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Abstract
Ageing	is	characterized	by	degeneration	and	loss	of	function	across	multiple	physi-
ological	systems.	To	study	the	mechanisms	and	consequences	of	ageing,	several	met-
rics have been proposed in a hierarchical model, including biological, phenotypic and 
functional	 ageing.	 In	 particular,	 phenotypic	 ageing	 and	 interconnected	 changes	 in	
multiple physiological systems occur in all ageing individuals over time. Recently, phe-
notypic age, a new ageing measure, was proposed to capture morbidity and mortality 
risk	across	diverse	subpopulations	in	US	cohort	studies.	Although	phenotypic	age	has	
been	widely	used,	it	may	overlook	the	complex	relationships	among	phenotypic	bio-
markers.	Considering	the	correlation	structure	of	these	phenotypic	biomarkers,	we	
proposed	a	composite	phenotype	analysis	 (CPA)	strategy	to	analyse	71	biomarkers	
from	2074	 individuals	 in	 the	Rugao	Longitudinal	Ageing	Study.	CPA	grouped	these	
biomarkers	into	18	composite	phenotypes	according	to	their	internal	correlation,	and	
these	composite	phenotypes	were	mostly	consistent	with	prior	findings.	In	addition,	
compared	with	prior	 findings,	 this	 strategy	exhibited	 some	different	yet	 important	
implications.	For	example,	the	indicators	of	kidney	and	cardiovascular	functions	were	
tightly	 connected,	 implying	 internal	 interactions.	 The	 composite	 phenotypes	were	
further verified through associations with functional metrics of ageing, including 
disability, depression, cognitive function and frailty. Compared to age alone, these 
composite phenotypes had better predictive performances for functional metrics of 
ageing.	In	summary,	CPA	could	reveal	the	hidden	relationships	of	physiological	systems	
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1  |  INTRODUC TION

Ageing	is	characterized	by	degeneration	and	loss	of	function	across	
multiple physiological systems, and it has recently been investigated 
as	 a	 complex,	 multifactorial	 process	 (Maguire	 &	 Slater,	 2013).	 To	
study	the	mechanisms	and	consequences	of	ageing,	several	metrics	
have	 been	 proposed	 in	 hierarchical	models	 (Ferrucci	 et	 al.,	 2018),	
namely	 biological,	 phenotypic	 and	 functional	 ageing.	 In	 particular,	
phenotypic ageing and interconnected changes in multiple physi-
ological systems occur in all ageing individuals over time and may 
contribute	 to	 clinical	 diseases	 (Ferrucci	 et	 al.,	 2018).	 For	 example,	
ageing is accompanied by a progressive decline in immune function, 
and	toll-	like	receptor	5	(TLR5)	may	provide	a	critical	mechanism	to	
enhance immune responsiveness in older individuals (Qian et al., 
2012).	Recently,	researchers	have	(Liu	et	al.,	2018)	proposed	a	new	
ageing measure, phenotypic age, to capture morbidity and mortality 
risk	across	diverse	subpopulations	in	a	US	cohort	study	(Levine	et	al.,	
2018).	Although	phenotypic	age	can	facilitate	the	 identification	of	
individuals	at	risk	for	a	number	of	health	conditions	and	deaths,	and	
although it may serve as a useful tool for evaluating intervention ef-
fectiveness	 (Belsky	 et	 al.,	 2015;	 Liu	 et	 al.,	 2018),	 it	 still	 has	 some	
drawbacks.	Phenotypic	age	was	calculated	based	on	a	linear	combi-
nation of chronological age and 9 multisystem clinical chemistry bio-
markers,	which	may	overlook	the	relationships	among	physiological	
systems	(Zierer	et	al.,	2015).	Meanwhile,	multiple	physiological	sys-
tems	play	important	but	different	roles	in	the	ageing	process	(López-	
Otín	et	al.,	2013);	thus,	it	was	essential	to	explore	the	relationships	
between physiological systems.

To	 explore	 the	 relationships	 of	 physiological	 systems,	 system-
atically dissecting the correlation structure of these phenotypic 
biomarkers	is	essential.	Analysis	of	the	correlation	structure	of	phe-
notypic	 biomarkers	 underlying	 human	 ageing	may	 be	 a	 promising	
strategy	(Freund,	2019).	Generally,	there	are	several	methods	of	dis-
secting	correlation	structures	from	multiple	phenotypic	biomarkers,	
such	as	network-	based	methods	(Newman	et	al.,	2012;	Zierer	et	al.,	
2015)	 and	 composite	 phenotype-	based	 methods	 (Li	 et	 al.,	 2021).	
In	 network-	based	 methods,	 phenotypic	 biomarkers	 are	 mostly	
grouped	 into	 several	physiological	modules	based	on	prior	 knowl-
edge	(Freund,	2019;	Newman	et	al.,	2012).	However,	 in	composite	
phenotype-	based	 methods,	 phenotypic	 biomarkers	 were	 grouped	
into	 several	 composite	 phenotypes	 using	 data-	driven	 approaches.	
One	of	 the	 important	 strengths	 of	 composite	 phenotypes	 is	 their	
ability to reduce the data dimensions and capture efficient infor-
mation	from	multiple	single	phenotypes	(Li	et	al.,	2021).	In	addition,	

the correlation between composite phenotypes can reflect the rela-
tionships	of	physiological	systems.	Therefore,	composite	phenotype	
analysis could be an efficient strategy to understand the relation-
ships of physiological systems underlying human ageing.

Here,	we	proposed	a	new	framework	of	composite	phenotype	
analysis	 (CPA)	 and	 applied	 it	 to	 71	 phenotypic	 biomarkers	 in	 the	
Rugao	Longitudinal	Ageing	Study	(RLAS)	to	reveal	the	relationships	
of	physiological	systems	underlying	human	ageing.	First,	we	grouped	
phenotypic	biomarkers	into	several	composite	phenotypes	and	ex-
amined the robustness of the clustering results. Second, we com-
pared the correlation structure of composite phenotypes with prior 
findings to validate the reliability and investigate the potential mech-
anisms	of	 correlations	 in	 these	 composite	phenotypes.	 Finally,	we	
linked	composite	phenotypes	to	functional	metrics	of	human	ageing,	
including disability, depression, cognitive function and frailty, and 
further	validated	the	application	of	CPA	in	both	cross-	sectional	and	
longitudinal datasets.

2  |  RESULTS

2.1  |  Exploring the correlation structure of 
phenotypic biomarkers underlying human ageing

In	 this	 study,	 we	 collected	 71	 phenotypic	 biomarkers	 from	 2074	
individuals	 (44.94%	males)	 from	the	 fourth	wave	of	 the	RLAS	 (Liu	
et	al.,	2016).	The	basic	descriptive	statistics	are	summarized	in	Table	
S1.	Due	to	a	lack	of	information	on	disability,	cognitive	impairment	
and	frailty,	251	individuals	were	excluded	from	further	analysis.	The	
association of composite phenotypes with functional ageing met-
rics	was	analysed	 in	1823	 individuals.	Among	them,	799	 (43.83%)	
were	males,	and	the	mean	age	was	78.68	±	4.79	years.	According	to	
the	criteria,	169	(9.27%),	909	(49.86%)	and	322	(17.66%)	individuals	
were defined as having disability, cognitive impairment and frailty, 
respectively.	The	health	status	of	the	 individuals	was	described	 in	
Table	S2.

We	 used	 the	 maximum	 information	 coefficient	 (MIC)	 (Reshef	
et	al.,	2011)	 to	measure	both	 linear	and	nonlinear	correlations	be-
tween	phenotypic	biomarkers.	To	detect	and	filter	spurious	correla-
tions	 in	high-	dimensional	phenotypic	datasets,	we	applied	random	
matrix	theory	(Luo	et	al.,	2007)	to	identify	the	appropriate	threshold	
of	MIC.	We	 found	 that	 the	 eigenvalue	 spacing	 distribution	 of	 the	
MIC	correlation	matrix	transitioned	from	a	Winger–	Dyson	distribu-
tion	to	an	exponential	distribution	when	the	candidate	signal-	noise	

and	identify	the	links	between	physiological	systems	and	functional	ageing	metrics,	
thereby providing novel insights into potential mechanisms underlying human ageing.

K E Y W O R D S
composite phenotype analysis, functional ageing, human ageing, phenotypic ageing, 
physiological systems
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separating	threshold	was	set	as	0.16	(Figure	S1).	The	elements	in	the	
MIC	correlation	matrix	which	were	less	than	the	threshold	were	set	
as	zero	(Figure	S2).	The	filtered	MIC	correlation	matrix	was	then	used	
as	the	adjacency	matrix	of	the	phenotypic	network.	Next,	a	sparse	
phenotypic	network	was	built	with	each	phenotypic	biomarker	as	a	
vertex	and	filtered	MIC	as	a	weighted	edge	(Figure	1a).	Furthermore,	
to	detect	communities	of	these	biomarkers,	spectral	clustering	was	
applied	on	the	sparse	phenotypic	network.

To	examine	the	robustness	of	the	clustering	results,	the	samples	
were initially resampled 100 times, and the present clustering re-
sults	were	used	as	 a	 reference.	Then,	normalized	mutual	 informa-
tion	 (NMI)	was	 applied	 to	 quantify	 the	 concordance	 between	 the	
resampled	results	and	the	reference.	The	mean	NMI	was	over	0.985,	
indicating that the clustering results were robust for resampled sam-
ples	 (Figure	S3A).	To	further	evaluate	 the	 impact	of	 thresholds	on	
clustering	results,	the	threshold	was	set	from	0.1	to	0.5.	When	the	
threshold	was	set	to	approximately	0.16,	the	clustering	results	were	
stable	compared	with	the	reference	(Figure	S3B).	Furthermore,	we	
also	examined	the	 impact	of	 the	threshold	on	the	topology	of	 the	
phenotypic	 network	 (Figure	 S3C).	 The	 topological	 parameters	 in-
cluded connectance, average path length, clustering coefficient and 
modularity.	The	distribution	of	connectance	showed	that	the	pheno-
typic	network	became	sparse	with	the	strict	threshold.	Meanwhile,	
the average path length, clustering coefficient and modularity 
reached	the	optimized	peak	value.	These	results	indicated	that	the	
phenotypic	structure	was	highly	modularized	with	a	threshold	set	to	
approximately	0.16.

In	 summary,	we	 used	MIC	 to	 quantify	 the	 correlations	 among	
phenotypic	 biomarkers	 and	 filtered	 the	 spurious	 correlation	 with	
the	 threshold	 suggested	by	 random	matrix	 theory.	The	 structures	

of	phenotypic	biomarkers	were	identified	through	spectral	cluster-
ing.	 In	addition,	the	clustering	results	were	robust	to	samples,	and	
the	threshold	setting	was	reasonable.	The	relationships	within	clus-
ters	were	much	stronger	 than	 those	between	clusters	 (Figure	S2).	
The	correlation	heat	map	 (Figure	S2)	 showed	 the	 spectral	 cluster-
ing	results	of	71	phenotypic	biomarkers,	which	were	clustered	into	
18	groups.

2.2  |  Defining composite phenotypes of 
phenotypic biomarkers underlying human ageing

Based	on	 the	 above	 clustering	 results	 of	 71	biomarkers,	we	ob-
tained	18	clusters	and	defined	each	cluster	as	a	composite	pheno-
type	(CP).	Overall,	18	composite	phenotypes	(CPs)	were	extracted,	
and we defined the composite phenotypes by clinical implications 
based	on	 their	contained	single	phenotypes	 (Table	1,	Figure	1a).	
The	composite	phenotypes	include	body	shape	(CP1),	electrocar-
diography	 (CP2),	 blood	 pressure	 (CP3),	 blood	 lipids	 and	 glucose	
(CP4),	 blood	 gas	 and	 electrolytes	 (CP5),	 liver	 function	 and	 elec-
trolytes	 (CP6),	 kidney	 and	 cardiovascular	 functions	 (CP7),	 elec-
trolytes	(CP8,	CP10,	CP11),	liver	function	(CP9),	hormones	(CP12,	
CP13),	 white	 blood	 cells	 (CP14),	 platelets	 (CP15),	 reticulocytes	
(CP16),	red	blood	cell	counts	(CP17)	and	red	blood	cell	distribution	
(CP18).	Most	of	the	composite	phenotypes	were	highly	consistent	
with	prior	knowledge.	For	example,	CP1	included	several	physical	
phenotypes	of	body	shape,	such	as	BMI	and	WHR.	CP18	included	
platelet-	related	 phenotypes	 (MPV,	 PCT,	 PDW,	 LCR,	 PLT).	 In	 ad-
dition,	 compared	 with	 prior	 knowledge,	 composite	 phenotypes	
could	provide	additional	clues	to	explore	the	intrinsic	relationships	

F I G U R E  1 Sparse	phenotypic	network	of	71	biomarkers	after	filtering.	The	threshold	was	set	as	0.16	(a)	and	0.14	(b).	The	18	clusters	are	
marked	by	different	colours,	while	the	isolated	phenotypes	are	marked	in	grey
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of	 these	 phenotypes.	 CP4	 included	 phenotypes	 of	 blood	 lipids	
(TG,	 HDL,	 CHOL,	 LDL)	 and	 phenotypes	 of	 blood	 glucose	 (GLU,	
HBA1c,	HbA1).	Glucose	and	 lipid	metabolism	are	 linked	 through	
complex	interactions,	clinically	manifesting	as	diabetic	dyslipidae-
mia	(Parhofer,	2015).	CP5	included	electrolytes	(Na,	Cl)	and	blood	
gas	 (CO2CP).	The	transport	of	carbon	dioxide	 is	dependent	on	a	
chloride	 shift,	 which	 refers	 to	 the	 exchange	 of	 bicarbonate	 and	
chloride across the membrane of red blood cells (Crandall et al., 
1981).	 The	 CP7	 included	 indicators	 of	 kidney	 function	 (CREA,	
eGFR,	UA,	β2.	MG,	Cys.	C)	and	cardiovascular	function	(HCY,	FOL,	
BNP).	 Several	 epidemiological	 studies	 have	 confirmed	 the	 rela-
tionships	between	chronic	kidney	disease	and	cardiovascular	risk	
factors	(Amann	et	al.,	2006).	CP14	grouped	CRP	into	white	blood	
cell phenotypes, both of which are indicators of inflammation. 
Therefore,	these	results	indicated	that	CPA	could	reveal	novel	and	
meaningful	classifications	of	these	phenotypic	biomarkers	under-
lying human ageing.

The	correlations	of	individual	phenotypic	biomarkers	within	the	
same composite phenotypes were primarily identified by the sparse 
phenotypic	network	(Figure	1a).	In	addition,	the	relationships	among	
single	 phenotypic	 biomarkers	 across	 different	 composite	 pheno-
types	were	 investigated	 in	the	circular	phenotypic	network	with	a	
relatively	low	threshold	(Figure	1b).	The	correlations	between	indi-
vidual	phenotypes	with	MICs	greater	than	0.1	are	supplemented	in	
Table	S3.	In	particular,	phenotypes	of	body	shape	(CP1),	blood	lip-
ids	(CP4)	and	white	blood	cells	(CP14)	were	significantly	connected.	
Additionally,	the	phenotypes	of	kidney	and	cardiovascular	functions	

(CP7),	white	blood	cells	(CP14)	and	red	blood	cell	counts	(CP17)	were	
significantly connected.

2.3  |  Linking composite phenotypes and functional 
ageing metrics

To	 investigate	the	ageing	signatures	of	composite	phenotypes,	we	
linked	 them	 with	 functional	 ageing	 metrics	 (Figure	 2),	 including	
disability	 (ADL)	 (Katz	et	al.,	1970),	depression	(GDS)	 (Dennis	et	al.,	
2012),	cognitive	function	(HDS)	(Imai	&	Hasegawa,	1994)	and	frailty	
(FP)	(Fried	et	al.,	2001).	First,	we	used	multiple	linear	regression	to	
investigate the associations between composite phenotypes and 
functional	ageing	metrics	(Model	1).	Then,	these	associations	were	
compared with those between age and the functional ageing met-
rics	 (Model	2).	Finally,	 the	combinations	of	 composite	phenotypes	
and	age	were	linked	to	functional	ageing	metrics	to	explore	the	ad-
ditional	ageing	signatures	of	composite	phenotypes	except	for	age	
(Model	3).	These	associations	between	composite	phenotypes	and	
functional ageing metrics were adjusted for covariates including 
marital	status	and	educational	levels	(Model	4).	These	models	were	
conducted	in	males	and	females	separately	(Table	S4).	Similar	results	
were found in males and females.

For	 disability	 (ADL,	 Figure	 2a),	 we	 found	 that	 CP7	 were	 more	
informative	than	age	 in	predicting	disability.	CP1,	CP2,	CP11,	CP14,	
CP17	and	CP18	had	additional	effects	with	age	to	correlate	with	dis-
ability.	For	depression	(GDS,	Figure	2b),	we	found	that	CP4	and	CP17	

Composite 
phenotype Single Phenotype Clinical implications

CP1 BMI,	Waist,	Hip,	WHR Body	shape

CP2 BP,	QT,	HR,	P.wave,	QTc,	QRS.axis,
PR,	RV5,	SV1,	QRS

Electrocardiography

CP3 SBP,	DBP Blood	pressure

CP4 TG,	HDL.CHOL,	HBA1c,	GLU,
HbA1,	HDL,	LDL,	CHOL

Blood	lipids,	blood	glucose

CP5 CO2CP,	Cl,	Na Blood	gas/CO2CP,	electrolytes/	Cl,	Na

CP6 ALB,	Ca Liver/ALB,	electrolytes/Ca

CP7 HCY,	CREA,	eGFR,	UA,	β2.MG,
Cys.C,	FOL,	BNP

Kidney, cardiovascular

CP8 P Electrolytes/P

CP9 ALT Liver/ALT

CP10 Mg Electrolytes/Mg

CP11 K Electrolytes/K

CP12 Testo Hormone/Testo

CP13 FFT3 Hormone/FFT3

CP14 BA#,	BA%,	EO#,	EO%,	LY#,	MO#,
NE%,	WBC,	LY%,	NE#,	MO%,	CRP

White	blood	cell

CP15 MPV,	PCT,	PDW,	LCR,	PLT Platelet

CP16 HFR,	MFR,	LFR,	IRF Reticulocyte

CP17 RBC,	HCT,	HGB,	MCV,	MCHC,	MCH Red blood cell/Count

CP18 RDW Red blood cell/Distribution

TA B L E  1 Details	of	18	composite	
phenotypes
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were	more	informative	than	age.	CP6	and	CP18	had	additional	effects	
with	age	that	correlate	with	depression.	For	cognitive	function	(HDS,	
Figure	2c),	there	were	no	composite	phenotypes	that	outperformed	
age.	However,	CP1,	CP7,	CP17	and	CP18	had	additional	effects	with	
age	 to	 correlate	with	 cognitive	 function.	 For	 frailty	 (FP,	 Figure	 2d),	

CP7	was	more	informative	than	age.	In	addition,	CP1,	CP14,	CP15	and	
CP18	had	additional	effects	with	age	to	correlate	with	frailty.

In	 summary,	we	 found	 that	body	 shape	 (CP1),	 kidney	and	car-
diovascular	functions	(CP7),	white	blood	cells	(CP14)	and	red	blood	
cell	counts	(CP17)	and	distribution	(CP18)	were	primarily	associated	

F I G U R E  2 Histograms	of	the	correlation	between	composite	phenotypes,	age	and	functional	ageing	metrics	(a-	d).	The	correlation	
coefficients	between	age	and	functional	ageing	metrics	(a:	ADL,	b:	GDS,	c:	HDS,	d:	FP)	are	marked	by	red	dotted	lines	(Model	2).	Each	
composite	phenotype	has	two	same	coloured	histograms	(left:	Model	1,	right:	Model3).	The	asterisk	(*)	indicates	the	significance	of	
association	between	composite	phenotypes	and	functional	ageing	metrics.	The	chord	plots	of	the	correlation	between	composite	
phenotypes,	age	and	functional	ageing	metrics	(e,	f).	The	left	panel	shows	the	correlations	of	Model	1	(e),	and	the	right	panel	shows	the	
correlations	of	Model	3	(f)
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with	 functional	ageing	metrics	 (Figure	2e).	Cognitive	 function	had	
the best correlation with these composite phenotypes, followed 
by	frailty,	disability	and	depression.	With	the	addition	of	age,	there	
were few improvements in the correlation between the composite 
phenotype	 of	 body	 shape	 (CP1),	 kidney	 and	 cardiovascular	 func-
tions	(CP7)	and	functional	ageing	metrics.	In	contrast,	several	com-
posite	phenotypes	(CP14,	CP17,	CP18)	had	great	additional	effects	
with	age	 that	 correlate	with	 functional	 ageing	metrics	 (Figure	2f).	
After	adjusting	for	covariates	in	Model	4,	the	composite	phenotypes	
were still significantly correlated with functional ageing metrics 
(Table	S4).

2.4  |  Replicating the associations between 
composite phenotypes and functional ageing metrics

To	validate	 the	applications	of	CPA,	we	 first	 examined	 these	as-
sociations	 in	other	 cross-	sectional	 data	of	RLAS	 (i.e.	 second	and	
third	waves).	Most	of	the	significant	associations	observed	in	the	

fourth	wave	of	RLAS	data	were	consistent	with	those	in	the	valida-
tion	data	 (Figure	3a).	CP1	 (body	 shape),	CP7	 (kidney	and	cardio-
vascular	 functions)	 and	CP14	 (white	 blood	 cells)	 had	 remarkable	
correlations	 with	 functional	 ageing	 metrics.	 However,	 the	 asso-
ciations between depression and composite phenotypes were not 
replicated.	 The	 associations	 between	 counts	 and	 distribution	 of	
red	blood	 cells	 (CP17,	CP18)	 and	 functional	 ageing	metrics	were	
partially validated.

Furthermore,	we	predicted	3-	year	disability,	cognitive	function	
and	frailty	in	the	fourth	wave	of	data	(2019)	based	on	second-	wave	
data	(2016)	from	the	RLAS.	Receiver	operating	characteristic	(ROC)	
curves	 were	 used	 to	 quantify	 the	 performance	 of	 the	 prediction	
(Table	2,	Figure	3b).	The	area	under	the	curve	(AUC)	of	age	for	the	
three	functional	ageing	metrics	was	approximately	0.6.	For	all	com-
posite	phenotypes,	the	AUC	reached	0.656	for	disability,	0.777	for	
cognitive	decline	and	0.773	for	frailty.	The	addition	of	age	failed	to	
improve	the	performance	of	the	models.	These	findings	implied	that	
the ageing information underlying age overlapped in composite phe-
notypes.	For	composite	phenotypes,	CP1	(body	shape),	CP7	(kidney	

F I G U R E  3 Heat	map	of	the	correlation	between	composite	phenotypes	and	functional	ageing	metrics	in	the	validation	data	(a).	The	heat	
map	cell	represents	the	correlation	between	composite	phenotypes	and	functional	ageing	metrics	in	second	and	third	waves	of	RLAS.	The	
replicated	correlations	are	marked	with	check	mark	(√)	and	not	replicated	are	marked	with	number	sign	(#).	ROC	curves	(b)	of	predictions	for	
disability	(left),	cognitive	function	(middle)	and	frailty	(right)
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and	cardiovascular	functions)	and	CP17	(red	blood	cell	counts)	had	
remarkable	AUCs	for	functional	ageing	metrics.

2.5  |  Revealing relationships between kidney and 
cardiovascular functions in CP7

Considering	the	great	correlation	between	CP7	and	functional	age-
ing metrics, we investigated the advantages of composite pheno-
types	using	CP7.	Compared	with	single	phenotypes,	one	of	the	most	
important strengths of composite phenotypes was that they could 
capture the information of multiple single phenotypes, thus sug-
gesting	shared	mechanisms.	The	 individual	phenotypes	of	CP7	 in-
cluded	kidney	function	indicators	(CREA,	eGFR,	UA,	β2.MG,	Cys.C)	
and	cardiovascular	 indicators	 (BNP,	HCY,	FOL).	There	were	strong	
correlations among them, and they were grouped as one compos-
ite	 phenotype	 (Figure	 4a).	 With	 three	 functional	 ageing	 metrics	
(disability,	 cognitive	 function	 and	 frailty),	we	 first	 fitted	 individual	
phenotypes	of	CP7	to	the	metrics	with	multivariable	linear	regres-
sions	separately.	The	composite	phenotype	was	defined	as	a	set	of	
individual	 phenotypes,	 and	 CP7	 retained	 all	 information	 of	 these	
individual phenotypes, outperforming individual phenotypes in cor-
relating	with	functional	ageing	metrics.	These	findings	comprehen-
sively	 suggested	 a	 decline	 in	 kidney	 and	 cardiovascular	 functions	
with human ageing.

Furthermore,	we	explored	the	interactions	between	the	kidney	
and	cardiovascular	functions	using	these	biomarkers	in	CP7.	Notably,	
we	found	that	kidney	and	cardiovascular	functions	(CP7)	were	asso-
ciated with frailty and that the interactions between them on frailty 
were	also	significant	(Figure	4c,d).	Specifically,	we	conducted	prin-
cipal	component	analysis	on	 these	 indicators	 (Figure	4b).	The	 first	

principal	component	(PC1)	was	used	as	the	primary	feature	for	kid-
ney	 and	 cardiovascular	 functions.	 For	 five	 kidney	 function	 indica-
tors,	kidney	PC1	explained	67%	of	the	variance,	and	a	higher	value	
of	PC1	suggested	impaired	kidney	function.	For	the	three	cardiovas-
cular	function	indicators,	cardiovascular	PC1	explained	41%	of	the	
variance,	and	a	higher	value	of	PC1	suggested	impaired	cardiovas-
cular	function.	Then,	we	explored	the	interaction	of	kidney	PC1	and	
cardiovascular	PC1	on	frailty.	Kidney	PC1	was	positively	correlated	
with	 FP	 score,	 indicating	 a	 decline	 in	 kidney	 function	with	 frailty.	
Its	effects	on	frailty	 increased	with	higher	cardiovascular	PC1	lev-
els	 (Figure	4c).	 Similarly,	 cardiovascular	PC1	was	also	a	 risk	 factor	
for	 frailty,	 and	 its	 effects	 on	 frailty	 increased	 with	 higher	 kidney	
PC1	levels	(Figure	4d).	In	summary,	there	were	nonlinear	additional	
effects	of	kidney	and	cardiovascular	functions	on	frailty,	suggesting	
synergistic	effects	between	kidney	and	cardiovascular	functions	un-
derlying human ageing.

2.6  |  Evaluating the performance of composite 
phenotype analysis (CPA)

We	proposed	CPA	as	an	integrated	framework	to	systematically	dis-
sect	the	phenotype	correlations	in	the	RLAS.	The	workflow	is	sum-
marized	in	Figure	5	and	mainly	consists	of	four	steps:	measuring	the	
correlation	 between	 phenotypes	 (Step	 1),	 pruning	 the	 phenotypic	
network	(Step	2),	extracting	the	composite	phenotypes	(Step	3)	and	
linking	the	composite	phenotypes	to	functional	ageing	metrics	(Step	
4).	To	 investigate	the	performance	of	CPA,	other	three	correlation	
measurements, three filtering thresholds, five clustering algorithms 
and	 five	 dimensionality	 reduction	 methods	 were	 enrolled.	 The	
benchmarking	analysis	was	separated	into	four	parts	(Experimental	
procedures).

In	 summary,	 the	 advantages	 of	 CPA	 could	 be	 seen	 in	 several	
ways.	First,	both	linear	and	nonlinear	correlations	between	pheno-
types	were	considered.	Then,	spectral	clustering	grouped	the	phe-
notypes	 based	 on	 Laplacian	matrices	 of	 the	 phenotypic	 network.	
The	 sparsity	 of	 the	 network	 contributed	 to	 the	 performance	 of	
spectral clustering, while other clustering algorithms were subject 
to	the	noise	of	spurious	correlations	between	phenotypes.	Finally,	
the composite phenotypes retained all the information of individ-
ual phenotypes. Linear regression and machine learning algorithms 
were	 applied	 to	 explore	 the	 connection	 between	 phenotypic	 and	
functional	ageing.	In	CPA,	we	found	that	CP1,	CP7,	CP14,	CP17	and	
CP18	had	remarkable	correlations	and	predictive	abilities	with	func-
tional ageing metrics.

3  |  DISCUSSION

In	 this	 study,	we	applied	CPA	 to	71	biomarkers	underlying	human	
ageing	 to	 elucidate	 their	 correlation	 structure	 and	 obtained	 18	
composite	phenotypes	 in	 the	RLAS.	These	composite	phenotypes	
captured more ageing information than age in correlation with 

TA B L E  2 AUCs	of	composite	phenotypes	and	age	for	functional	
ageing metrics

Composite 
Phenotype ADL HDS FP

CPs 0.656 0.777 0.773

Age 0.581 0.608 0.600

CPs	+	Age 0.663 0.792 0.780

CP1 0.617 0.752 0.702

CP2 0.550 0.643 0.592

CP4 0.510 0.571 0.566

CP5 0.507 0.518 0.560

CP6 0.548 0.562 0.585

CP7 0.614 0.769 0.715

CP9 0.550 0.542 0.526

CP11 0.564 0.538 0.546

CP14 0.554 0.562 0.572

CP15 0.574 0.587 0.579

CP17 0.521 0.675 0.705

CP18 0.548 0.571 0.608
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F I G U R E  4 Combined	plots	of	CP7	(a).	The	bottom	left	heat	map	shows	the	correlation	between	single	phenotypes	of	CP7.	The	top	right	
plots	show	the	correlations	between	phenotypes	and	functional	ageing	metrics.	Histograms	of	correlations	(b)	between	PCs	and	single	
phenotypes.	Scatter	plots	of	frailty,	kidney	PC1	(c)	and	cardiovascular	PC1	(d).	The	linear	regressions	are	marked	with	different	coloured	
lines

F I G U R E  5 The	workflow	of	composite	phenotype	analysis
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functional ageing metrics, including disability, depression, cognitive 
function	and	frailty.	In	particular,	CP1	(body	shape),	CP7	(kidney	and	
cardiovascular	functions),	CP14	(white	blood	cells),	CP17	(red	blood	
cell	 counts)	 and	CP18	 (red	blood	 cell	 distribution)	 had	 remarkable	
correlations and predictive abilities with functional ageing metrics. 
Additionally,	we	found	a	significant	correlation	between	blood	lipids	
and	 blood	 glucose	 (CP4),	 a	 correlation	 between	 electrolytes	 and	
blood	gas	 (CP5),	 and	a	 correlation	between	kidney	and	cardiovas-
cular	functions	(CP7).	Furthermore,	the	effects	of	these	phenotypic	
biomarkers	on	functional	ageing	metrics	were	not	 independent	(as	
with	CP7).	In	brief,	there	were	interactions	between	these	biomark-
ers,	suggesting	extensive	relationships	between	these	physiological	
systems underlying human ageing.

The	 potential	 mechanisms	 of	 correlations	 between	 composite	
phenotypes	 and	 functional	 ageing	 metrics	 were	 reasonable.	 Both	
CP1	(body	shape)	and	CP14	(white	blood	cells)	were	associated	with	
functional	 ageing	 metrics	 in	 our	 study.	 The	 potential	 mechanisms	
underlying	 this	association	may	be	 that	 low-	grade	systemic	 inflam-
mation	was	associated	with	CP1	(Visser	et	al.,	1999)	and	CP14	(Leng	
et	al.,	2005).	Inflammation	may	mediate	the	association	of	CP1	and	
CP14	with	frailty	(Leng	et	al.,	2009),	cognitive	impairments	(Zenaro	
et	al.,	2015)	and	disability	(Nuesch	et	al.,	2012)	in	older	adults.	CP17	
(red	blood	cell	counts)	and	CP18	(red	blood	cell	distribution)	were	as-
sociated	with	 cognitive	 impairments	 in	 our	 study.	 Previous	 studies	
observed	similar	results;	mean	cell	haemoglobin	(MCH)	and	red	cell	
distribution	width	(RDW)	were	most	strongly	associated	with	cogni-
tive	function	 (Winchester	et	al.,	2018)	and	 iron	deficiency	anaemia	
(Goddard	 et	 al.,	 2011).	 Mendelian	 randomization	 studies	 demon-
strated	 that	 increased	 iron	 reduces	 the	 risk	 of	 Parkinson's	 disease	
(Pichler	et	al.,	2013).	 In	addition,	 low-	grade	inflammation	was	asso-
ciated	with	the	development	of	anaemia	(Nemeth	&	Ganz,	2014)	and	
frailty	 (Soysal	 et	 al.,	 2016)	 in	 older	 adults;	 therefore,	 this	 could	 be	
one of the potential pathways underlying the association between 
anaemia and frailty.

The	 correlation	 structures	 between	 phenotypes	 in	 the	 RLAS,	
such	 as	 blood	 glucose	 and	 blood	 lipids	 (CP4),	 kidney	 and	 cardio-
vascular	 functions	 (CP7),	 are	worthy	 of	 further	 investigation.	 The	
health of the population could contribute to the observed correla-
tion	structures.	Therefore,	we	compared	the	correlations	between	
phenotypes within healthy individuals and individuals with diseases 
(e.g.	 cardiovascular	 disease,	 chronic	 kidney	 disease	 and	 anaemia).	
The	 correlations	 between	 indicators	 of	 kidney	 and	 cardiovascular	
functions	were	enhanced	in	subgroups	with	diseases	(Figure	S4).	For	
example,	the	SCC	between	β2.	MG	and	BNP	was	0.44,	while	it	was	
0.27	 in	 the	 healthy	 subgroups.	 The	 dysregulation	 of	 physiological	
systems could lead to distinctive phenotype correlations, which was 
more evident in diseases.

Relationships among physiological systems are common, such as 
cardiopulmonary	and	brain–	heart	systems	(Kuh	et	al.,	2019;	Schefold	
et	al.,	2016).	Here,	we	also	explored	the	 interactions	between	the	
kidney	and	cardiovascular	functions.	The	mechanisms	by	which	the	
kidney	and	cardiovascular	system	are	associated	with	frailty	are	not	
entirely	understood.	Probable	explanations	of	the	interaction	were	

that cardiac and renal disease share several common bidirectional 
pathways,	 such	 as	 haemodynamic,	 (neuro)	 hormonal	 and	 cardio-
vascular	disease-	associated	mechanisms	 (Schefold	et	al.,	2016).	All	
three mechanisms are interconnected and could negatively affect 
both	cardiac	and	renal	function	(Schefold	et	al.,	2016),	thereby	caus-
ing frailty by influencing physical and cognitive function.

Statistical	 approaches	 to	 infer	 networks	 from	 biological	 data	
include	 Gaussian	 graph	 models,	 Bayesian	 networks,	 correlation	
networks	and	 information	theory	 (Yu	et	al.,	2013).	 It	 is	essential	 to	
choose	 an	 appropriate	 method	 to	 quantify	 the	 similarity	 between	
the	vertices	of	the	network.	We	used	the	maximal	information	coef-
ficient	(MIC)	to	detect	the	correlations	between	phenotypes,	which	
serves	as	a	general	tool	in	coexpression	networks	(Song	et	al.,	2015).	
With	 the	 increasing	availability	of	biological	data,	 filtering	 informa-
tion	 in	 large	 complex	networks	of	 interactions	 is	beneficial	 for	 the	
emergence	of	biological	networks	(Marcaccioli	&	Livan,	2019).	In	this	
study,	we	applied	a	global	threshold	developed	from	RMT	(Luo	et	al.,	
2006).	 The	 thresholding	methodology	of	RMT	has	been	 applied	 in	
gene	and	microbial	networks	(Deng	et	al.,	2012;	Luo	et	al.,	2007).	The	
suitability of the threshold was evaluated through its effects on the 
topology	of	the	networks	(Couto	et	al.,	2017).	RMT	has	been	widely	
used	 in	characterizing	nonrandom	phenomena	 in	physical,	material	
and	social	systems	(Luo	et	al.,	2007),	and	it	has	been	well	recognized	
in	 these	systems	 that	RMT	analyses	are	efficient	 for	distinguishing	
system-	specific,	 nonrandom	 properties	 from	 random	 noise	 (Luo	
et	al.,	2006;	Segal	et	al.,	2003).

Network-	based	methods	have	been	widely	used	in	many	fields,	
such	as	microbial	communities,	protein	interactions	and	gene	coex-
pression.	In	the	framework	of	network-	based	methods,	phenotypic	
biomarkers	were	mostly	grouped	into	several	physiological	modules	
based	 on	 prior	 knowledge	 (Freund,	 2019;	 Newman	 et	 al.,	 2012).	
However,	in	CPA,	phenotypic	biomarkers	were	grouped	into	several	
composite	 phenotypes	 using	 data-	driven	methods.	 Therefore,	 we	
proposed	using	CPA	to	study	ageing	for	the	first	time	and	revealed	
several relationships of physiological systems underlying human 
ageing.	CPA	could	potentially	be	employed	as	a	general	strategy	for	
studying	complex	traits,	especially	 in	the	analysis	of	phenomics	(Li	
et	al.,	2021).

There	were	 still	 some	 limitations	 in	 our	 study.	 First,	 we	 en-
rolled	71	markers	 to	 construct	 the	phenotypic	 network	 and	 ex-
tract	composite	phenotypes.	This	may	differ	in	other	cohorts	and	
change with different phenotypes or approaches. Second, the 
number	of	 biomarkers	 in	 our	 cohort	 increased	with	 each	of	 the	
three	waves,	although	some	biomarkers	were	not	measured	in	the	
previous	waves.	Finally,	although	the	study	cohort	had	been	fol-
lowed up for three years and found encouraging results, it was 
still	 essential	 to	 conduct	 longer-	term	 follow-	ups	 to	 validate	 our	
findings.

In	summary,	CPA	provides	a	promising	opportunity	for	research-
ers to understand the intrinsic correlation structure of phenotypic 
ageing	 biomarkers	 through	 a	 data-	driven	 strategy.	 Furthermore,	
CPA	could	reveal	the	hidden	relationships	of	physiological	systems	
and	identify	the	important	links	between	physiological	systems	and	
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functional ageing metrics, thereby providing novel insights into po-
tential mechanisms underlying human ageing.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Study population

We	applied	CPA	 to	 data	 from	 the	 fourth	wave	 of	 the	 ageing	 arm	
of	the	Rugao	Longitudinal	Ageing	Study	(RLAS),	a	population-	based	
observational	 two-	arm	 cohort	 study	 conducted	 in	 Rugao,	 Jiangsu	
Province,	China	 (Liu	 et	 al.,	 2016).	 The	 validation	data	were	drawn	
from	the	second	wave	of	 the	cohort.	As	previously	described,	 the	
second-	wave	 examination	 was	 conducted	 in	 April	 2016	 (wave	 2),	
and	 the	 fourth-	wave	 examination	 was	 conducted	 in	 November	
2019	 (wave	 4).	 Demographic,	 clinical,	 laboratory	 and	 anthropo-
metric	characteristics	were	collected	from	the	RLAS.	Demographic	
data	included	age,	sex,	marital	status	and	educational	years.	Clinical	
characteristics,	 including	 cardiovascular	 disease	 (CVD),	 hyperten-
sion, chronic lung disease, cognitive function decline (assessed by 
the	revised	Hasegawa's	dementia	scale),	antihypertension	drugs	and	
antidiabetic	drugs.	CVD	included	stroke,	myocardial	 infarction	and	
heart failure.

4.2  |  Biomarker datasets

Fasting	blood	samples	of	all	participants	were	collected	by	trained	
nurses during the morning of the survey. Laboratory measurements 
(Table	S1)	included	blood	biochemistry	(e.g.	blood	lipids),	routine	clin-
ical	examinations	(e.g.	blood	pressure)	and	other	blood	biomarkers	
(e.g.	homocysteine	and	B-	type	natriuretic	peptide).	Anthropometrics	
characteristics were measured. Grip strength was assessed using a 
Hand	 Grip	 Dynamometer	 (Shanghai	 Wanqing	 Rlrctron	 Co.	 Ltd.,	
Shanghai,	China),	timed	‘up	and	go’	test	(participants	stand	up	from	
an	armchair,	walk	3	m,	 return	and	sit	down	again),	5-	metres	walk-
ing	test	and	sit-	to-	stand	from	a	chair	test	(Podsiadlo	&	Richardson,	
1991).	Electrocardiography	was	performed	on	each	participant,	and	
the	 ECG	 parameters,	 including	 heart	 rate,	 PR	 intervals	 (the	 time	
elapsing	 between	 the	 beginning	 of	 the	P	wave	 and	 the	 beginning	
of	the	next	QRS	complex),	QRS	duration	(a	series	of	waveforms	on	
an	electrocardiogram	 that	 represents	depolarization	of	ventricular	
muscle	cells),	S	wave	in	V1	(SV1),	R	wave	in	V5	(RV5)	and	QTc,	were	
determined	via	the	interpretation	programs	of	the	ECG	machine.	All	
ECG parameters and abnormalities were identified by another cardi-
ologist.	To	adjust	for	heart	rate,	the	Bazett	formula	(QTc	=QT/√RR)	
was used in the present study.

4.3  |  Functional metrics of ageing

Functional	 disability	 was	 assessed	 by	 the	 Katz	 scale	 (Katz	 et	 al.,	
1970).	Each	task	had	three	response	options:	strongly	independent,	

somewhat	 independent	and	strongly	dependent.	Participants	who	
responded as somewhat independent or strongly dependent for 
any	tasks	were	defined	as	having	a	functional	disability.	Depressive	
symptoms	were	measured	using	 the	15-	item	Geriatric	Depression	
Scale	(GDS)	(Yesavage,	1988),	a	validated	self-	report	questionnaire	
commonly used for the assessment of depressive symptoms in older 
adults.	The	questionnaire	contained	15	questions	(yes	or	no)	with	a	
score	of	0–	15.	In	our	study,	a	score	of	6	or	more	was	defined	as	hav-
ing	a	depressive	symptom	(Dennis	et	al.,	2012).	Cognitive	function	
was	evaluated	by	the	revised	Hasegawa's	dementia	scale	 (HDS-	R),	
which comprised orientation, memory, attention/calculation and 
verbal	fluency	(Imai	&	Hasegawa,	1994).	HDS-	R	has	been	widely	ac-
cepted	in	Asian	populations	in	clinical	and	epidemiological	surveys	
for	the	assessment	of	cognitive	impairment	(Sengchanh	et	al.,	2019).	
In	our	study,	individuals	who	scored	higher	than	21.5	were	defined	
as having normal cognitive function, while those who scored 21.5 or 
below	were	defined	 as	 having	 cognitive	 impairment.	According	 to	
Fried	et	al.,	the	frailty	phenotype	was	defined	in	the	following	five	
domains:	weight	loss,	exhaustion,	low	activity,	weakness	and	slow-
ness	(Fried	et	al.,	2001).

4.4  |  Composite Phenotype Analysis (CPA)

The	correlation	between	phenotypes	was	quantified	by	MIC	(Reshef	
et	al.,	2011).	The	idea	of	MIC	was	that	a	scatterplot	of	the	two	vari-
ables	 could	 be	 partitioned	 to	 encapsulate	 the	 relationship.	 It	 ex-
plored	all	grids	up	to	a	maximal	grid	resolution	to	obtain	the	highest	
normalized	mutual	 information	 between	 these	 two	 variables.	 The	
calculation	of	MIC	was	implemented	with	the	R	package	‘Minerva’.	
We	calculated	 the	MIC	 in	males	and	 females	 separately	 and	aver-
aged	the	results.	The	thresholds	of	the	MIC	correlation	matrix	were	
obtained	 through	 RMT	 (Luo	 et	 al.,	 2007).	 In	 detail,	 the	 nearest-	
neighbour	 spacing	 distribution	 (NNSD)	 for	 the	 eigenvalues	 of	 a	
random	symmetric	matrix	followed	the	Wigner–	Dyson	distribution.	
While	there	were	only	strong	correlations	along	the	 (block)	diago-
nal	of	the	matrix,	it	followed	an	exponential	distribution.	Therefore,	
with	 increasing	 threshold,	 the	 NNSD	 of	 the	 matrix	 transitioned	
from	 a	Wigner–	Dyson	 distribution	 to	 an	 exponential	 distribution.	
The	R	package	 ‘RMThreshold’	 provided	 algorithms	based	on	RMT	
that	could	be	used	to	determine	an	objective	threshold	for	signal-	
noise separation in large random matrices. Community detection of 
phenotypic	networks	used	spectral	clustering	algorithms.	The	topo-
logical	parameters	of	the	network	included	the	average	path	length,	
clustering	coefficient,	connectance	and	modularity	(Zhao	&	Liu,).

4.5  |  Statistical analysis of composite 
phenotypes and functional ageing metrics

The	 composite	 phenotypes	were	 linked	 to	 functional	 ageing	met-
rics	 using	 multiple	 linear	 regression.	 We	 constructed	 four	 mod-
els	 for	 each	 composite	 phenotype.	 First,	 we	 regressed	 the	 single	
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phenotypes within the same composite phenotypes on functional 
ageing	metrics,	such	as	ADL.	The	Spearman	correlation	coefficients	
between the fitted value and observed value were calculated, and 
the	F-	test	was	used	to	determine	the	significance	of	the	model.	The	
correlation coefficients were calculated in males and females sepa-
rately,	and	p	values	of	the	F-	test	were	combined	using	Fisher	meth-
ods.	Second,	we	compared	the	correlation	coefficients	of	Model	1	
and	Model	2.	Finally,	we	used	the	 likelihood-	ratio	test	 (LRT)	to	as-
sess	the	goodness	of	fit	of	Model	2	and	Model	3.	The	significance	of	
LRT	indicated	that	composite	phenotypes	had	additive	effects	with	
age.	The	covariates	 including	educational	 levels	and	marital	 status	
were	adjusted	in	Model	4.	The	LRT	was	used	to	test	the	significance	
of	 these	 associations	 adjusting	 for	 covariates.	 These	models	were	
conducted	 in	males	 and	 females	 separately.	 The	 correlation	 coef-
ficient	and	p	values	of	the	models	are	shown	in	Table	S4.	Machine	
learning	models,	including	generalized	linear	models,	support	vector	
machines, random forests and elastic net regression, were used to 
calibrate	the	prediction	of	functional	ageing	metrics.	Next,	we	used	
threefold	 cross-	validation	 to	 train	 these	models	 and	measure	 the	
performance	of	the	model	in	test	data	using	the	R	package	‘caret’.	All	
analyses	were	performed	in	R	V4.0.3.

Model	1:	Y	~	CP	(Single	Phenotypes)
Model	2:	Y	~	Age
Model	3:	Y	~	CP	+	Age
Model	4:	Y	~	CP	+ Covariates (Education +	Marital	status)

4.6  |  The Benchmarking of CPA

The	 evaluation	 of	CPA	was	 separated	 into	 4	 parts	 to	 compare	 its	
performance with other common algorithms.

At	Step1,	we	compared	MIC	with	the	Spearman	correlation	coef-
ficient	(SCC),	Pearson	correlation	coefficient	(PCC)	and	Kendall	cor-
relation	coefficient	(KCC)	and	found	that	the	MIC	was	proportional	
to	these	others	(Figure	S5A).	We	also	found	that	some	outliers	were	
small	on	other	coefficients	but	large	on	MIC,	and	the	nonlinear	re-
lationships	of	these	phenotypic	biomarkers	were	quantified	by	MIC	
effectively.	For	example,	the	MIC	between	the	ratio	of	waist	to	hip	
(WHR)	and	hip	was	0.477,	the	SCC	was	0.05,	the	PCC	was	0.1	and	
the	KCC	was	0.027	(Figure	S5A).	These	results	 indicated	that	MIC	
outperformed	SCC,	PCC	and	KCC	in	quantifying	the	nonlinear	cor-
relations	between	phenotypic	biomarkers.

At	 Step2,	 the	 raw	 phenotypic	 network	 was	 pruned	 through	
thresholds	to	obtain	the	sparse	network,	in	which	the	relationships	
of	phenotypes	were	more	distinct.	We	compared	RMT	with	methods	
of	multiple	testing	correction	(Bonferroni	adjustment	and	false	dis-
covery	rate	correction)	and	empirical	 thresholds.	The	distributions	
of	the	correlation	coefficient	were	checked	(Figure	S5B).	There	were	
1886	and	1222	remaining	correlations	for	Bonferroni	and	false	dis-
covery	rate	(FDR),	respectively,	indicating	that	multiple	testing	cor-
rections	of	p	values	to	screen	correlation	were	not	enough.	The	top	
5%	and	10%	of	MIC	were	0.139	and	0.215,	respectively.	According	

to	 the	 distribution	 of	 topology	 on	 the	 phenotypic	 network,	 these	
thresholds were less appropriate.

At	 Step3,	 a	 spectral	 clustering	 algorithm	 was	 used	 to	 extract	
composite	 phenotypes	 based	 on	 the	 sparse	 phenotypic	 network.	
Five	 other	 clustering	 methods,	 including	 K-	means	 clustering,	 par-
titioning	 around	 medoids	 (PAM),	 hierarchical	 clustering	 (Hclust),	
clustering	large	applications	(CLARA)	and	divisive	analysis	clustering	
(DIANA),	were	also	applied.	The	classification	of	phenotypes	by	CPA	
was	consistent	with	prior	knowledge	and	was	used	as	a	reference	to	
evaluate	the	performance	of	other	clustering	algorithms.	The	results	
of	other	methods	were	aligned	with	the	reference	(Figure	S5C).	The	
performance	of	CLARA	was	the	best,	with	an	NMI	equal	to	0.734.	
Although	it	successfully	captured	the	partial	characteristics	of	com-
posite	phenotypes	such	as	CP7,	it	was	laborious	to	group	the	pheno-
types and obtain reasonable classification.

At	Step4,	the	composite	phenotypes	were	linked	to	functional	
ageing	 metrics	 through	 linear	 regression.	 Other	 dimensionality	
reduction	methods,	including	principal	component	analysis	(PCA),	
canonical	correlation	analysis	(CCA),	partial	 least	squares	regres-
sion	 (PLS),	 nonnegative	 matrix	 factorization	 (NMF)	 and	 locally	
linear	 embedding	 (LLE),	 were	 also	 applied	 to	 construct	 the	 cor-
relation between the composite phenotype and functional ageing 
metrics	(Figure	S5D).	The	single	phenotypes	in	CP7	were	taken	as	
an	 example	 in	 investigating	 the	 performance	 of	 these	methods.	
CP7,	which	was	defined	as	a	set	of	single	phenotypes	rather	than	
a	 fixed	 latent	 variable,	 had	 the	 strongest	 correlation	with	 these	
metrics.	The	components	extracted	by	PLS,	CCA	and	PCA	were	
significantly correlated with disability, cognitive impairments and 
frailty.	 However,	 dimension	 reduction	 impaired	 the	 correlation	
compared	with	CPA.
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