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Abstract

Interacting strategies in evolutionary games is studied analytically in a well-mixed population

using a Markov chain method. By establishing a correspondence between an evolutionary

game and Markov chain dynamics, we show that results obtained from the fundamental matrix

method in Markov chain dynamics are equivalent to corresponding ones in the evolutionary

game. In the conventional fundamental matrix method, quantities like fixation probability and

fixation time are calculable. Using a theorem in the fundamental matrix method, conditional fix-

ation time in the absorbing Markov chain is calculable. Also, in the ergodic Markov chain, the

stationary probability distribution that describes the Markov chain’s stationary state is calculable

analytically. Finally, the Rock, scissor, paper evolutionary game are evaluated as an example,

and the results of the analytical method and simulations are compared. Using this analytical

method saves time and computational facility compared to prevalent simulation methods.

Introduction

Today, Evolutionary Game theory (EGT) is a progressive topic in many branches of science

from economy to biology [1–10]. EGT provides powerful tools for many problems in which

the system’s dynamics depend on the interaction between agents. The interactions between

strategies are often described by evolutionary games. The performance of strategies in evolu-

tionary games is determined by the game’s payoff matrix, which determines each strategy’s

spread rate. Greater payoff in the game leads to more tendency to spread in the population for

any strategy. In an infinite well-mixed population, dynamics of the system is governed by a

deterministic equation called replicator equation [11, 12], but in a finite population the

dynamics is stochastic [13–21].

In a stochastic evolutionary game, the population is divided into several strategies and indi-

viduals interact with each other based on their strategies. The process is advanced by discrete

time steps. In each time step, the frequency of strategies changes by one or remains unchanged.

The game’s payoff matrix and frequency of each strategy identify the probability of events at

each time step. Another factor that influences the dynamics of the population is the update

rule. Update rule identifies how payoff matrix and frequencies distribute the probabilities of

events in each time step. Depending on the update rule, the evolutionary game can be stopped

when one of the strategies overcomes all other strategies (fixation), or continues forever. The
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structure of the population can also affect the dynamics of population. Unfolding an evolution-

ary game in graph-structured populations is the subject of many investigation [13, 22–29].

Cooperative behaviors in games like public good game or prisoner’s dilemma is a charming

topic in evolutionary games investitations [30–36].

In stochastic evolutionary games, the fixation of a strategy is the favorite subject. Numerical

simulation is the subject of many studies in finite populations [37–40]; also there are many inves-

tigations that evaluated the dynamics of evolutionary games analytically [18, 41–46]. In analytical

evaluation, the evolutionary process is often considered as a generalization of the Moran process

[47], and it has been done for games with two strategies. The most famous analytical method for

analyzing evolutionary games is the recursive equation method [48, 49]. In this method, two

interesting quantities, fixation probability and fixation time obtain in terms of finite series. Evo-

lutionary games with more than two strategies are not studied analytically so far.

Considering the individual’s mutation, the population’s dynamics are governed by an evo-

lutionary game with no fixation strategy. So, after many time steps, the configuration of the

population reaches a stable state. This steady state is described by a stationary probability dis-

tribution which determines after a long run, each configuration of population how much is

possible. In both cases (games with fixed strategies and games with no fixed strategies), as the

number of strategies increases, more time and computational facilities are needed for simula-

tion of the evolutionary game, so proposing an analytical method for evaluating evolutionary

games with more than two strategies is helpful. This study aims to provide an analytical

method for obtaining concepts in evolutionary games that getting them by simulation takes

long time and needs extensive computational facilities.

Markov chain method has been used for analyzing evolutionary games sincessfully [50–52]

but it has never been used in an organized and intensive way. In this paper we stabilize the

Markov chain method as a reliable method for evaluating evolutionary games. In this method

corresponding to each evolutionary game, a Markov chain is introduced. Essential concepts in

evolutionary games such as fixation probability, conditional fixation time, and stationary prob-

ability distribution are related to concepts in the Markov chain. Using the fundamental matrix

method in the equivalence Markov chain, we can calculate essential concepts in the Markov

chain, which leads to calculating essential quantities in the evolutionary game. Although this

method is designed for a discrete-time system, it could be used for a time-continuous system

by considering some approximation.

The organization of the paper is as follows. In general method section we review the Mar-

kov chain method and explain a practical theorem for obtaining conditional fixation times

which is proven in tha Appendix. In evolutionary game section we establish correspondence

between evolutionary games and Markov chains and will clarify how essential concepts in evo-

lutionary games can be obtained from the fundamental matrix method. In result and discus-

sion we apply our approach to an evolutionary game with three strategies. Here the famous

rock, scissor, paper evolutionary game is used and results of analytical method and simulations

are compared to each other. Conclusion is devoted to a summary and concluding remarks.

General method

Markov chain and fundamental matrix method

In this section, We briefly review the fundamental matrix method in Markov chains and

obtain a formula for calculating conditional absorption time. In the next section, by establish-

ing a correspondence between states of the Markov chain and states of the evolutionary game,

this theorem provides handy information about the dynamic of the evolutionary process in the

fixation path.
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A Markov chain is described as S set of states S = {s1, s2, s3, . . .} and a process which starts

in one of these states and move to another state. If the chain is currently in state si, then it

moves to state sj with probability denote by pij. The point is that the probability that the

chain moves from state si to state sj depends on the initial state si and final state sj not upon

which states the chain was in before the state si. The probabilities pij constructed the transi-

tion matrix P. If vi be a vector that determines the probability distribution in step i, then

probability distribution in step i + 1 is vi+1 = vi P. If there are states in the Markov chain that

leaving these states is impossible, these states are called absorbing states and Markov chain

called absorbing Markov chain. If i be an absorbing state, then pii = 1 and when the chain is

in this state, the Markov chain ends. Other states which are not absorbing are called tran-

sient. There are three valuable concepts related to absorbing Markov chain. The first is the

probability that the chain starts from transient state i, will be absorbed in absorbing state j
(bij). The second is absorption time (ti), the expected number of steps before the chain is

absorbed in one of absorbing states, given that the chain starts from state i and the last con-

cept is conditional absorption time (τij), the expected number of steps before the chain is

absorbed in the absorbing state sj given that the chain starts in transient state i. It is necessary

to emphasize that absorption time differs from conditional absorption time. In fact, absorp-

tion time is a weighted average of conditional absorption time among different absorbing

states. There is a helpful method for calculating absorption probabilities and absorption

time called the fundamental matrix method. In this method, at first the transition matrix is

written in the canonical form as follows:

P ¼
Q R

0 I

 !

: ð1Þ

In other words, in canonical form, we labeled states so that the absorbing states consider as

final states. The so-called fundamental matrix is defined as N = (I − Q)−1 and is useful to

obtain absorption probabilities and absorption time. Let us define ti to be the (average)

absorption time of the Markov chain starting from state i and r
a1
i , r

a2
i ,. . . the absorption

probabilities correspond to absorption states a1, a2,. . . starting from state i, respectively.

According to the approach in Ref [53] the matrix notation can be used to denote these quan-

tities:

t ¼

t1
t2

..

.

tT

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;B ¼

r
a1
1 r

a2
1 . . .

r
a1
2 r

a2
2 . . .

..

. ..
.

r
a1

T r
a2

T . . .

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:

where in the above T is the number of transient states. Using the fundamental matrix

method one can obtain absorption probabilities and times as follow:

B ¼ NR;

t ¼ Nc:
ð2Þ

where c = (1, 1, � � �, 1)t. If there is no absorbing state in Markov chain then the Markov chain

is called ergodic. In the ergodic Markov chain, it is possible to go from every state to every

other state after finite steps. If P is the transition matrix of the ergodic Markov chain then

for n!1 the Pn approach a limiting matrixW with all rows the same vector w, called fixed

row vector for P. It means after a long run, the Markov chain reaches an equilibrium which
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probability that chain be in state j determine by wj. Obviously, wP = wmeans w is the left

null vector of matrix P − I.

wðP � IÞ ¼ 0 ð3Þ

In other words, the fixed row vector of P is left eigenvector of P with eigenvalue one. The

fundamental matrix method does not represent a recipe for calculating the conditional fixation

time. Now we describe a theorem to calculate the conditional fixation time for any absorbing

state by adding some details to the fundamental matrix method.

Theorem: Let τia be the conditional fixation time for absorption in absorbing state a given

that Markov chain starts from transient state i. Using matrix notation, we have

ta ¼ Nac: ð4Þ

where in above equation

ta ¼

t1a

t2a

..

.

tTa

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; c ¼

1

1

..

.

1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;Naij ¼
raj

rai
Nij

and T is the number of transition states.

The proof of this theorem present in the Appendix. Also there is a proof with different nota-

tion for the theorem in Ref [54].

Evolutionary games corresponding Marokov chains

This section develops a method based on correspondence between Markov chain dynamics

and evolutionary game dynamics. This correspondence provides a sound mathematical device

for analyzing evolutionary games.

Consider a population with size N which n strategies interact with each other according to a

payoff matrix

S1 S2 : : : Sn

S1

S2

:

:

:

Sn

a11 : : : : a1n

a21 : : : : a2n

: : : : : :

: : : : : :

: : : : : :

an1 : : : : ann
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In each time step, the expected payoff of each strategy is obtained in terms of frequency of

strategies and payoff matrix as

pðiÞ ¼
1

N � 1

Xn

j¼1

aijfj ð5Þ

where π(i) is excepted payoff of strategy i and fj is frequency of strategy j. Generally, the

expected payoff interpreted as the fitness of strategy in evolutionary game theory, in other

words, strategies spread with rates that are proportional to their expected payoff. There are

many ways to obtain the fitness of a strategy from its expected payoff, like an exponential pay-

off to fitness mapping. Depending on the update rule of dynamic, there is a possibility that the

evolutionary process leads to the fixation of a strategy which means one strategy overcomes

other strategies and occupies the whole population forever. In evolutionary games with fixa-

tion strategies, three concepts are noteworthy. Fixation probability, the probability that a strat-

egy fix in population, the fixation time, the average steps of time that an evolutionary process

fixed to one of its fixation strategies and conditional fixation time, the average steps of time

that evolutionary game fixed in a specific strategy. Update rule could be in such a way that

there is no possibility for any strategy that overcomes other strategies forever. In this situation,

after a long run with many steps of time, the population reaches to stable condition, which

means the probability that the evolutionary process is in each state approach a stationary

value.

In the evolutionary process the state of population describe by frequency of each strategy

like {fs1, fs2, fs3, . . .} which fs1 + fs2 + . . .fsn = N. Direct calculation shows that the number of

states is

N þ n � 1

n � 1

 !

: ð6Þ

In each time step, one strategy is chosen for reproduction and replaces its offspring inplace

another strategy. In other words, in each step, the frequency of a strategy increases by one, and

frequency of another strategy decreases by one, and the state of the evolutionary game changes.

Update rule of the evolutionary game determines which strategy has a higher probability of

reproduction and which strategy has a higher probability of being replaced. It is possible that

the strategy that is chosen for reproduction and the strategy that vanishes be the same, in this

situation, the state of the evolutionary game remain unchanged.

Corresponding to each evolutionary game with l fixation strategies, there is a Markov chain

with l absorption states, also, corresponding to each evolutionary game with no fixation strat-

egy, there is an ergodic Markov chain. States in evolutionary game dynamic can be considered

as Markov chain states. Transition matrix of corresponding Markov chain obtains by update

rule of the evolutionary game.

Fixation probability, Fixation time, and conditional fixation time in the evolutionary game

correspond to absorption probability, absorption time, and conditional absorption time in the

Markov chain. Since we have the fundamental method in Markov chain theory, this duality

between Markov chain dynamics and evolutionary game dynamics is so helpful to analyze the

evolutionary games. In games with fixation strategies using the theorem of section, one can

obtain conditional fixation time for each strategy, and in evolutionary games with no fixation

strategy, the stationary probability distribution of strategies is obtained by calculating the left

null vector of matrix P − I. In the next section, we use this correspondence for analyzing rock,

scissor paper game.
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Results and discussion

As an example of what we said, in this section, we analyze the most famous game with three

strategies, the rock, scissors, paper game (RSP game) [4, 55–67]. In the RSP game, each strategy

overcomes the next one cyclically.

In the real world, coexistence of many species occurs over three competing species interact-

ing with each other like the rock-paper-scissors game. According to the anticipation of some

models, the coexistence of all three competitors is possible if the interaction between them

becomes local. In reference [68], the coexistence of three populations of Escherichia coli was

empirically studied. According to this, coexistence is preserved when the interaction between

species is localized. When dispersal and interaction are nonlocal, the diversity is lost, and one

species occupies the whole population. Another example of the rock-paper-scissors evolution-

ary game in biology is changing in the frequency of adult side-blotched lizards. In reference

[69], the authors studied the frequencies of three side-blotched lizard morph from 1990-95.

According to their observations, the fitness of each morph is dependent on other morphs.

They suggest an evolutionary stable strategy model which predicts each morph frequency. Esti-

mating parameters of payoff matrix of RSP game by field data, the model predicted the morphs

oscillation frequencies.

Without loss of generality, the payoff matrix of RSP game can be depicted as follow

P S R

P

S

R

0 � a2 b3

b1 0 � a3

� a1 b2 0

where ai, bi> 0. At first, we set the update rule so that the evolutionary process ends when the

whole population occupies by one strategy. Therefore, the Markov chain is an absorbing Mar-

kov chain. By changing the update rule of the evolutionary game, we establish the possibility of

mutation, which means when a strategy extincts, there is a probability that other strategies

mutate to extincted strategy and it appears in the population again. In this situation, the evolu-

tionary process never ends but after a long run, it reaches a stable position, and the corre-

sponding Markov chain is an ergodic Markov chain.

RSP game with absorbing states

Consider a population with size N that each member of the population can be one of three

types rock, scissor, and paper. We denote the three strategies rock, scissors, and paper as 1, 2

and 3, respectively. The evolutionary process runs upon a birth and death update rule. Accord-

ing to this update rule, one member of the population is chosen for reproduction at each step

of time. The chosen member selects randomly another member of the population to be

replaced with its offspring. The probabilities of selection for reproduction and being replaced

for each strategy are proportional to their frequency. The expected payoff of each strategy is

involved in the update rule via the Fermi distribution function [70]. The probability that in

each step of time, strategy k replaced with strategy l is

pk� !l ¼
2fkfl

NðN � 1Þ
� Fðpk; plÞ ð7Þ

which fk and fl are frequency of strategies k and l respectively and F is fermi function define as
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follow

Fðx; yÞ ¼
1

1þ ebðx� yÞ
ð8Þ

where β> 0 is constant. The expected payoff for strategies (πk) can be calculate for k = 1, 2, 3

as

p1ðf1; f2; f3Þ ¼
b3ðN � f1 � f2Þ � a2f2

N
;

p2ðf1; f2; f3Þ ¼
b1ðN � f1Þ � a3ðN � f1 � f2Þ

N
;

p3ðf1; f2; f3Þ ¼
b2f2 � a1f1

N
:

ð9Þ

According to Eq (7), when a strategy extincted, there is no possibility that appears again in

the population, and sooner or later, the whole population occupies by one of the strategies. It

means the corresponding Markov chain is an absorption Markov chain. According to Eq (6)

the number of states in this Markov chain is
ðNþ1ÞðNþ2Þ

2
. States of the Markov chain can be

arranged in an equilateral triangle. Fig 1 shows the corresponding Markov chain of the evolu-

tionary game with this specific update rule for N = 10. Arrows show the allowed transitions

between states. Fig 1 can also be considered as a simplex that determined states of the evolu-

tionary game. The vertices of the triangle are absorption states that are correspond to fixation

Fig 1. The absorbing Markov chain corresponds to an evolutionary RSP game with a population N = 10. The total

number of states is 55, and the arrows determine the allowed transitions between states. Some arrows are two-way, and

some of them are one-way arrows. Inside the simplex, all the states are transient, and transitions between them are two

ways. Transitions between the inside of simplex and sides are one way. It means when the Markov chain is in the states

of sides, it never goes back inside the simplex. In other words, when a strategy extinct, it never appears in population

anymore. Transitions between states of sides are two-way too, except transitions between absorption states and their

neighbors, which is one way.

https://doi.org/10.1371/journal.pone.0263979.g001
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strategies in the evolutionary game. When Markov chain is on the triangle’s sides, it is impossi-

ble to return inside the triangle because by this specific update rule, when a strategy extinct, it

never comes back. When Markov chain is on a triangle’s side, it absorbs in one of two vertices

side. We are interested in obtaining fixation probability and conditional fixation time for any

state in the simplex. After constructing the transition matrix using Eq (7) and calculating the

fundamental matrix, one can obtain the fixation probability of every state of simplex for three

absorption states.

After finding the fixation probability of states, by using the theorem of section, we can

obtain conditional fixation time for any state of the simplex.

To observe the footprint of the RSP game, we set the elements of the payoff matrix in the

neutral case and strong selection both. In the neutral case, the elements of payoff matrix are a1

= a2 = a3 = 1, b1 = b2 = b3 = 2. In the strong selection case, we set the elements of the payoff

matrix extremely in favor of the paper strategy and in detriment of rock strategy. In this case,

we have a1 = a3 = 1, a2 = 300, b1 = b3 = 0, b2 = 300. Figs 2–4, show the fixation probability of

paper, scissors and rock strategies respectively, when the process begins in each state in the

simplex. In the neutral selection case, when the distance between the beginning state and

absorption state decreases, the probability of absorption increases. After changing the payoff

matrix in favor of the strategy paper, the probability of absorption to the strategy paper

increased for all states inside the simplex. In this case, states with long distance to fixation state

R = 0, S = 0, P = N also have a high probability of absorbing to this fixation state.

Also there are states that have high probability of absorbing to scissors strategy in neutral

case, but in strong selection case, they have high probability of absorbing to paper strategy.

That is because the payoff matrix changed in favor of paper strategy. Also, some states have a

high probability of absorbing to rock strategy in neutral case, but in the strong selection case,

they have a high probability of absorbing to scissors strategy. That is because we changed the

payoff matrix to the detriment of the rock strategy. In the strong selection case, there are fewer

states with a high probability of absorbing to rock strategy. Changing the payoff matrix has

effects on conditional fixation time too. Figs 5–7, show the conditional fixation time of paper,

scissors and rock strategy respectively, when the process begins in each state in the simplex.

Comparing conditional fixation time in the neutral and strong selection cases shows that

absorption to the paper strategy happens in a shorter time in the strong selection case. As

Fig 2. The simulation (a) and analytical (b) results for fixation probability of strategy paper in an RSP game with

neutral selection. The size of population is 50. The states close to absorption state P = N, S = 0, R = 0 have a higher

chance of absorbing in this absorption state. In (c) and (d) same results were shown with a strong selection in favor of

paper strategy and detriment of rock strategy. Compared to the neutral case, many states have a higher chance to

absorb to paper strategy.

https://doi.org/10.1371/journal.pone.0263979.g002
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shown in Fig 6, the states which are close to fixation state R = N, S = 0, P = 0, in the strong

selection case, absorb in strategy scissors in a shorter time. Also, the conditional fixation time

for absorbing in the rock strategy increases in the strong selection case for all simplex states.

The reason again is changing the payoff matrix to the detriment of rock strategy. In all figures,

the results from the analytical approach and simulations are compared to each other. In most

of them, simulation results coincide with analytical results. Still, in Figs 6 and 7 in the part of

strong selection, the similarity is not so obvious. Since in some states, the probability of

absorption to rock strategy is very low in the strong selection case, we need a lot of realization

of the evolutionary game to reach a limited number realization ended in rock strategy. It

means simulation should repeat more times for obtaining an accurate result. The same is true

for conditional fixation time of scissors strategy. The hardness of getting simulation results in

some conditions shows the necessity of invent of an analytical method.

Fig 3. The simulation (a) and analytical (b) results for conditional fixation time of strategy paper for an RSP game

with a neutral selection. The size of the population is 50. No wonder that states are close to absorption state P = N,

S = 0, R = 0 reaches this absorption state by the fewer steps. In (c) and (d) same results were shown for a strong

selection in favor of paper strategy and detriment of rock strategy. Compared to the neutral case, the number of steps

for reaching P =N, S = 0, R = 0 is reduced due to strong selection in favor of strategy P.

https://doi.org/10.1371/journal.pone.0263979.g003

Fig 4. The simulation (a) and analytical (b) results for fixation probability of strategy rock in an RSP game with

neutral selection. The size of the population is 50. In (c) and (d) same results were shown with a strong selection in

favor of paper strategy and detriment of rock strategy. Since the payoff matrix is in detriment of rock strategy, many

states, even those who are close to absorption state P = 0, S = 0, R =N have fewer chances to absorb to P = 0, S = 0, R =

N.

https://doi.org/10.1371/journal.pone.0263979.g004
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RSP game without absorbtion states

One may set the update rule in such a way that none of the strategies fix forever. In this situa-

tion, the corresponding Markov chain is an ergodic Markov chain. To compare our final result

to the numerical result obtained in previous works, we use the update rule of Ref. [39]. Accord-

ing to this update rule, the probability that in each time step, one member of the population

switches from strategy l to strategy k is proportional to Tl!k = ε +W(πk − πl) where ε is a posi-

tive value which guarantees mutation in the process andW is zero when the argument is nega-

tive.W works like the identical function when the argument is positive or zero. Elements of

the transition matrix can be calculated as follow

pl!k ¼
Tl!kX

ij

Ti!j ð10Þ

Fig 5. The simulation (a) and analytical (b) results for fixation probability of strategy paper in an RSP game with

neutral selection. The size of population is 50. The states close to absorption state P = N, S = 0, R = 0 have a higher

chance of absorbing in this absorption state. In (c) and (d) same results were shown with a strong selection in favor of

paper strategy and detriment of rock strategy. Compared to the neutral case, many states have a higher chance to

absorb to paper strategy.

https://doi.org/10.1371/journal.pone.0263979.g005

Fig 6. The simulation (a) and analytical (b) results for fixation probability of strategy scissors in an RSP game with

neutral selection. The size of the population is 50. The states close to absorption state P = 0, S =N, R = 0 have a higher

chance of absorbing in this absorption state. In (c) and (d) same results were shown with a strong selection in favor of

paper strategy and detriment of rock strategy. Compared to the neutral case, some states are close to P = 0, S = 0, R =N
but have a high chance to absorb in P = 0, S =N, R = 0 strategy. The reason is imposing strong selection to the

detriment of rock strategy.

https://doi.org/10.1371/journal.pone.0263979.g006
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where i! j are all allowed transitions in each state of the Markov chain. Fig 8 shows the Mar-

kov chain corresponding to this update rule. Unlike the previous update rule, when the Mar-

kov chain is in any state, there is a nonzero probability that exits from that state and therefore,

there is no absorption state. The limiting probability distribution of the evolutionary game can

be obtained by calculating the left null vector of matrix P − I. Fig 9 shows the analytical and

simulation results for limiting probability distribution after a long run (100 million steps). The

simulation and analytical results agree with each other. As a double-check, one can compare

the results with simulation results obtained with the same update rule in Re. [39].

Fig 7. The simulation (a) and analytical (b) results for conditional fixation time of strategy rock for an RSP game with

a neutral selection. The size of the population is 50. In (c) and (d) same results were shown for a strong selection in

favor of paper strategy and detriment of rock strategy. Due to strong selection against strategy rock, conditional

fixation time increase for all states of simplex.

https://doi.org/10.1371/journal.pone.0263979.g007

Fig 8. The Markov chain corresponds to an ergodic RSP game for N = 10. The total number of states is 55 and the

arrows determine the allowed transition between states. All arrows are two-way which means when the Markov chain

is in a state there is a non-zero probability to escape from it.

https://doi.org/10.1371/journal.pone.0263979.g008

PLOS ONE Multi-strategy evolutionary games: A Markov chain approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0263979 February 17, 2022 11 / 17

https://doi.org/10.1371/journal.pone.0263979.g007
https://doi.org/10.1371/journal.pone.0263979.g008
https://doi.org/10.1371/journal.pone.0263979


Conclusion

This paper introduced the Markov chain method as an accurate analytical method for analyz-

ing evolutionary game dynamics. Before this, the Makov chain method was used for studying

two strategies evolutionary game or Moran process, but using the theorem explained in sec-

tion, the Markov chain method can be used for any evolutionary game with any number of

strategies. This method is flexible with changing the update rule of the evolutionary game. In

the case of update rules which determine some fixation strategies, the fixation probability of

each strategy and fixation time were calculable by the typical Markov chain method. By the

theorem of section one can obtain conditional fixation time for each strategy. As an example,

RSP games are evaluated with two update rules. In the first update rule, each of the three strate-

gies can be fixed. Using the fundamental method, fixation probability and conditional fixation

time of one of the strategies obtained were consistent with simulation results. In the second

update rule, mutation is possible in the evolutionary game, and there is no fixed strategy. Get-

ting the left null vector of matrix P − I leads to the limited probability distribution in agree-

ment with simulation results. This method could also be applied to evolutionary games with

more than three strategies.

There is wide possibility of application of Markov chain method not only RPS game. In

refrences [50, 51], we used Markov chain method for evaluating the Moran process. In many

situations the issue of social dilemma represented by either Prisoner’s Dilemma, Chicken, or

Stag Hunt games [71, 72], therefore, applying this method on archetype 2 × 2 symmetric

games will lead to significant results.

Fig 9. Stationary probability distribution of RSP game with population 50. The update rule is according to Eq 10.

The payoff matrix in (a) and (b) is ai = 1, bi = .5 in (c) and (d) ai = 1, bi = 1 and in (e) and (f) ai = 1, bi = 2. To evaluate

non-neutral selection in (g) and (h) the payoff matrix set as ai = 1, b1 = .5, b2 = 2/3, b3 = 3.

https://doi.org/10.1371/journal.pone.0263979.g009
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Codes related to this article is hosted on Github at https://github.com/mehdiphy/rock-

scissors-paper-evolutionary-game.

Appendix

In this appendix, we will prove the theorem of section

The theorem is about calculating conditional absorption time in absorbing the Markov

chain. It has already been proven [53] that in absorbing the Markov chain the fundamental

matrix N = (I − Q)−1 is exists and can be written in an infinite series

N ¼ I þ Qþ Q2 þ Q3 þ ð11Þ

Let si and sj be two transient states. We assume that the chain starts in state si. Let X(k) be a

random variable which equals 1 if the chain is in state j after k steps and equals 0 otherwise. Let

A denote the outcome that corresponds to the absorbing of the chain to the absorbing state sa.
We need to calculate PðXðkÞ ¼ 1jAÞ to obtain conditional absorbing time, τia. To this end, we

use the following relation for conditional probability

PðXðkÞ ¼ 1jAÞ ¼
PðXðkÞ ¼ 1 \AÞ

PðAÞ
ð12Þ

Clearly PðAÞ ¼ ri and PðXðkÞ ¼ 1Þ ¼ qðkÞij .

Now, using

PðXðkÞ ¼ 1 \AÞ ¼ PðAjXðkÞ ¼ 1ÞPðXðkÞ ¼ 1Þ ¼ rjq
ðkÞ
ij ð13Þ

we arrive at

PðXðkÞ ¼ 1jAÞ ¼
qðkÞij rj
ri

≕q0ðkÞij ð14Þ

The expected number of times the chain is in state sj in the firstm steps given that it absorb

in state sa and starts in state si is

EðXð0Þ þ Xð1Þ þ . . . :þ XðmÞÞ ¼
qð0Þij rj
ri
þ
qð1Þij rj
ri
þ . . .

qðmÞij rj
ri

ð15Þ

whenm goes to infinity we have

EðXð0Þ þ Xð1Þ þ . . . :Þ ¼
qð0Þij rj
ri
þ
qð1Þij rj
ri
þ . . . ¼ n0ðkÞij ð16Þ

Using these conditional probabilities we can calculate the conditional absorbing time, τia, as

tia ¼
P

jn
0
ij where n0ij ¼

P1

k¼0
q0ðkÞij .

This way, one can obtain the average conditional absorption time for the processes which

are eventually absorbed to each arbitrary absorbing state.
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18. Broom M, Rychtář J. An analysis of the fixation probability of a mutant on special classes of non-directed

graphs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2008

Oct 8; 464(2098):2609–27. https://doi.org/10.1098/rspa.2008.0058

19. Altrock PM, Gokhale CS, Traulsen A. Stochastic slowdown in evolutionary processes. Physical Review

E. 2010 Jul 28; 82(1):011925. https://doi.org/10.1103/PhysRevE.82.011925 PMID: 20866666

20. Hilbe C. Local replicator dynamics: a simple link between deterministic and stochastic models of evolu-

tionary game theory. Bulletin of mathematical biology. 2011 Sep; 73(9):2068–87. https://doi.org/10.

1007/s11538-010-9608-2 PMID: 21181502

21. Park JI, Kim BJ, Park HJ. Stochastic resonance of abundance fluctuations and mean time to extinction

in an ecological community. Physical Review E. 2021 Aug 26; 104(2):024133. https://doi.org/10.1103/

PhysRevE.104.024133 PMID: 34525626

22. Nowak MA, May RM. Evolutionary games and spatial chaos. Nature. 1992 Oct; 359(6398):826–9.

https://doi.org/10.1038/359826a0
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