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Abstract
The range of potential applications of liquid biopsies for non-small cell lung cancer management is expanded by the use of cir-
culating tumor deoxyribonucleic acid and circulating tumor cells. Principal studies have demonstrated the predictive accuracy of
droplet digital polymerase chain reaction detection, next-generation sequencing, and circulating tumor cells detection in patients
with non-small cell lung cancer. The translational potential of these liquid biopsy technologies promotes the improvement of
sensitivity and specificity in genomic and molecular methods. Here, we highlight the realities and challenges associated with the
use of liquid biopsies for the detection of non-small cell lung cancer in patients. However, liquid biopsy technologies including
circulating tumor cells detection, droplet digital polymerase chain reaction detection, and next-generation sequencing detection
for precision therapy in non-small cell lung cancer will show substantive clinical applications in the future.
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Introduction

Liquid biopsy (including droplet digital polymerase chain reac-

tion [ddPCR] detection, next-generation sequencing [NGS]

detection, and circulating tumor cells [CTCs] detection) has

been developed as a novel diagnosis method to monitor tumor

development in a noninvasive manner.1-3 If these technologies

can provide enough sensitivity and specificity, liquid biopsy

can be used as a platform for detecting tumor gene subtypes,4

monitoring drug resistance,5 and predicting cancer at an early

stage.6 Therefore, liquid biopsy will essentially promote the

development of cancer precision medicine. At present, cell-

free DNA (cfDNA) detection and CTC detection are the 2 main

research fields in liquid biopsy. Cell-free DNA is a chromatin

DNA fragment, which is primarily derived from the apoptosis

and necrosis of somatic cells or tumor cells. It mainly exists in

plasma, circulating in the bloodstream, but its concentration is

very low.7 Circulating tumor cells, the tumor cells existing in

the bloodstream, originate from tumor tissues in situ. They play

an important role in tumor metastasis since they mix with blood

cells and have the ability to adhere and proliferate in any organ.

In addition, cfDNA and CTCs also exist in other body fluids,

such as pleural fluid,8,9 urine,10,11 saliva,12,13 cerebrospinal

fluid,14 and so on.

Non-small cell lung cancer is the one of the most malignant

cancers and is the leading cause of morbidity and mortality in

the world.15 Due to the limitations of diagnosis technologies, it

is difficult for patients with NSCLC to make a definite diag-

nosis of the gene subtype in a noninvasive manner.16 Presently,

molecular–pathological diagnosis of the tumor sample in situ is

known as the most effective way to diagnose NSCLC gene

subtypes. Surgical resection, bronchoscopy, and percutaneous

1 Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai

Jiaotong University, Shanghai, China

Corresponding Author:

Baohui Han, MD, PhD, Department of Pulmonary Medicine, Shanghai Chest

Hospital, Shanghai Jiaotong University, 241 Huaihai West Rd, Shanghai, China.

Emails: xkyyhan@gmail.com; 18930858216@163.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License
(http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Technology in Cancer Research &
Treatment
Volume 17: 1-7
ª The Author(s) 2018
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1533033818801809
journals.sagepub.com/home/tct

http://orcid.org/0000-0002-3950-3030
http://orcid.org/0000-0002-3950-3030
mailto:xkyyhan@gmail.com; 18930858216@163.com
http://www.creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1533033818801809
http://journals.sagepub.com/home/tct


needle lung biopsy are the 3 direct methods of taking out tumor

samples in situ.17 However, patients suffer pain when the tumor

tissue is taken out of the lung via the abovementioned methods.

With the development of liquid biopsies, scientists are dedi-

cated to use these technologies to determine the gene subtype

of patients with lung cancer.18-21 Droplet digital PCR is one of

the most promising diagnosis technologies to determine the

gene subtype of patients with lung cancer.22-24 Circulating

tumor cell capture technology also has promise in promoting

clinical translation, due to the constant breakthrough in the

detection of NSCLC.25-27 Next-generation sequencing for the

detection of cfDNA and CTCs has also made great break-

throughs.16,21,28-30 All of these technologies will possibly be

translated to clinical application in the next few years.

Although liquid biopsy technologies have made lots of

advancements, the sensitivity and specificity still need to be

further improved, and the operating steps will also need to be

further simplified. This paper seeks to summarize the research

findings on NSCLC detection by liquid biopsy, analyze the

advantages and disadvantages of the present technologies, and

propose improvements for the program, in hopes of lending a

hand to the clinical translation of liquid biopsies in NSCLC

precision therapy.

Tissue Biopsies Used for NSCLC Gene
Subtype Diagnosis

With the continuous development in molecular pathology,

NSCLC is known as a driver gene-induced tissue malignant

transformation31,32 (Figure 1). To date, NSCLC is divided into

multiple driver gene subtypes, including TP53, ROS1, KRAS,

EGFR, LKB1, ALK, MET, FGFR, PTEN, PIK3CA, CCGA,

RB1.33 Molecular pathological diagnosis plays an important

role in distinguishing the abovementioned gene subtypes. To

satisfy the reliability of molecular pathological diagnoses,

tumor samples must be taken out from the primary location

of the cancer. Various methods, including surgical resection,

bronchoscopy, percutaneous needle, and so on, are used for

tissue collection.17,33 Meanwhile, another problem comes to

light: Due to the above mentioned methods being classified

as invasive technologies, patients must suffer great harm when

the tumor tissue is taken out in situ. Clinically, the majority of

patients with NSCLC refuse the second or third tissue biopsy

because of the unbearable pain. In advanced stages, the major-

ity of patients with NSCLC choose imageological examination

to monitor cancer development. As a consequence, this pre-

cludes the real-time monitoring of gene mutation subtypes dur-

ing the diagnosis of either recurrence or drug resistance.

Liquid Biopsy for Lung Cancer Gene Subtype
Detection

Studies have indicated that circulating tumor DNA (ctDNA) is

presented in the bloodstream earlier than CTCs.34 The liquid

biopsy technology, ddPCR, is a very useful method for detect-

ing specific gene mutations22 (Figure 2 and 3). Furthermore, it

can also be used for the detection of drug resistance-related

gene mutations.35 Del Re et al performed ddPCR to detect

cfDNA from epidermal growth factor receptor-tyrosine kinase

receptor inhibitor-resistant patients and found that different

patients with drug resistance have different gene mutations,

such as T790M, KRAS, and so on. Droplet digital PCR char-

acterizes a high sensitivity and specificity for detecting

mutated genes.36 Usually, it is useful for the detection of gene

subtypes and drug resistance-related mutation genes in patients

with advanced NSCLC.22,35 However, one obvious disadvan-

tage is that lots of infrequently mutated genes are missed and

that it is hard to make a standard judgment in earlier stages of

patients with NSCLC.

As another liquid biopsy technology, NGS has advantages in

multiple gene mutation detection, tumor heterogeneity detection,

and drug resistance-related gene mutation detection16,21 (Figure 2).

Figure 1. Gene subtype detection in lung cancer tissue biopsy. Cancer tissue in situ is taken out via invasive technologies including surgical

resection, bronchoscopy, and percutaneous needle. Molecular pathological diagnosis technologies are performed to test alterations in the lung

cancer driver gene including gene mutation, copy number variations, and fusion genes.
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Whole genomic sequencing provides a comprehensive database

for cfDNA and ctDNA. However, the present sensitivity and spe-

cificity of NGS do not meet clinical diagnosis criteria. Scientists

have improved the accuracy rate to nearly 100% in stage II, stage

III, and stage IV in patients with lung cancer. The accuracy rate

dropped to nearly 50% in patients with stage I lung cancer,16,21

suggesting that the sensitivity and specificity of this method need to

be further improved for early detection.

Circulating tumor cell capture technology characterizes

the prediction of tumor metastasis and drug resistance28,37

(Figure 2). Scientists have separated CTCs from the blood of

patients with NSCLC via various methods. Whole-exome

sequencing has been performed on CTCs, and the analysis

results contribute to distinguishing the attributes of NSCLC

in situ.27 It is also helpful for recommending a treatment regi-

men for those patients. Due to the focus of CTC analyses on

one or few cells, the objective state of the tumor in situ is not

easily reflected. Therefore, because CTCs detect gene mutation

subtype and tumor heterogeneity, many CTC captures taken

from the same patient should be performed for NGS detection

in the future.

Circulating Tumor Cell Capture, CTC
Verification, and Clinical Application

Circulating tumor cell capture is a method for capturing rare

CTCs from the blood of patients with cancer via a specific

technology. Presently, scientists have developed several CTC

capture technologies, such as the identification of protein

markers on the cell surface, the filtration via the tumor cell

volume (Figure 3), the detection of specific markers of fusion

genes and metabolic pathways, and so on.25-27 These

technologies may be developed as commercial instruments

for taking part in clinical diagnosis.

There are many difficulties in the identification of CTCs,

which are isolated from the blood using various capture tech-

nologies. To date, scientists have developed several technolo-

gies to get rid of fake CTCs. These technologies include the

identification of specific tumor-related protein markers, the

identification of specific mutated genes, NGS analysis, and

so on.27,38-40 However, different capture technologies have dif-

ferent defects. It will be exciting if the accuracy of these cap-

ture technologies can be improved significantly in the future.

Circulating tumor cell capture has its advantages in predict-

ing lung cancer progression. Studies have suggested that CTCs

can be detected in blood derived from patients with lung cancer

(diameter < 1.0 cm). For predicting the prognosis and survival

time of patients with lung cancer, the number of CTCs has an

important reference value41,42(Figure 3). For precision medi-

cine development, CTC capture also has some advantages. If

the CTCs can be cultured in vitro, different regimens of com-

bined chemotherapy will be tested. In addition, then, the best

chemotherapy regimen will be used for clinical treatment.43,44

In the areas of drug resistance detection and lung cancer

recurrence monitoring, CTC capture also plays an important

role.28 The disappearance of CTCs from the patient’s blood

after surgical resection can last from a few months to a few

years. It is suggested that lung cancer will recur in the next few

months if CTCs are detected. At least, it is an indicator that the

tumor has been growing in the body.41,42

Cell-Free DNA and Clinical Application

Cell-free DNA was discovered in the whole blood of healthy

adults in 1948.45 More than 2 decades later, cfDNA isolated

Figure 2. Gene subtype detection in circulating tumor DNA (ctDNA). Cell-free DNA (cfDNA) is isolated from blood collected from patients

with lung cancer. Circulating tumor DNA accounts for a small ratio of cfDNA fragments. Droplet digital PCR (ddPCR) and next-generation

sequencing (NGS) are performed to test alterations in the lung cancer driver gene including gene mutation, copy number variations, and fusion

genes.
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from patients with cancer was first reported.46 After that, scien-

tists further found that the content of cfDNA from patients with

cancer is higher than that from healthy participants.3 For

cfDNA isolation (Figure 3), plasma was collected from the

peripheral venous blood of patients with cancer. Cell-free DNA

was isolated from the plasma using a specific circulating

Figure 3. Circulating tumor cell detection and ctDNA detection used for lung cancer diagnosis. Circulating tumor cell capture is performed to

isolate cells with large sizes. The number of CTCs is used as a reference for predicting the prognosis and survival time of patients with lung

cancer. Circulating tumor DNA (ctDNA) is isolated from the blood of patients with lung cancer. Digital PCR (ddPCR) detection, a fluorescent

probe-based PCR assay, is partitioned into highly uniform 1-nL reverse micelles (water-in-oil). After PCR amplification, the fluorescence of

each droplet is individually measured and defined as positive (presence of PCR product) or negative (absence of PCR product). For NGS

detection, a pair of index-based adaptors are ligated at the ends of the cfDNA fragment. During high-throughput sequencing, adaptor-ligated

DNA fragments undergo amplification, clustering, and sequencing. Data are used for analysis of ctDNA point mutations, copy number

variations, and chromosomal rearrangements. NGS indicates next-generation sequencing; PCR, polymerase chain reaction.
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nucleic acid isolation kit. Studies have demonstrated that the

ctDNA from tumor cells is shorter than the cfDNA from

somatic cells.47 The difference in fragment length between

cfDNA and ctDNA is approximately 20 bp. In addition, the

longer ctDNA fragments (above 1000 bp) are contained in

cfDNA.48 Based on the rare of ctDNA content, we should do

our best to capture the overall ctDNA and analyze the infor-

mation carried by them.

Cell-free DNA was first discovered in 1977 in the whole

blood of patients with lung cancer.49 Scientists presumed that

the content of cfDNA may be related to the progression of lung

cancer.50 To date, studies have demonstrated that ctDNA

(DNA fragments from the degradation of tumor cell chromatin)

is part of cfDNA.6,51 The content of ctDNA is thought to be

related to the stage of the tumor. Studies suggested that the total

content of ctDNA in cfDNA is up to 5% to 10% in patients with

advanced NSCLC, while the content of total ctDNA in cfDNA

is less than 1% at early stages.6,21

The Challenges of Applying cfDNA Detection
to NSCLC Diagnosis

Several groups have started to detect cfDNA using different

technologies.16,19,35,52 Zhu et al have used ddPCR for cfDNA

detection, and their results suggested that judging via the

fluorescence intensity from amplified target mutated genes

can enhance the sensitivity and specificity greatly.22 Next-

generation sequencing has been used for cfDNA detection and

has shown promise. Newman et al found that the success rate

of mutation detection is up to 100% in patients with stage II

and above lung cancer, while down to 50% in patients with

stage I lung cancer.21 Improvement in the technology is

needed to further carry forward. Two years later, they

enhanced both the sensitivity and specificity to over 90% via

the use of integrated digital error suppression.16 However,

there is still not enough data to demonstrate similar results

when cfDNA detection was used in patients with NSCLC at

an early stage. Recently, Christopher Abbosh et al used phy-

logenetic ctDNA analysis to depict early stages of NSCLC

evolution. Their results showed that ctDNA profiling tracks

the subclonal nature of NSCLC relapse and metastasis.30

Next-Generation Sequencing Detection
for Lung Cancer Diagnosis

Next-generation sequencing plays an important role in lung

cancer diagnosis and treatment (Figure 3). Hagemann et al

designed an experiment to verify the results from NGS anal-

ysis based on in situ tissue.53 Results suggested that NGS

analysis provides reliable reference information for NSCLC

diagnosis. In the field of lung cancer study, NGS has the

advantage of detecting unknown mutated sites, while ddPCR

focuses on individual known mutated sites. For example, a

study focused on gene mutations of patients with lung cancer

and patients with colonic adenocarcinoma revealed 3 new

mutation sites on KRAS and EGFR.54 Furthermore, targeting

NGS has been used to characterize similar mutated sites in

patients with lung cancer.55 Studies have shown that NGS

detection of solid tumor samples can provide definite infor-

mation on the mutated sites of squamous carcinoma or non-

squamous carcinoma, such as TP53, PIK3CA, CCND1,

CDKN2A, SOX2, NOTCH1, and FBXW7.2 In a comparative

study of whole-genome sequencing performed by The Cancer

Genome Atlas, 178 NSCLC squamous carcinoma samples

were compared with 230 NSCLC adenocarcinoma samples

simultaneously.56 The study demonstrated that copies of the

genes including SOX2, PDGFRA, KIT, EGFR, FGFR1,

WHSC1L1, CCND1, and CDKN2A are increased significantly

in NSCLC squamous carcinoma samples.57

Next-generation sequencing may be used as a conventional

technology for the diagnosis of NSCLC gene mutation sub-

types in the future. First, scientists developed a new targeting

NGS system for mononucleotide mutation detection in lung

cancer samples. In total, 168 genes (including the common

mutations KRAS, TP53, EGFR, PIK3CA, BRAF, NRAS, JAK3,

CTNNB1, and CKDN2A) were detected in the study.58 Sec-

ond, whole-exome sequencing and transcriptome sequencing

on small-cell lung cancer samples indicated that the highly

mutated status of TP53, RB1, and PTEN simultaneously

existed in tumor tissues in situ and metastatic tumor tissues.

Similarly, some fusion genes were detected based on the NGS

technology, such as ALK, ROS1, and RET. In brief, the data

from NGS have been proved effectively in the noninvasive

diagnosis of NSCLC.

Conclusions

Cell-free DNA detection has been developed as an important

platform for NSCLC prediction and diagnosis. In recent years,

scientists have developed a set of liquid biopsy technologies

and experienced the evolution from low sensitivity to high

sensitivity and from low specificity to high specificity.

Although the abovementioned technologies have made an out-

standing achievement in liquid biopsy, key limitations of the

abovementioned technologies still need to be resolved. Next-

generation sequencing analysis for CTCs needs to solve the

problems of contamination and artificial mutation. How to

resolve the single-cell genome or transcriptome amplification

as well as the representative faithfulness of the original state of

the CTCs still need to be further discussed. Although detection

of ctDNA using ddPCR has made certain achievements, the

detection of single or few mutations limits this application in

detecting and monitoring tumors early and in tumor heteroge-

neity and drug resistance. Next-generation sequencing detec-

tion has the advantages of detecting multigene mutations,

monitoring drug resistance-related gene mutations, and testing

tumor heterogeneity, but the sensitivity and specificity has still

not met the requirements of clinical application. In addition,

simplifying and standardizing the procedures of the NGS anal-

ysis need to be further developed. Collectively, the achieve-

ments of the liquid biopsy provide us with a platform for

precision therapy in NSCLC in the future.
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