand and also activates the binding of PPAR to PPRE,
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thereby promoting the targeted gene expression. The ligand-dependent activation function
2 (AF-2) recruits the PPAR co-factors that assist in the gene transcription processes. Their
biological functions and distribution in the tissues, along with their agonists, are shown in
Table 1 [26,30–32].
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Table 1. Biological functions of PPARs.

Isoform Agonists Location Biological Functions

PPAR-γ

TZDs, unsaturated fatty acids
(oleate, linoleate), arachidonic and
eicosapentaenoic acids,
and prostanoid.

Mainly in the brown and white
adipose tissue and, to a lesser
extent, in the placenta, colon
mucosa, and immune cells (Peyer’s
patches in the digestive tract,
monocytes, and macrophages).

- Sensitization of insulin.
- Adipocyte differentiation
and adipogenesis.
- Cellular growth and inflammation.

PPAR-α

fibrates (clofibrate, fenofibrate, and
bezafibrate), unsaturated fatty acids,
8-(S) hydroxyl eicosatetraenoic acid,
B4 leukotriene, prostaglandin E,
or farnesol.

Kidney cortex, skeletal muscles,
enterocytes, cardiomyocytes,
and hepatocytes.

- Oxidation of fatty acids, mostly in
the heart, liver, and muscles.
- Reduces inflammation in both the
liver and vascular wall.
- Regulation of energy homeostasis.

PPAR-β/δ Fatty acids
In almost all the tissues, especially
in the brain, skin and,
adipose tissue.

- Regulates fat oxidation.
- Regulates the genes involved
in adipogenesis.
- Lipoprotein metabolism.
- Glucose homeostasis.
- Cholesterol metabolism.
- Inflammation.
- Atherosclerosis.

3.1. Mechanism of the TZD as an Antidiabetic

PPAR acts by either transactivation or by trans-repression to enact its antidiabetic
activity. In transactivation, PPAR is activated upon binding with the exogenous ligand
(TZD) or endogenous ligands (PGs, fatty acids, etc.). PPAR then heterodimerizes with
the retinoid X factor (RXR) to form the PPAR–RXR complex. This complex binds with
peroxisome proliferator response elements (PPRE) in the target gene with a coactivator that
has histone acetylase activity and promotes the transcription of different genes involved in
the cellular differentiation and glucose and lipid metabolism (Figure 4) [26,28]. In trans-
repression, PPARs interact negatively with other signal transduction pathways, such as
the nuclear factor kappa beta (NFκB) pathway, which controls various genes involved in
inflammation and also regulates inflammatory mediators, such as leukocytes and cytokines,
etc. (Figure 5) [28].

Thiazolidinediones (TZDs) are the most important synthetic moieties with PPAR-γ
activation properties, which improve insulin resistance and, hence, lower blood glucose
levels in type-II diabetes. In adipose tissues, TZDs activate PPAR-γ, which causes lipid
uptake and the storage of triglycerides (TGs). White adipose tissues (WAT) then take
up free fatty acids (FFAs) from the tissues (skeletal muscle, liver), where their growth
obstructs insulin signaling, known as the lipid steal hypothesis. PPAR-γ also mediates
the production of adipocytes. In macrophages, TZDs directly activate PPAR-γ, causing an
anti-inflammatory M2 phenotype which leads to a decreased macrophage infiltration in the
WAT. TZDs also help to reduce fibrosis and inflammation by acting on PPAR-γ in Kupffer
and stellate cells, as well as the parenchymal cells of the steatosis liver, and also mediate
atherosclerosis by interacting with PPAR-γ in the macrophages (Figure 6) [26,32,33].
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3.2. Mechanism of TZD as Antimicrobial Agent

For bacterial viability, the bacterial cell wall is an important component in maintain-
ing the cell shape and protection. Peptidoglycan is one of the major constituents of the
bacterial cell wall and is found on the outer wall of cytoplasmic membrane. Its biosyn-
thetic enzyme inhibition can lead to cell death. The enzymes involved in the synthesis
can either be membrane-bound extracellular enzymes (penicillin-binding proteins) or cyto-
plasmic enzymes (Mur enzymes). Peptidoglycan peptide stem biosynthesis involves four
ATP-dependent enzymes, known as the Mur ligases (Mur C-F). They mediate the forma-
tion of UDP-MurNAc-pentapeptide through the stepwise additions of MurC (L-alanine),
MurD (D-glutamic acid), a diamino acid which is generally a meso-diaminopimelic acid,
or MurE (L-lysine) and MurF (dipeptide D-Ala-D-Ala) to the D-lactoyl group of UDP-N-
acetylmuramic acid (Figure 7). TZD molecules are supposed to inhibit these cytoplasmic
ligases and, hence, lead to bacterial cell death [34–37].
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3.3. Mechanism of TZD as an Antioxidant

Oxidative stress occurs due to the production of free radicals. Free radicals are
chemically active molecules which are either deficient or have a greater number of electrons.
Free radicals containing oxygen are the most significant free radicals, also known as reactive
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oxygen species (ROS). Oxidants activate various relevant enzymes, such as SOD, catalase,
and NADPH oxidase, to convert the oxygen to ROS. ROS scavenge body cells in order to
capture or donate protons, thus causing cell, proteins, and DNA damage. TZD derivatives
are supposed to work by preventing the cascade effect produced through ROS propagation
by donating its proton to the ROS (Figure 8) [38–40].
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Figure 8. ROS generation and antioxidant scavenging mechanism of TZDs.

4. Biological Potential of the Thiazolidin-2,4-dione Analogues
4.1. Antimicrobial Activity

In the 1940s, the introduction of antibiotics was believed to have eliminated the
curse of all infectious diseases. However, the irrational overuse of antibiotics has led to
the development of resistance against antibiotics of several bacterial strains, which has
surfaced as one of the serious public health issues. Some of these resistant strains, such as
vancomycin-resistant enterococci (VRE) and multidrug-resistant Staphylococcus aureus
(MRSA), can survive despite the presence of the majority of the antibiotics currently in
use [20]. The appearance of multidrug-resistant microbial pathogens that are resistant to
currently available antibiotics/antimicrobials has led to the urgent need for new chemical
entities for the treatment of microbial diseases with a unique mechanism of action [41].

In the search of new antimicrobial agents, Shaikh et al. synthesized different se-
ries of (E)-5-(substitutedbenzylidene)thiazolidine-2,4-dione and their (6-thiocyanatobenzo-
thiazol-2-yl)acetamide derivatives. The in vitro antimicrobial activity of derived molecules
against various bacterial and fungal strains was evaluated using a broth microdilution
assay measuring the minimum inhibitory concentration (MIC). Among the synthesized
derivatives, compounds am1, am2, and am3 were found to be effective against E. coli, S.
aureus, and C. albicans, respectively, using ampicillin and griseofulvin as standards (Table 2,
Figure 9) [42].

To recognize potential new compounds that are active against microbes, 5-benzylidene-
2-4-thiazolidinedione-based antibacterial agents were developed by Zvarec et al. The syn-
thesized derivatives were assessed for their in vitro antibacterial activity. Compounds am4
and am5 showed moderate antibacterial activity against B. subtilis (Table 3, Figure 9) [43].
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Table 2. Antimicrobial results of the compounds (am1–am3).

Compounds

Microbial Strains (MIC = µg/mL)

Bacterial Species Fungal Species

E. coli P. aeruginosa S. aureus S. pyrogenes C. albicans A. niger A. clavatus

am1 50 250 500 500 250 500 500
am2 500 500 50 200 500 250 250
am3 100 200 250 500 100 1000 1000

Ampicillin 100 100 250 100 - - -
Griseofulvin - - - - 500 100 100
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Table 3. Antimicrobial results of the compounds (am4–am5).

Compounds

Microbial Strains (MIC = µg/mL)

Bacterial Species

S. aureus S. epidermidis B. subtilis

am4 >64 >64 8
am5 >64 >64 8
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Gaonkar et al. synthesized a new series of N-substituted thiazolidine-2,4-dione deriva-
tives and screened for their in vitro antimicrobial potential against bacterial and fungal
strains, using DMF as a solvent in the agar plate disc diffusion method, taking ciprofloxacin
and ciclopiroxolamine as standard drugs. The result of the antimicrobial evaluation re-
vealed that compounds am6 and am7 showed a superior antimicrobial potential (Table 4,
Figure 9) [44].

Table 4. Antimicrobial results (inhibitory zone = mm diameter) of the compounds (am6–am7).

Compounds

Microbial Strains (Inhibitory Zone = mm Diameter)

Bacterial Species Fungal Species

S. aureus E. coli P. aeruginosa K. pneumoniae A. fumigatus A. flavus P. marneffei C. albicans

am6 15 19 20 16 18 15 17 19
am7 17 18 21 15 19 16 17 18

Ciprofloxacin 19 20 25 18 - - - -
Ciclopiroxolamine - - - - 22 18 20 20

Niwale et al. also developed various thiazolidin-2,4-dione analogues and evaluated
them for their in vitro antibacterial potential by the serial tube dilution method using
streptomycin as a reference drug. The results of the antimicrobial evaluation studies
revealed that compounds am8 and am9 were active against all the tested strains of bacteria
(Table 5, Figure 9) [45].

Table 5. Antimicrobial activity (MIC = µg/mL) of the compounds (am8–am9).

Compounds

Microbial Strains (MIC = µg/mL)

Bacterial Species

S. aureus P. aeruginosa B. subtilis

am8 31.25 31.25 31.25
am9 31.25 31.25 31.25

Streptomycin 3.90 3.90 3.90

A new series of thiazolidine-2,4-diones containing a 1,2,3-triazole scaffold were syn-
thesized by Sindhu et al. and evaluated for their in vitro antimicrobial potential against
two bacterial and two fungal strains, using the disc diffusion and poisoned food methods,
respectively. The results of the antimicrobial evaluation revealed that compounds am10 and
am11 had superior antibacterial and antifungal activities in comparison to ciprofloxacin
and fluconazole as the standard drugs (Table 6, Figure 9) [46].

Table 6. Antimicrobial activity of the compounds (am10–am11).

Comp.

Bacterial Species Fungal Species

Inhibitory Zone = mm Diameter Mycelial Growth Inhibition (%)

S. aureus P. aeruginosa A. niger A. flavus

am10 21.6 22.3 35.5 43.3
am11 18.6 19.3 53.3 55.8

Ciprofloxacin 26.6 24.0 - -
Fluconazole - - 81.1 77.7

Alagawadi et al. derived a sequence of TZD analogues containing the 1,3,4-thiadiazole
moiety and screened them for their in vitro antimicrobial activity. The results of the
antimicrobial evaluation studies showed compounds am12 and am13 to be active against
all the tested strains of microbes, using ampicillin and ketoconazole as standards (Table 7,
Figures 9 and 10) [47].
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Table 7. Antimicrobial activity (MIC = µg/mL) of the compounds (am12–am13).

Comp.

Microbial Strains (MIC = µg/mL)

Bacterial Species Fungal Species

S. aureus E. coli P. aeruginosa E. faecalis A. niger A. flavus C. neoformans C. albicans

am12 8 128 32 4 4 4 2 1
am13 8 64 64 8 4 4 8 4

Ampicillin 1 2 2 2 NT NT NT NT
Ketoconazole NT NT NT NT 1 2 1 2

NT: not tested.
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Table 9. Results of antimicrobial screening of the synthesized compounds (am16–am17). 

Comp. 
Microbial Strains (MIC = µM/mL) 

Bacterial Species Fungal Species 
E. coli P. aeruginosa S. aureus S. pyrogenes C. albicans A. niger A. clavatus 

am16 250 125 125 100 500 500 >1000 
am17 500 62.5 250 500 200 500 500 

Ampicillin 250 100 100 100 - - - 
Griseofulvin - - - - 500 100 100 

Figure 10. Molecular structures of the compounds (am16-am24).

In an attempt to identify prospective new TZD derivatives that are active against
microbes, a new series of n-phenyl-acetamide derivatives of TZD were developed by
Juddhawala et al. The synthesized products were further analyzed for their in vitro an-
tibacterial potential by the disc diffusion method, using ciprofloxacin as the standard. The
results of the antimicrobial evaluation revealed that compounds am14 and am15 had a
better antimicrobial potential (Table 8, Figure 10) [48].
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Table 8. Antimicrobial activity (Inhibitory Zone = mm diameter) of the compounds (am14–am15).

Comp.

Microbial Strains (Inhibitory Zone = mm Diameter)

Bacterial Species

S. aureus P. aeruginosa B. subtilis E. coli

am14 22 18 24 19
am15 20 21 24 20

Ciprofloxacin 32 31 33 30

Patel et al. derived a series of thiazolidine-2,4-diones molecules containing the N-
methoxybenzoyl substitution, and they were screened for their in vitro antimicrobial po-
tential by the broth microdilution method, using ampicillin/griseofulvin as the standard,
against different bacterial/fungal strains. The results revealed that compounds (am16) and
(am17) had better antibacterial and antifungal activities (Table 9, Figure 10) [49].

Table 9. Results of antimicrobial screening of the synthesized compounds (am16–am17).

Comp.

Microbial Strains (MIC = µM/mL)

Bacterial Species Fungal Species

E. coli P. aeruginosa S. aureus S. pyrogenes C. albicans A. niger A. clavatus

am16 250 125 125 100 500 500 >1000
am17 500 62.5 250 500 200 500 500

Ampicillin 250 100 100 100 - - -
Griseofulvin - - - - 500 100 100

Malik et al. derived a series of six new N-substituted 2, 4- thiazolidinedione com-
pounds with active pharmacophores and screened them for their in vitro antibacterial
potential against different bacterial strains, using the cup plate method, taking ciprofloxacin
as the standard. The compounds (am18) and (am19) were found to be better antibacterial
derivatives in the study (Table 10, Figure 10) [50].

Table 10. Antimicrobial results (inhibitory zone = mm diameter) of the compounds (am18–am19).

Comp.

Microbial Strains (Inhibitory Zone = mm Diameter)

Bacterial Species

E. coli B. subtilis

am18 16 13
am19 13 11

Ciprofloxacin 25 25

Parekh et al. synthesized various TZD molecules containing a benzene sulfonamide
scaffold and evaluated them for their in vitro antibacterial activity against different bac-
terial strains, using the disk diffusion method and taking ciprofloxacin as the standard
drug. Among the derivatives tested, compounds am20, am21, am22c, and am23 exhibited
promising potential against the microbial strains and showed an activity comparable with
that of the standard drug. (Table 11, Figure 10) [51].

Desai et al. synthesized a series of thiazolidine-2,4-diones with pyrrole and pyrazole
rings. The minimum inhibitory concentration (MIC) of the synthesized derivatives was
evaluated through the broth microdilution process and compared with two commercial
antibiotics (ampicillin and griseofulvin). Among the derived molecules, compounds,
am24, am25, am26, and am27 were found to be the best antimicrobial molecules (Table 12,
Figure 10) [52].
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Table 11. Antimicrobial screening results (inhibitory zone = mm diameter) of the compounds
(am20–am23).

Comp.

Microbial Strains (Inhibitory Zone = mm Diameter)

Bacterial Species

S. aureus P. aeruginosa B. subtilis E. coli

am20 24 24 26 25
am21 26 24 25 24
am22 24 22 26 23
am23 25 24 24 24

Ciprofloxacin 32 31 33 30

Table 12. Results of antimicrobial screening of the synthesized compounds (am24–am27).

Comp.

Microbial Strains (MIC = µM/mL)

Bacterial Species Fungal Species

E. coli P. aeruginosa S. aureus S. pyrogens C. albicans A. niger A. clavatus

am24 500 ± 4.01 * 50 ± 3.60 100 ± 1.00 ** 50 ± 2.13 * >1000 50 ± 2.20 * 500 ± 3.60 **
am25 50 ± 2.10 100 ± 3.05 *** 50 ± 3.21 50 ± 3.01 500 ± 1.30 ** 25 ± 0.23 *** 50 ± 2.31
am26 50 ± 2.63 * 50 ± 3.21 ** 100 ± 3.00 * 12.5 ± 2.56 ** 500 ± 2.44 50 ± 4.33 100 ± 2.36 ***
am27 12.5 ± 2.05 ** 100 ± 4.01 * 50 ± 1.33 *** 12.5 ± 3.44 * 500 ± 4.10 * 125 ± 3.12 ** 50 ± 1.22 *

Ampicillin 250 ± 2.05 100 ± 0.98 100 ± 1.52 100 ± 2.06 - - -
Griseofulvin - - - - 500 ± 0.80 100 ± 1.98 100 ± 2.01

* p < 0.05 significant ** p < 0.01 moderately significant *** p < 0.001 extremely significant.

A new series comprising nine novel derivatives of thiazolidine-2,4-diones with a
pyrazole ring were developed by Prakash et al. and screened for their in vitro antimicrobial
potential against various fungal and bacterial strains, using the agar well diffusion method
and poisoned food method, respectively, and they were compared with standard drugs
ciprofloxacin and fluconazole. Compounds am28 and am30 were found to be promising an-
tibacterial agents, while compounds am29 and am31 were found to be effective antifungal
agents (Table 13, Figure 11) [53].

Table 13. Antimicrobial activity of the compounds (am28–am31).

Comp.

Bacterial Species Fungal Species

Inhibitory Zone = mm Diameter Mycelial growth Inhibition (%)

S. aureus B. subtilis A. niger A. flavus

am28 22.3 21.6 50 33.3
am29 20.6 18.3 55.5 61.1
am30 21.6 20.6 38.8 55.5
am31 19.3 20.6 55.5 55.5

Ciprofloxin 26.0 24.0 - -
Fluconazole - - 81.1 77.7

Prakash et al. synthesized another series of thiazolidine-2,4-diones molecules and
screened them for their in vitro antimicrobial potential against various bacterial and fungal
strains. Among the synthesized derivatives, compounds, am32 and am33 were found to
be equipotent antibacterial and antifungal agents in comparison to the standard drugs
ciprofloxacin and fluconazole as the antibacterial and antifungal agents, respectively (Ta-
ble 14, Figure 11) [54].
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Prakash et al. synthesized another series of thiazolidine-2,4-diones molecules and 
screened them for their in vitro antimicrobial potential against various bacterial and 
fungal strains. Among the synthesized derivatives, compounds, am32 and am33 were 
found to be equipotent antibacterial and antifungal agents in comparison to the standard 
drugs ciprofloxacin and fluconazole as the antibacterial and antifungal agents, 
respectively (Table 14, Figure 11) [54]. 
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Comp. 
Bacterial Species Fungal Species 
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Figure 11. Molecular structures of the compounds (am25–am36).

Table 14. Antimicrobial activity of the compounds (am32–am33).

Comp.

Bacterial Species Fungal Species

Inhibitory Zone = mm Diameter Mycelial Growth Inhibition (%)

S. aureus B. subtilis A. niger A. flavus

am32 23.3 21.3 61.1 63.3
am33 20.6 21.6 82.5 78.8

Ciprofloxin 26.0 24.0 - -
Fluconazole - - 81.1 77.7

To identify potential novel agents possessing antimicrobial activity, certain analogues
of imidazolyl thiazolidin-2,4-dione and 5-substituted 2,4-thiazolidinedione were derived
by Moorthy et al. and evaluated for their in vitro antimicrobial potential by measuring the
MIC values using the agar streak dilution method. Compounds am34, am35, and am36
showed moderate antimicrobial activity in comparison to the standard drugs, ciprofloxacin
and ketoconazole (Table 15, Figure 11) [20].

Lobo et al. synthesized a series of 3,5-disubstituted thiazolidine-2,4-diones and
screened them for their in vitro antimicrobial potential against different bacterial/fungal
strains, using the cup plate method and taking ciprofloxacin and fluconazole as the stan-
dards. Among the synthesized analogues, molecules am37 and am38 exhibited a decent
activity against all the tested bacterial and fungal strains compared with the standard drug
used (Table 16, Figure 12) [55].
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Table 15. Results of antimicrobial screening of the synthesized compounds (am34–am36).

Comp.

Microbial Strains (MIC = µM/mL)

Bacterial Species Fungal Species

E. coli P. aeruginosa S. aureus S. epidermidis A. niger A. fumigatus

am34 1.6 0.56 1.9 1.4 8.8 2.3
am35 1.6 2.8 3.8 2.2 7.9 1.7
am36 3.2 1.4 2.7 3.39 8.2 3.4

Ciprofloxacin 0.2 0.25 0.39 0.2 - -
Ketoconazole - - - - 6.1 0.23

Table 16. Results of antimicrobial activity of the synthesized compounds (am37–am38).

Comp.

Microbial Strains (Inhibitory Zone = mm Diameter)

Bacterial Species Fungal Species

E. coli P. aeruginosa S. aureus B. subtilis A. niger C. albicans

am37 28 24 28 26 25 27
am38 26 24 28 28 24 26

Ciprofloxacin 28 25 26 26 - -
Fluconazole - - - - 25 26
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A series of substituted 5-(aminomethylene)thiazolidine-2,4-diones derivatives w active
pharmacophores were derived by Mohanty et al. and tested for their in vitro antimicrobial
potential against different strains of bacteria and fungi using the two-fold serial dilution
method and poisoned food method, respectively. Compounds am39 and am40 showed
a moderate antibacterial activity, while the compounds am39, am40, am41, and am42
showed a promising antifungal activity compared to the standard drugs, ciprofloxacin and
fluconazole respectively (Table 17, Figure 12) [22].

Table 17. Results of antimicrobial screening of the synthesized compounds (am39–am42).

Comp.

Bacterial Species Fungal Species

MIC = µg/mL Mycelial Growth Inhibition (%)

S. aureus B. subtilis E. coli P. auroginosa A. niger A. flavus

am39 16 16 16 16 60.0 60.4
am40 16 32 16 16 60.0 60.0
am41 16 16 64 32 61.2 61.2
am42 32 64 16 32 61.6 60.2

Ciprofloxacin 5 5 5 5 - -
Fluconazole - - - - 75.3 74.6

Alegaon et al. derived various TZD benzoic acid derivatives using a microwave irradi-
ation procedure and evaluated their antimicrobial potential against different bacterial and
fungal species. Compounds am43 and am44 were found to be the most active antimicrobial
agents in comparison to the standard drugs, ampicillin, ciprofloxacin, and ketoconazole
(Table 18, Figure 12) [56].

Table 18. Antimicrobial activity (MIC = µg/mL) of the compounds (am43–am44).

Comp.

Microbial Strains (MIC = µg/mL)

Bacterial Species Fungal Species

S. aureus E. coli P. aeruginosa E. faecalis A. niger A. flavus C. neoformans C. albicans

am43 2 4 4 4 4 4 4 2
am44 8 8 8 8 4 4 4 2

Ampicillin 2 NT NT 2 NT NT NT NT
Ciprofloxacin NT 2 2 NT NT NT NT NT
Ketoconazole NT NT NT NT 1 2 1 2

NT: not tested.

To improve the previously recognized lead structure, a series of TZD-5-acetic acid
amides were developed by Alegaon et al. and screened for their in vitro antimicrobial
activity against various fungal and bacterial strains using the twofold sequential dilution
procedure, taking commercial drugs, i.e., ciprofloxacin, ampicillin, and ketoconazole, as
the standards. The compound am45 was found to possess the best antimicrobial potential
amongst all the derived derivatives (Table 19, Figure 12) [57].

Table 19. Antimicrobial activity (MIC = µg/mL) of the compound (am45).

Comp.

Microbial Strains (MIC = µg/mL)

Bacterial Species Fungal Species

S. aureus E. coli P. aeruginosa E. faecalis A. niger A. flavus C. neoformans C. albicans

am45 4 8 8 4 4 8 8 8
Ampicillin 2 NT NT 2 NT NT NT NT

Ciprofloxacin NT 2 2 NT NT NT NT NT
Ketoconazole NT NT NT NT 1 2 1 2

NT: not tested.
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Avupati et al. synthesized various ((oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-
dione derivatives and tested them for their in vitro antimicrobial potential against many
bacterial and fungal strains using the agar well diffusion method. Compounds am46 and
am47 showed promising antimicrobial activity when compared with the standard drugs,
chloramphenicol and ketoconazole (Tables 20 and 21, Figure 12) [58].

Table 20. Antibacterial activity (MIC = µg/mL) of the compounds (am46–am47).

Comp.

Microbial Strains (MIC = µg/mL)

Gram Positive Bacterial Species Gram Negative Bacterial Species

S. aureus M. luteus B. subtilis B. pumilus E. coli P. aeruginosa K. pneumonia P. vulgaris

am46 16 16 16 16 32 16 16 32
am47 32 32 16 16 16 16 16 32

Chloramphenicol 16 16 16 16 16 16 16 16

Table 21. Antifungal activity (MIC = µg/mL) of the compounds (am46–am47).

Comp.
Fungal Species

C. albicans A. niger A. oryzae P. chrysogenum

am46 16 16 16 16
am47 32 32 32 16

Ketoconazole 16 16 16 16

Liu et al. reported a new series of Thiazolidin-2,4-dione containing methyl benzoic
acid molecules and screened them for their in vitro antibacterial potential against many
bacterial strains using a serial dilution method with a 96-well microtiter plate. Norfloxacin
and ofloxacin were taken as the standards. The results of the antibacterial activity study
showed that all the prepared derivatives were inactive against the Gram-negative bacterial
strains but active against the Gram-positive bacterial strains. The compounds am48 and
am49 exhibited a good antibacterial potential in comparison to the standard drugs amongst
all the synthesized molecules (Table 22, Figures 12 and 13) [59].

Table 22. Inhibitory activity (MIC, µg/mL) of the compounds am48 and am49 against the bacteria
and clinical isolates of multidrug-resistant Gram-positive strains.

Comp.

Microbial Strains (MIC = µg/mL)

Bacterial Species Clinical Isolates of Gram Positive Bacterial Species

S. aureus 4220 S. aureus 503 E. coli 1356 E. coli 1682 MRSA 3167 MRSA 3506 QRSA 3505 QRSA 3519

am48 1 2 >64 >64 1 0.5 2 2
am49 1 2 >64 >64 1 1 2 2

Norfloxacin 2 2 16 16 8 4 >64 >64
Ofloxacin 1 2 >64 >64 >64 >64 1 1

Alegaon et al. synthesized another series of TZD acetic acid derivatives and evaluated
them for their in vitro antibacterial potential against different microbial strains using a
two-fold serial dilution method, taking ciprofloxacin and ketoconazole as the standards.
The results of the antimicrobial activity evaluation revealed that the compounds am50 and
am51 possessed a moderate antimicrobial activity (Table 23, Figure 13) [60].

Da Silva et al. synthesized 5-arylidene-thiazolidine-2,4-dione derivatives and screened
them against different microbial strains to determine their MICs and MBCs (minimum
bactericidal concentrations) using the 96-well plate method. The results revealed that
compounds am52 and am53 possessed excellent antimicrobial activity against the tested
strains in comparison to the standard drug, cefalexin (Table 24, Figure 13) [61].
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Rekha et al. synthesized 5-arylidene-thiazolidine-2,4-dione analogues and tested 
them against different microbial strains by measuring their zone of inhibition using a 
slightly modified cup plate method. The results revealed that compound am54 provided 
a better inhibition of B. subtilis and S. aureus, while am55 possessed excellent potency 
against P. vulgaris when compared with the standard drug, Amoxycillin (Table 25, Figure 
13) [62]. 

Table 25. Antimicrobial screening results of the compounds (am54–am55). 

Comp. 
Microbial Strains 

Inhibitory Zone = mm Diameter 
B. subtilis S. aureus E. coli P. vulgaris 

Figure 13. Molecular structures of the compounds (am49–am62).

Table 23. Antimicrobial activity (MIC = µg/mL) of the compounds (am50–am51).

Comp.

Microbial Strains (MIC = µg/mL)

Bacterial Species Fungal Species

S. aureus E. coli P. aeruginosa E. faecalis A. niger A. flavus C. neoformans C. albicans

am50 16 32 16 16 32 32 16 16
am51 16 64 32 16 16 32 64 16

Ciprofloxacin 2 2 2 2 NT NT NT NT
Ketoconazole NT NT NT NT 1 2 1 2

NT: not tested.
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Table 24. Results of antimicrobial screening of the synthesized compounds (am52–am53).

Comp.

Bacterial Species

MIC = µg/mL (MBC = µg/mL)

B. subtilis S. aureus M. luteus M. smegmatis E. faecalis

am52 2 (4) 8 (16) 2 (4) 2 (4) 16 (32)
am53 2 (4) 8 (16) 2 (4) 2 (4) 16 (32)

Cefalexin <2 (2) 8 (16) <2 (2) >128 (>128) >128 (>128)

Rekha et al. synthesized 5-arylidene-thiazolidine-2,4-dione analogues and tested them
against different microbial strains by measuring their zone of inhibition using a slightly
modified cup plate method. The results revealed that compound am54 provided a better
inhibition of B. subtilis and S. aureus, while am55 possessed excellent potency against P.
vulgaris when compared with the standard drug, Amoxycillin (Table 25, Figure 13) [62].

Table 25. Antimicrobial screening results of the compounds (am54–am55).

Comp.

Microbial Strains

Inhibitory Zone = mm Diameter

B. subtilis S. aureus E. coli P. vulgaris

am54 25 ± 0.23 20 ± 2.53 14 ± 1.23 12 ± 1.59
am55 14 ± 1.25 15 ± 0.94 15 ± 0.81 28 ± 1.23

Amoxycillin 28 ± 1.23 25 ± 1.34 17 ± 0.99 31 ± 0.41

Nastasa et al. synthesized a few 2,4-thiazolidinedione derivatives containing a chromene
scaffold and tested them for their in vitro antimicrobial potential against certain bacterial
and fungal species using the disk diffusion method. The results of the antimicrobial evalua-
tion revealed that compounds am56 and am57 were more active than the commercial drugs
gentamicin and fluconazole against the tested species of the microbial strains (Table 26,
Figure 13) [21].

Table 26. Antimicrobial activity of the compounds (am56–am57).

Comp.
10/5/1 (mg/mL)

Inhibitory Zone = mm Diameter

Microbial Species

L. monocytogenes S. aureus S. typhi E. coli C. albicans

am56 28/28/28 28/28/28 18/18/18 18/18/18 22/22/22
am57 22/22/20 24/28/28 20/18/16 18/18/16 18/18/16

Gentamicin 18 19 18 22 -
Fluconazole - - - - 28

A series of 3-aryl-5-arylidine thiazolidine-2, 4-dione molecules were derived by Purohit
et al. and the MICs of the derived compounds were obtained using a twofold serial tube
dilution technique, taking ciprofloxacin, norfloxacin, griseofulvin, and fluconazole as the
standards. The screening results revealed that compounds am58 and am59 possess a
comparable antimicrobial potency to the standard drugs (Table 27, Figure 13) [63].

Mangasuli et al. derived various coumarin-thiazolidinone derivatives and evaluated
their antimicrobial potential against different bacterial and fungal species. Compounds
am60 and am61 were found to be the most active antimicrobial agents in comparison to
the standard drugs, ciprofloxacin and ketoconazole (Table 28, Figure 13) [64].

Alhameed et al. derived various thiazolidine-2,4-dione carboxamide and amino acid
derivatives and evaluated their antimicrobial potential against different bacterial and fungal
species, taking imipenem and fluconazole as the reference drugs. Compound am62 was
found to be the most active analogue against S. aureus (Table 29, Figure 13) [65].
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Table 27. Antimicrobial activity (MIC = µg/mL) of the compounds (am58–am59).

Comp.

Microbial Strains (MIC = µg/mL)

Bacterial Species Fungal +-

S. aureus E. faecalis E. coli K. pneumoniae A. niger A. flavus C. albicans

am58 1 1 62.5 62.5 4 2 4
am59 4 31.25 62.5 62.5 16 16 31.25

Norfloxacin 1 3.1 10 0.1 - - -
Ciprofloxacin 2 2 2 1 - - -
Griseofulvin - - - - 100 7.5 500
Fluconazole - - - - 8 8 16

Table 28. Antimicrobial activity (MIC = µg/mL) of the compounds (am60–am61).

Comp.

Microbial Strains (MIC = µg/mL)

Bacterial Species Fungal Species

S. aureus B. subtilis E. coli P. aeruginosa A. harzianum A. flavus P. chrysogenum C. albicans

am60 0.5 0.5 1 1 1 1 1 1
am61 4 4 2 2 8 8 8 2

Ciprofloxacin 2 2 2 2 NT NT NT NT
Ketoconazole NT NT NT NT 2 2 2 2

NT: not tested.

Table 29. Antimicrobial activity of the compounds (am62).

Comp.

Inhibitory Zone = mm Diameter

Microbial Species

B. subtilis S. aureus P. aeruginosa E. coli C. albicans

am62 - 20 14 7 7
Imipenem 34 30 35 20 -

Fluconazole - - - - 28

4.2. Hypoglycemic Activity

Diabetes has been recognized as a metabolic syndrome characterized by raised blood
sugar (or blood glucose) levels, affecting a large number of people, both male and female,
across the globe. Type-II diabetes mellitus (T2DM) is a multifaceted disease that often affects
longevity/the life span due to grave damage to the eyes, kidneys, heart, blood vessels,
and nerves [3,66]. According to statistical data, around 200 million people are suffering
from diabetes to date, and this figure will be increased to 350 million by 2025 and more
than 360 million by 2030 [67,68]. The derivatives of thiazolidine-2,4-done, viz., ciglitazone,
troglitazone, rosiglitazone, and many more, were approved as antidiabetic agents but were
withdrawn from the market due to their severe hepatotoxicity [69]. Therefore, there is a
pressing need to synthesize newer hypoglycemic agents without toxicity.

In the search for new hypoglycemic agents, Jawale et al. synthesized various 1-((2,4-
dioxothiazolidin-5-yl)methyl)-3-(substitutedbenzenesulfonyl)urea derivatives and screened
them for their in vivo hypoglycemic activity in Sprague–Dawley strain male albino rats
using the sucrose-loaded model (SLM) with commercially available metformin as standard.
The results of the antihyperglycemic activity test revealed that some of the synthesized
compounds in the sucrose-loaded rat model showed substantial antihyperglycemic activity.
Furthermore, compounds ad1, ad2, and ad3 showed better activity in the series (Table 30,
Figure 14) [70].

Mishra et al. synthesized thiazolidine-2,4-dione derivatives with the N-chromen-3-yl
ethyl moiety and screened them for their in vivo antidiabetic activity in male Wistar rats
weighing 150–250 gm, using the alloxan-induced diabetic model and taking pioglitazone as
a standard. The results of the antidiabetic screening demonstrated that all the synthesized
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derivatives had a promising glucose-reducing potential. Furthermore, compounds ad4, ad5,
and ad6 were found to be almost equipotent with the standard (Table 31, Figure 14) [66].

Table 30. Hypoglycemic effect of the compounds (ad1–ad3) on sucrose-loaded hyperglycemic rats.

Comp. Dose (mg/dL) % Activity Significance

ad1 100 17.2 p < 0.01
ad2 100 16.5 p < 0.01
ad3 100 15.8 p < 0.01

Metformin 100 27.0 p < 0.001
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Table 31. Antidiabetic potential of the compounds (ad4–ad6) in alloxan-induced diabetic rats.

Comp.
Blood Glucose Level (mg/dL)

Log P
Change in Blood Glucose

Level (from 1st to 6th Hour)0 h 1 h 3 h 6 h

ad4 312 ± 12.78 270 ± 10.67 135 ± 9.89 127 ± 7.76 3.22 185
ad5 303 ± 4.89 255 ± 7.56 211 ± 2.98 133 ± 10.56 2.95 170
ad6 302 ± 5.98 273 ± 7.65 211 ± 7.34 137 ± 6.34 2.95 165

Pioglitazone 276 ± 4.84 213 ± 3.44 114 ± 5.49 89 ± 3.26 3.58 187

(N = 6) All data represent the mean ± SEM analyzed by one-way analysis of variance (ANOVA) using Dunnett’s
multiple comparison test applied for statistical analysis.

A new series of TZD-acrylic acid alkyl ester molecules were derived by Kumar et al.
and screened for their in vivo hypoglycemic potential in neonatal Wistar male rats using the
streptozotocin-induced diabetic model. The results of the antihyperglycemic activity test re-
vealed that all the compounds possessed a moderate plasma glucose level (%PGL)-reducing
activity in comparison to the marketed drug rosiglitazone. Furthermore, compounds ad7,
ad8, and ad9 possessed the maximum activity in the series (Table 32, Figure 14) [71].

Table 32. Hypoglycemic activity of the compounds (ad7–ad9) using a streptozotocin-induced diabetic
rat model.

Comp. % PGL Reduction

Control 0.433 ± 1.17
ad7 46.13 ± 4.96 a

ad8 46.03 ± 3.08 a

ad9 45.96 ± 4.51 a

One-way ANOVA followed by Dunnett’s test. a p < 0.01. Values are presented as mean ± S.E.M. (N = 6).

Gautam et al. designed a series of substituted 5-(arylidene)-thiazolidine-2,4-diones
and evaluated them as potential aldose reductase inhibitors by the molecular docking
technique (PDB id: 1AH3) using Molegro Virtual Docker (MVD 2012.5.5.0), along with
the clinically available drug epalrestat. The affinity of the designed compounds for the
aldose reductase enzyme was measured by calculating the Mol-dock score. The results of
the docking studies showed that all the compounds had similar or slightly better activity
than the clinical drug epalrestat. Compound ad10 in the series possessed the maximum
activity and can be used as a lead structure (Table 33, Figure 14) [68].

Table 33. Hypoglycemic effect of the compound ad10 depicted by docking score.

Comp. Mol-Dock Score Re-Rank Score H-Bond Score

ad10 −141.292 −87.586 −7.001
Epalrestat −113.889 −70.997 −1.481

Swathi et al. synthesized certain 5-substitutedaryl/heteroarylmethylidene-1,3-thiazolidine-
2,4-diones and observed their hypoglycemic activity using in silico studies, viz., protein
binding energy calculation, drug-likeness, and docking simulation studies, etc. The docking
studies were carried out on the PPARγ enzyme (2PRG protein), obtained from a protein
data bank, taking rosiglitazone as a standard drug. The results of the docking studies
indicated that the synthesized compounds were equipotent with or more potent than
standard. Compounds ad11, ad12, and ad13 exhibited the maximum potential in the series
(Table 34, Figure 14) [72].

Evcimen et al. synthesized thiazolyl-2,4-thiazolidinediones derivatives and screened
them for their in vivo hypoglycemic potential by determining their aldose reductase inhibi-
tion using male Wistar albino rats. A Kidney enzyme was isolated and NADPH oxidation
was calculated spectrophotometrically using D-L-glyceraldehyde as a substrate. The re-
sults of the study revealed that some of the synthesized derivatives possessed significant
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inhibitory activity. Furthermore, compound ad14 possessed the maximum inhibitory
potential in the series (Table 35, Figure 14) [73].

Table 34. Antidiabetic potential of the compounds (ad11–ad13) using molecular docking studies.

Comp. Docking Score (kcal/mol) Interacting Residues

ad11 −10.49 His 323, His 449, Ser 289, Tyr 473
ad12 −10.12 His 323, His 449, Ser 289, Tyr 473
ad13 −10.04 His 323, His 449, Ser 289, Tyr 327

Rosiglitazone −9.48 His 323, His 449, Cys 285, Tyr 473

Table 35. Aldose reductase inhibitory activity of the compound ad14.

Comp.
% Inhibition

IC50(M)
10−4M 10−5M 10−6M

ad14 91.11 ± 3.59 49.91 ± 2.49 14.06 ± 1.88 3.446 × 10−5 ± 0.30 × 10−5

Datar et al. synthesized 3,5-disubstituted thiazolidin-2.4-dione molecules and screened
them for their in vivo antidiabetic potential using a sucrose-loaded model tested on Wistar
rats. The results of the activity test revealed that all the derivatives possessed mild to good
activity as compared to the marketed drug, pioglitazone. Compounds ad15 and ad16 were
equipotent with standard (Table 36, Figures 14 and 15) [69].

Table 36. Antidiabetic potential of the compounds (ad15–ad16) using a sucrose-loaded model in rats.

Comp.
Blood Glucose Level (mg/dL) % Reduction in Blood

Glucose Level0 min 30 min 60 min 90 min 120 min

ad15 147 110 112 107 104 −22.84
ad16 141 112 117 118 112 −21.71

Pioglitazone 139 105 110 112 115 −23.07

Verma et al. synthesized compounds ad17 and ad18 (Figure 15) containing indolyl-
linked benzylidene molecules with a thiazolidine-2,4-dione scaffold and observed their in
silico antidiabetic activity using the Surflex-dock module. The docking was carried out
on 1I7I protein complexed with tesaglitazar obtained from the protein data bank using
human peroxisome-proliferator-activated receptor gamma (PPARγ), and the compounds
were found more potent than standard. The results are depicted in Table 37 [74].

Nazreen et al. synthesized thiazolidine-2,4-dione derivatives containing the 1,3,4-
oxadiazole moiety and screened them for their in vitro PPARγ transactivation assay and
in vivo antidiabetic potential using a streptozocin-induced diabetic rat model, comparing
them with the commercial drugs rosiglitazone and pioglitazone. Most of the synthesized
derivatives possessed mild to moderate activity in PPARγ transactivation and were equipo-
tent with the standards or had a greater potential in lowering the blood glucose levels.
Furthermore, compounds ad19 and ad20 were found to be most active derivatives in the
series, without hepatotoxicity (Table 38, Figure 15) [75].

Avupati et al. synthesized various (Z)-5-(4-((E)-3-(substituted)-3-oxoprop-1-enyl)
benzylidene)-1,3-thiazolidine-2,4-dione derivatives and evaluated them for their in vivo
antidiabetic activity using the streptozotocin-induced diabetic model tested on Wistar
albino rats, and the results were compared using the marketed drug rosiglitazone. The
results of the study revealed that compounds ad21 and ad22 were promising antidiabetic
derivatives (Table 39, Figure 15) [58].
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Figure 15. Molecular structures of the compounds (ad16–ad30). 

Verma et al. synthesized compounds ad17 and ad18 (Figure 15) containing indolyl- 
linked benzylidene molecules with a thiazolidine-2,4-dione scaffold and observed their in 
silico antidiabetic activity using the Surflex-dock module. The docking was carried out on 
1I7I protein complexed with tesaglitazar obtained from the protein data bank using 
human peroxisome-proliferator-activated receptor gamma (PPARγ), and the compounds 
were found more potent than standard. The results are depicted in Table 37 [74]. 

Table 37. Antidiabetic potential of the compounds (ad17–ad18) based on molecular docking 
studies. 

Comp. G Score D Score PMF Score 
Chem 
Score 

Interacting Residues 

ad17 −273.19 −149.75 −81.45 −40.54 Tyr 327, His 449 
ad18 −249.42 −162.88 −81.45 −40.54 Ser 289 

Figure 15. Molecular structures of the compounds (ad16–ad30).

Table 37. Antidiabetic potential of the compounds (ad17–ad18) based on molecular docking studies.

Comp. G Score D Score PMF Score Chem Score Interacting Residues

ad17 −273.19 −149.75 −81.45 −40.54 Tyr 327, His 449
ad18 −249.42 −162.88 −81.45 −40.54 Ser 289

Tesaglitazar −279.20 −157.61 −67.78 −34.20 Ser 289, His 323, Tyr 473, Ser 342

Table 38. Hypoglycemic activity of the compounds (ad19–ad20) in streptozotocin-induced diabetic rats.

Comp. % PPAR-γ Transactivation Blood Glucose Level after 15 Days (mg/dL)

ad19 64.67 134.0 ± 5.09
ad20 63.78 139.6 ± 6.40

Pioglitazone 71.94 132.0 ± 5.20
Rosiglitazone 85.27 144.2 ± 6.12

All data are given as mean ± SEM analyzed by one-way analysis of variance (ANOVA), using Dunnett’s multiple
comparison test applied for statistical analysis.
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Table 39. Hypoglycemic activity of the compounds (ad21–ad22) using a streptozotocin-induced
diabetic model in rats.

Comp. Dose (mg/kg Body wt.) % Reduction, Plasma Glucose
(mg/dL) (mean ± SEM)

ad21 10/30/50 39.83 ± 0.29/44.62 ± 0.32/52.81 ± 0.32
ad22 10/30/50 36.76 ± 0.66/43.14 ± 0.35/49.99 ± 0.62

Rosiglitazone 10/30/50 38.57 ± 0.25/14.83 ± 0.18/12.74 ± 0.16

Wang et al. synthesized various 5-(benzylidene)thiazolidine-2,4-dione derivatives
and evaluated them as competitive inhibitors of protein tyrosine phosphatase 1B (PTP1B),
using p-nitrophenyl phosphate (pNPP) as a substrate and ursolic acid as a positive control.
The results of activity study revealed that compounds ad23 and ad24 were the most active
PTP1B inhibitors amongst all the synthesized molecules (Table 40, Figure 15) [76].

Table 40. PTP1B inhibition activity of the compounds (ad23–ad24).

Comp. IC50(µM)

ad23 4.6
ad24 4.9

Ursolic acid 4.0

Swapna et al. derived different 5-[4′-(S]ubstituted)sulphonylbenzylidene]-2,4-thiazoli-
dinedione molecules and screened them for their in vivo antidiabetic activity using an
alloxan-induced tail tipping diabetic model tested on Wistar albino rats. All the synthesized
derivatives produced comparable results to the standard drug metformin. Compounds
ad25, ad26, and ad27 exhibited the maximum activity (Table 41, Figure 15) [77].

Table 41. Antidiabetic potential of the compounds (ad25–ad27) in alloxan-induced diabetes in rats.

Comp.
Blood Glucose Level (mg/dL)

0 h 3 h 6 h

ad25 343 ± 5.797 313.8 ± 9.411 ** 303.2 ± 9.827 ***

ad26 353.7 ± 6.026 315.8 ± 8.109 * 311.2 ± 9.297 **

ad27 341.5 ± 6.158 320.5 ± 6.737 313.3 ± 9.500 **

Metformin 343.3 ± 6.206 322.8 ± 4.989 ** 292.0 ± 7.767 ***

(N = 5) All data are given as mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 0.0001.

Kumar et al. derived a series of TZD derivatives with indole at the 5th position
and screened them for their in vivo antidiabetic activity using an alloxan-induced tail
tipping diabetic model of Wistar albino rats and compared them with the standard drug
glibenclamide. Amongst all the synthesized derivatives, molecules ad28, ad29 and ad30
exhibited significant antidiabetic activity (Table 42, Figure 15) [78].

Table 42. Antidiabetic potential of the compounds (ad28–ad30) in alloxan-induced diabetes in rats.

Comp.
Mean ± SEM Blood Glucose Level (mg/dL)

0 h 1 h 2 h 4 h 6 h 8 h

ad28 305.3 ± 5.46 * 290.3 ± 7.32 200.3 ± 9.29 145.33 ± 1.76 102.0 ± 5.78 * 90.58 ± 4.73
ad29 306.0 ± 2.08 280.3 ± 3.85 ** 208.3 ± 3.39 155.6 ± 3.48 ** 110.3 ± 6.02 94.7 ± 4.41
ad30 316.0 ± 6.51 ** 297.3 ± 6.37 * 195.3 ± 6.02 142.0 ± 8.67 105.3 ± 6.02 ** 95.0 ± 2.89

Glibenclamide 383.8 ± 14.28 222.8 ± 8.05 ** 180.3 ± 6.92 120.42 ± 9.86 * 93.6 ± 4.95 85.42 ± 2.53

All data are given as mean ± SEM analyzed by one-way analysis of variance (ANOVA), using Dunnett’s multiple
comparison test applied for statistical analysis. ** p < 0.01 (considered as significant), * p < 0.001.

Mahapatra et al. derived a series of (Z)-3,5-disubstituted thiazolidine-2,4-dione deriva-
tives containing the thiophen moiety and screened them for their in vitro protein tyrosine
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phosphatase 1B (PTP1B) inhibition activity colorimetrically, using suramin as a standard in-
hibitor. The results of the assay revealed that most of the synthesized derivatives were weak
PTP1B inhibitors. However, compound ad31 exhibited an almost equipotent inhibition
with that of standard inhibitor (Table 43, Figure 16) [79].

Table 43. Antidiabetic potential of compound ad31 using PTP1B inhibitory studies.

Comp. IC50 (µM)

ad31 9.96
Suramin 9.76
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To further improve the previously recognized lead analogue; a series of (Z)-4-((2,4-
dioxothiazolidin-5-ylidene)methyl)phenyl-substitutedbenzenesulfonates were derived by
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Mahapatrab et al. and screened for their in vitro protein tyrosine phosphatase 1B (PTP1B)
inhibition activity, taking the commercial drug suramin as the standard. Compounds ad32
and ad33 were found to be the most potent in the series and possessed greater inhibitory
activity than the standard (Table 44, Figure 16) [4].

Table 44. Antidiabetic potential of the compounds (ad32–ad33) based on PTP1B inhibitory studies.

Comp. IC50 (µM)

40a 6.89
40b 8.53

Suramin 9.76

Badiger et al. derived a series of thiazolidine-2,4-diones derivatives with a 1,3,4-
thiadiazole scaffold and screened them for their in vivo antidiabetic activity using an
alloxan-induced tail tipping diabetic model of Wistar albino rats in comparison to the
standard drug pioglitazone. Amongst all the synthesized derivatives, molecules ad34 and
ad35 exhibited significant activity (Table 45, Figure 16) [80].

Table 45. Antidiabetic potential of the compounds (ad34–ad35) in alloxan-induced diabetes in rats.

Comp.
% Decrease in Plasma Glucose Level (PG) at Various

Drug Doses (mg/kg Bodyweight)

10 mg 30 mg 100 mg

ad34 42.48 ± 3.25 62.24 ± 3.42 70.35 ± 3.14
ad35 45.42 ± 1.25 58.36 ± 2.36 68.42 ± 2.16

Pioglitazone 47.25 ± 5.50 64.59 ± 5.42 75.43 ± 3.40
(N = 6) all data sare given as mean ± SEM value.

Alam et al. derived a new series of N-substituted-methyl-1,3-thiazolidine-2,4-dione
molecules and evaluated them for their in vivo antidiabetic potential inn Wistar rats using
the streptozotocin-induced diabetic model. The results of antidiabetic evaluation revealed
that compounds ad36, ad37, ad38, and ad39 were the most active antidiabetic compounds,
with equipotent activity to the standard drug glibenclamide (Table 46, Figure 16) [81].

Table 46. Antidiabetic potential of the compounds (ad36–ad39) in streptozotocin-induced diabetes
in rats.

Comp. (mg/kg
Body wt.)

Blood Glucose Level (mg/dL)

0-Day 3-Day 7-Day 10-Day

ad36 87 ± 4.31 429 ± 7.77 246.66 ± 13.78 112 ± 10.13
ad37 80 ± 4.31 416 ± 7.77 240.66 ± 13.78 117 ± 10.13
ad38 85 ± 5.22 425 ± 9.34 233.52 ± 19.15 119 ± 18.54
ad39 82 ± 5.22 418 ± 9.34 232.52 ± 19.15 120 ± 18.54

Glibenclamide 89 ± 5.34 411 ± 13.11 227.45 ± 10.38 109 ± 13.16

(N = 10) All data are given as mean ± SEM analyzed by one-way analysis of variance (ANOVA) followed by the
Tukey–Kramer multiple comparison test; p < 0.001.

Patil et al. synthesized a new series of TZD molecules and evaluated their in vivo
antidiabetic potential in Wistar rats using an alloxan-induced tail tipping diabetic model,
taking metformin and pioglitazone as standard drugs. The results of the antidiabetic
evaluation revealed that compounds ad40 and ad41 were the most active antidiabetic
compounds (Table 47, Figure 16) [82].

Garg et al. derived a series of 5-(substituted)arylidene-3-substituted-benzylthiazolidin-
2,4-dione analogues and screened them for their in vivo antidiabetic activity using an
alloxan-induced tail tipping diabetic model tested on Wistar albino rats, and the results
were compared with the commercial drug rosiglitazone. Amongst all the synthesized
derivatives, ad42 and ad43 exhibited significant activity (Table 48, Figure 16) [83].
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Table 47. Antidiabetic potential of the compounds (ad40–ad41) using the alloxan-induced model
in rats.

Comp.
Mean ± SEM Blood Glucose Level (mg/dL) % Reduction in Blood

Glucose Level after 14 Days0 h 3 h 6 h 24 h 14 days

ad40 355 ± 24.59 322.8 ± 24.10 253.8 ± 23.45 231.4 ± 23.48 123 ± 18.7 65.35
ad41 376.4 ± 21.00 342.8 ± 21.58 315.2 ± 21.66 276 ± 21.79 146.4 ± 20.5 61.10

Metformin 441.8 ± 18.71 399.4 ± 17.72 289.4 ± 18.46 219.6 ± 18.40 112.8 ± 16.84 73.83
Pioglitazone 402.2 ± 28.7 363.4 ± 26.08 302.4 ± 26.87 232.2 ± 20.53 123.8 ± 16.94 69.22

Table 48. Antidiabetic potential of the compounds (ad42–ad43) in alloxan-induced diabetes in rats.

Comp. (mg/kg
Body wt.)

Blood Glucose Level (mg/dL)

0-Day 3-Day 5-Day 7-Day

ad42 186.17 ± 1.16 198.23 ± 0.77 162.47 ± 1.22 109.45 ± 2.13
ad43 188.68 ± 1.23 195.35 ± 1.16 175.65 ± 0.86 118.63 ± 0.89

Rosiglitazone 188.45 ± 1.99 156.88 ± 0.82 125.77 ± 1.45 104.10 ± 1.72
(N = 6) All data are given as mean ± SEM analyzed by one-way analysis of variance (ANOVA) followed by
Dunnett’s test.

In the search for a lead compound a series of thiazolidine-2,4-dione derivatives clubbed
with azole moiety was derived by Senthilkumar et al. and screened for their in vitro α-
amylase and α-glucosidase inhibition potential, taking the commercial drug acarbose as
the standard. Compounds ad44, ad45, and ad46 were found to be most potent amongst all
the derived derivatives and possessed an almost equipotent inhibitory activity with the
standard (Table 49, Figures 16 and 17) [84].

Table 49. Antidiabetic potential of the compounds (ad44–ad46) based on α-amylase and α-
glucosidase inhibitory studies.

Comp. C log P (Lipophilicity) MR (Molar Refractivity)
% Inhibition (250 µg/mL)

α-Amylase α-Glucosidase

ad44 6.45 123 37.04 36
ad45 5.63 116.9 36.18 35.2
ad46 6.49 125.34 33.05 32.2

Acarbose −6.6 141 43.05 40.91

Nikalje et al. derived a series of thiazolidine-2,4-dione acetamide derivatives and
screened them for their in vivo antidiabetic activity using an alloxan-induced tail tipping
diabetic model of Wistar albino rats, taking pioglitazone as a standard drug. Amongst all
the synthesized derivatives, molecules ad47, ad48, and ad49 exhibited a promising activity
(Table 50, Figure 17) [85].

Sucheta et al. derived a series of 5-(aryl/alkyl)benzylidene-thiazolidine-2,4-dione
derivatives and screened them for their in vitro α-amylase inhibitory activity, taking com-
mercial drug acarbose as the standard. Compounds ad50 and ad51 were found to be the
most potent of the derived derivatives and exhibited good inhibitory activity as compared
to standard (Table 51, Figure 17) [5].

Srikanth et al. derived a series of thiazolidine-2,4-dione derivatives with a quinolin-
8-yloxy]benzyl scaffold and screened them for their in vivo antidiabetic activity using an
alloxan-induced tail tipping diabetic model tested on Wistar albino rats, taking rosiglitazone
as the standard drug. Amongst all the synthesized derivatives, molecules ad52, ad53, and
ad54 exhibited moderate activity (Table 52, Figure 17) [86].
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Table 50. Antidiabetic potential of the compounds (ad47–ad49) using an alloxan-induced model
in rats.

Comp.
Mean ± SEM Blood Glucose Level (mg/dL)

0 h 2 h 4 h 6 h 12 h 15th Day

ad47 259.33 ± 25.65 234.61 ± 17.45 209.33 ± 5.84 183.00 ± 3.21 161.65 ± 2.72 158.64 ± 2.90
ad48 256.69 ± 16.19 224.00 ± 7.63 198.33 ± 1.76 177.64 ± 2.02 159.00 ± 2.08 159.00 ± 1.15
ad49 253.00 ± 8.71 230.64 ± 4.33 207.65 ± 2.33 175.61 ± 3.93 162.34 ± 2.90 159.00 ± 0.57

Pioglitazone 310.64 ± 8.09 165.00 ± 3.60 145.67 ± 4.09 137.00 ± 2.64 119.33 ± 2.96 104.33 ± 2.33

(N = 6) All data are given as mean ± SEM analyzed by one-way analysis of variance (ANOVA) followed by
Dunnett’s test.

Table 51. Antidiabetic potential of the compounds (ad50–ad51) according to α-amylase
inhibitory activity.

Comp.
% Inhibition IC50 (µg/mL)

25 µg/mL 50 µg/mL 75 µg/mL 100 µg/mL

ad50 32.59 51.78 66.98 81.30 22.35
ad51 27.77 53.23 62.27 79.43 27.63

Acarbose 37.35 53.45 73.25 88.57 21.44
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Table 52. Antidiabetic potential of the compounds (ad52–ad54).

Comp. Mean ± S.E.M Blood Glucose Level (mg/dL)

ad52 82.81 ± 1.115
ad53 86.31 ± 0.993
ad54 87.21 ± 1.233

Rosiglitazone 65.58 ± 1.013

Kadium et al. synthesized a series of (z)-5(4-hydroxy-3-methoxybenzylidine)-2,4-
thiazolidinedione analogues and tested them for their in vivo antidiabetic potential using a
sucrose-loaded model tested on Wistar rats. The results of the activity study revealed that
all the derivatives possessed good activity, comparable with the marketed drug pioglita-
zone. Compounds ad55 and ad56 were found to be more potent than standard (Table 53,
Figure 17) [87].

Table 53. Antidiabetic potential of the compounds (ad55–ad56) using a sucrose-loaded model in rats.

Comp.
Blood Glucose Level (mg/dL)

0 h 1 h 2 h 4 h

ad55 96.5 ± 3.86 98.5 ± 5.01 *** 82.5 ± 2.87 *** 86.2 ± 4.25 ***
ad56 91.6 ± 2.17 91.5 ± 3.58 *** 86.2 ± 4.21 *** 80.6 ± 3.25 ***

Pioglitazone 98.5 ± 4.35 119 ± 3.57 *** 95.5 ± 5.12 *** 107.5 ± 3.62 ***
Each value is the mean ± S.D. for six rats, ***p < 0.001 compared with normal control. Data analyzed by using
one-way ANOVA followed by t-test.

4.3. Antioxidant Activity

Antioxidants are the molecules used to delay or prevent the oxidation of oxidizable
substrate when used in low concentrations. The key function of antioxidants is to prevent
any cellular damage caused by free radicals by reacting with and stabilizing them. Free
radicals are not only produced by smoke, obesity-inducing foods, cigarette, radiation, or
exposure to frequent chemical constituents (lead, polycyclic aromatic hydrocarbon, cad-
mium, etc.), but are also formed by normal cellular processes, during several biochemical
reactions, and in diseases such as tumors, atherosclerosis, diabetic and cardiac diseases,
etc. Antioxidants work by preventing the cascade effect produced by reactive oxygen
species (ROS) propagation by donating their proton to the ROS. Antioxidants neutralize
free radicals, hence preventing them from attacking the cell. Natural antioxidants act as
natural cleansers and body detoxifiers. They convert toxins of the body into harmless
waste products [38,39]. Therefore, the synthesis of highly potent new antioxidant agents
is required.

For the development of new antioxidant compounds, Kumar et al. synthesized
various thiazolidine-2,4-dione derivatives containing 5-substituted aryl/alkyl moieties, and
their in vitro antioxidant potential was evaluated using an 2, 2-diphenyl-1-picrylhydrazyl
(DPPH) radical scavenging method, taking ascorbic acid as the reference drug. The results
of the antioxidant activity test revealed that all the synthesized compounds exhibited
substantial antioxidant activity. Furthermore, compounds ao1 and ao2 were found to be
the most potent derivatives in the series (Table 54, Figure 18) [24].

Table 54. In vitro antioxidant activity of the synthesized compounds (ao1–ao2) using the DPPH
scavenging method.

Comp. IC50 = µg/mL

ao1 09.18
ao2 12.67

Ascorbic Acid 40.00
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Sucheta et al. derived a series of 5-(substituted)benzylidene-thiazolidine-2,4-dione
derivatives, and in vitro, antioxidant studies were performed, applying a DPPH free radical
scavenging method and taking ascorbic acid as a reference molecule. Compounds ao3
and ao4 were found to be the most potent among all the derivatives and possessed a good
antioxidant activity (Table 55, Figure 18) [5].

Table 55. Antioxidant activity of the compounds (ao3–ao4).

Comp.
% Inhibition IC50 =

µg/mL25 µg/mL 50 µg/mL 75 µg/mL 100 µg/mL

ao3 36.83 45.41 71.51 87.34 27.66
ao4 35.89 42.67 70.25 85.44 29.04

Ascorbic
Acid 38.99 55.78 72.51 93.15 21.64

Mishra et al. synthesized substituted 5-benzylidene-3-(2-oxo-2-(2-oxo-2H-chromen-
3-yl)ethyl)thiazolidine-2,4-dione derivatives and screened them in in vitro antioxidant
studies, applying the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method
and using ascorbic acid as a standard. The results of the assay revealed that compounds
ao5 and ao6 possessed a better activity than the other derivatives in the series (Table 56,
Figure 18) [66].

Rekha et al. synthesized 5-arylidene-thiazolidine-2,4-dione molecules and tested them
for their antioxidant potential applying the DPPH radical method. The results revealed that
compounds ao7 and ao8 possessed excellent potency when compared with the standard
drug, ascorbic acid (Table 57, Figure 18) [62].

A new series of (E)-5-(2-(5-(substitutedbenzylidene)-2,4-dioxothiazolidin-3-yl)acetyl)-
2-hydroxybenzamide were derived by Marc et al. and screened them for their in vitro
antioxidant potential using ABTS and DPPH radical scavenging assays. The results of
antioxidant activity tests revealed that all the compounds exhibited moderate to potent rad-
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ical scavenging activity in comparison with Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid), ascorbic acid, and butylated hydroxytoluene (BHT) as the standard
compounds. Furthermore, compounds ao9 and ao10 exhibited even better activity than the
reference compounds (Table 58, Figures 18 and 19) [25].

Table 56. In vitro antioxidant activity of the synthesized compounds (ao5–ao6) using the DPPH
scavenging method.

Comp.
% Radical Scavenging Activity

IC50 = µg/mL
25 µg/mL 50 µg/mL 75 µg/mL 100 µg/mL

ao5 53.35 58.15 62.52 65.98 3.38
ao6 53.34 56.91 61.60 65.68 6.29

Ascorbic Acid 53.65 58.03 62.32 66.29 2.84

Table 57. Antioxidant screening results of the synthesized compounds (ao7–ao8) by applying the
DPPH scavenging method.

Comp. Mean abs ± SEM % Inhibition

ao7 0.5616 ± 0.0005 66.80
ao8 0.5140 ± 0.0014 65.50

Ascorbic Acid 0.5260 ± 0.05 68.50

Table 58. Antioxidant screening results of the synthesized compounds (ao9-ao10) by applying the
DPPH and ABTS+ scavenging methods.

Comp.
% Radical Scavenging

DPPH ABTS

ao9 92.55 70.66
ao10 89.61 58.27
BHT 63.50 -

Trolox 73.62 54.35
Ascorbic Acid 77.20 -

Khare et al. designed a series of thiazolidine-2,4-dione scaffolds and tested them
for their in vitro antioxidant potential using the DPPH radical scavenging method, and
the results were compared with standard ascorbic acid. The results of the antioxidant
activity test revealed that all the compounds showed moderate radical scavenging activity.
Furthermore, compounds ao11 and ao12 possessed better activity than other compounds
(Table 59, Figure 19) [38].

Koppireddi et al. synthesized various TZD acetamide analogues with thiazole and
benzothiazole moieties and observed their antioxidant potential using superoxide anion
scavenging activity, DPPH radical scavenging activity, lipid peroxidation inhibition,
and erythrocyte hemolysis inhibition assays. Compounds ao13 and ao14 displayed
decent activity when compared with standard ascorbic acid and luteolin (Table 60,
Figure 19) [88].

Shahnaz et al. derived N-substituted methyl-2,4-thiazolidinediones molecules and
tested them for their in vitro antioxidant potential using a DPPH radical scavenging assay,
taking ascorbic acid as the standard. The results of the antioxidant activity tests revealed
that all the compounds showed moderate radical scavenging activities. Furthermore,
compounds ao15 and ao16 exhibited better activity than the other compounds in the series
(Table 61, Figure 19) [89].

Nyaki et al. prepared ((1H-imidazol-2-yl)benzylidene)thiazolidin-2,4-dione molecules
and tested them for their in vitro antioxidant potential using a DPPH radical scavenging
assay, taking ascorbic acid as the standard. The results of antioxidant activity tests revealed
that all the compounds showed moderate to good radical scavenging activities. Further-
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more, compounds ao17 and ao18 exhibited better activity than the standard drug (Table 62,
Figure 19) [90].
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Table 59. In vitro antioxidant activity of the synthesized compounds (ao11–ao12) using the DPPH
scavenging method.

Comp.
% Radical Scavenging Activity IC50

µg/mL10 µg/mL 50 µg/mL 100 µg/mL 250 µg/mL 500 µg/mL

ao11 8.73 35.39 46.59 57.34 62.65 75.00
ao12 10.56 45.76 59.58 65.45 71.98 80.00

Ascorbic Acid 35.84 41.35 58.83 69.28 84.67 26.00
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Table 60. Antioxidant activity of the synthesized compounds (ao13-ao14).

Comp.
EC50 (µg/mL)

DPPH Radical
Scavenging Activity

Superoxide Anion
Scavenging Activity

Lipid Peroxidation
Inhibition

Erythrocyte
Hemolysis Inhibition

ao13 58.68 79.94 131.79 96.62
ao14 52.18 101.18 149.70 107.28

Luteolin 44.18 31.01 149.70 107.28
Ascorbic Acid 40.28 21.01 139.97 96.63

Table 61. In vitro antioxidant activity of the synthesized compounds (ao15–ao16) using the DPPH
scavenging method.

Comp.
% Inhibition

10 µg/mL 20 µg/mL 30 µg/mL 40 µg/mL 50 µg/mL

ao15 39.6 44.4 48.9 58.1 66.8
ao16 39.2 43.9 48.9 55.5 65.5

Ascorbic Acid 49.3 53.2 57.9 65.8 70.2

Table 62. In vitro antioxidant activity of the synthesized compounds (ao17–ao18).

Comp. IC50 (µM)

ao17 940
ao18 998

Ascorbic acid 971

Sameeh et al. derived Benzo[d][1,3]dioxol-5-ylmethylene)-thiazolidin-2,4-dione ana-
logues and screened them for their in vitro antioxidant potential using a DPPH radical
scavenging assay, taking ascorbic acid as the reference drug. The results of the assay
revealed that molecules ao19 and ao20 exhibited a better antioxidant potential than the
standard compound (Table 63, Figure 19) [91].

Table 63. In vitro antioxidant activity of the synthesized compounds (ao19–ao20).

Comp. IC50 (µg/mL)

ao19 12.78
ao20 16.44

Ascorbic acid 23.15

Sameeh et al. again derived different thiazolidin-2,4-dione analogues and evaluated
them for their in vitro antioxidant activity using a DPPH radical scavenging assay, taking
ascorbic acid as the reference drug. The results of the assay revealed that molecules ao21
and ao22 exhibited a better antioxidant potential than other drugs in the series (Table 64,
Figure 19) [92].

Table 64. In vitro antioxidant activity of the synthesized compounds (ao21–ao22).

Comp. IC50 (µg/mL)

ao19 10.78
ao20 11.16

Ascorbic acid 23.15

5. Patents Grant Information

Due to the significant potential of the TZD derivatives, many investigators working
on thiazolidinediones analogues have contributed a new dimension to the drug design.
Several patents have been granted to the TZD analogues, which are shown in Table 65.
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Table 65. Patent grant information of the thiazolidinedione analogues.

S. No. Patent No. Title Procedure/Activity Reference

1 WO/2019/016826
Novel 5-[4-(2-biphenyl-4-yl-2-oxo-ethoxy)-

benzylidene]-thiazolidine-2,4-diones, their synthesis,
and uses thereof.

Antidiabetic activity [93]

2 WO/2002/026735
Sodium salts of 5-’4-’2-(n-methyl-n-(2-

pyridyl)amino)ethoxy]benzyl]thiazolidine-
2,4-dione.

Synthetic procedure [94]

3 WO/2006/010345
Salt of oxalic acid with 5-[4-[2-(n-methyl-n-(2-

pyridyl)-amino)ethoxy]benzyl]thiazolidin -2,4-dione
and a method of its preparation and its use.

Antidiabetic activity [95]

4 US 6,784,184 B2
5-(arylsulfonyl)-,5-(arylsulfinyl) and

5-(arylsulfanyl)-thiazolidine-2,4-diones useful for the
inhibition of farnesyl-protein transferase.

Anticancer activity [96]

5 WO/2003/053962
5-(4-(2-(n-methyl-n-(2-

pyridyl)amino)ethoxy)benzyl)thiazolidine-2, 4-dione
malic acid salt and its use against diabetes mellitus.

Antidiabetic activity [97]

6 US 2020/0093812
A1

5-[[4-[2-[5-(1-Hydroxyethyl)pyridin-2-yl]
ethoxy]phenyl]methyl]-1,3-thiazolidine-2,4-dione

for treating nonalcoholic fatty liver disease.

Treatment of non-alcoholic
fatty liver disease [98]

7 EP0508740A1 Thiazolidinedione derivatives, their production, and
their use.

Hypoglycemic and
hypolipidemic activity [99]

8 WO03053367A2 Hydrogenation of precursors to thiazolidinedione
antihyperglycemics.

Anti-hyperglycemic
activity [100]

9 CN101531657A Dimethyldiguanide of the thiazolidinedione
pharmaceutical, preparation method and use thereof. Anti-diabetic activity [101]

10 CN104230915A

Thiazolidinedione-containing phenylpiperazine
derivatives, as well as the preparation method and

applications of thiazolidinedione-containing
phenylpiperazine derivatives.

Anti-cancer activity [102]

11 WO2010077101A2 Novel thiazolidinedione derivative and use thereof. Treatment of CVS, renal
disease, and GIT disease [103]

12 JP2002322177A Thiazolidinedione derivative. Anticancer activity [104]
13 WO2007109037A2 Thiazolidinedione analogues. Antihypertensive activity [105]

14 WO2017021634A1

Association between
3-[(3-{[4-(4-morpholinylmethyl)-1H-pyrrol-2-yl]

methylene}-2-oxo-2,3-dihydro-1h-indol-5-
yl)methyl]-1,3-thiazolidine-2,4-dione and a tyrosine

kinase inhibitor of the EGFR.

Anticancer activity [106]

6. Conclusions and Future Perspective

The TZD moiety plays a central role in the biological functioning of several essential
molecules and possesses significant medicinal potential. The synthetic methodologies are
simple and versatile; hence, the discovery of new TZD analogues is easily attainable. The
substitution of various moieties at the third and fifth positions of the Thiazolidin-2,4-dione
(TZD) scaffold offers the medicinal chemist the potential to derive novel TZD molecules.
TZDs are primarily used as antidiabetic agents but also exhibit diverse therapeutic activities,
such as antimicrobial, antiviral, anticancer, and antioxidant activities, etc. The present
review article attempted to explore the pharmacological potential of TZDs for application as
antimicrobial, antioxidant, and hypoglycemic agents, along with their mechanism of action.
A brief description of the recent patents granted to TZDs possessing different biological
activities was also provided. This review paper will not only be helpful to researchers
working on the development of new TZD analogues based on medicinal chemistry, but also
for designing new drug molecules in the future. Future investigations of TZD molecules
using other heteroatoms may provide us with more encouraging results. Based on the
results of this review, TZDs may be considered as an auspicious class of drugs that can
be utilized to form new antidiabetic, antimicrobial, or antioxidant agents with a minimal
toxic effect.
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