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Tuberculosis (TB) and leprosy are mycobacterial infections caused by Mycobacterium
tuberculosis and Mycobacterium leprae respectively. These diseases continue to be
endemic in developing countries where the cost of new medicines presents major
challenges. The situation is further exacerbated by the emergence of resistance to many
front-line antibiotics. A priority now is to design new antimycobacterials that are not only
effective in combatting the diseases but are also less likely to give rise to resistance.
In both these respects understanding the structure of drug targets in M. tuberculosis
and M. leprae is crucial. In this review we describe structure-guided approaches to
understanding the impacts of mutations that give rise to antimycobacterial resistance
and the use of this information in the design of new medicines.
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MYCOBACTERIAL INFECTIONS IN TUBERCULOSIS AND
LEPROSY

Mycobacterial infections in tuberculosis [(WHO Global Tuberculosis Report, 2017] and leprosy
(Chaptini and Marshman, 2015; WHO, 2019) are both endemic in developing countries. According
to the World Health Organization the risk of developing TB is estimated to be between 16 and
27 times greater in people living with HIV than among those without HIV infection. TB is a
major challenge in developing countries such as India and South Africa. Similar challenges are
evident in the fight against leprosy, particularly in India, Brazil and Indonesia. However, the stigma
associated with leprosy and the confinement of those affected to leper colonies have led to less public
discussion of strategies to combat the disease.

Current anti-tuberculosis therapies use a combination of front-line drugs, such as isoniazid
(INH), rifampin, ethambutol (EMB), pyrazinamide (PZA) and streptomycin (SM), most of which
were discovered five or six decades ago. These have led to improvements in health with as many as
90% of patients cured. However, the fact that these drugs must be taken for 6 months often leads to
non-compliance, resulting in further spread of the disease and the development of drug resistance.
In the case of tuberculosis multidrug-resistant (MDR)-TB (resistant to INH and rifampin) and
extensive-drug-resistant (XDR)-TB strains require the use of second-line drugs that are much more
toxic and expensive (Wallis et al., 2016; Munir et al., 2019). This has been further complicated by
the HIV over the past four decades.

Fighting leprosy involves even greater challenges. M. leprae, the causative bacillus for leprosy,
continues to be endemic in populations in some tropical and sub-tropical countries, including
India, Brazil, Indonesia and parts of Africa. The fact that M. leprae is non-cultivable makes it
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difficult to work with within a laboratory setting. This has
led to poor understanding of the genomic diversity and the
structural organization of the multicomponent protein systems
that mediate host cell invasion and pathogenesis. Introduction
of multidrug therapy (Dapsone, rifampin and Clofazimine)
has reduced global numbers from 5 million cases in 1995 to
approximately 200,000 cases in 2005 (Chaptini and Marshman,
2015). Since then, the number of incidences has remained
stable, and less effort has been focused on patients infected with
M. leprae in recent years (Duthie et al., 2018), partly due to a lack
of awareness of the extent of the disease. Leprosy manifests as
skin lesions and demyelinating neuropathy leading to numbness,
tissue deformity and blindness (WHO, 2019). In the absence of
a vaccine, the drugs currently used have been repurposed from
those used for TB.

The situation with both tuberculosis and leprosy is
exacerbated by the emergence of antibiotic resistance to all
components of the multi-drug therapy (Williams and Gillis,
2012). However, traditional approaches to discovery of new
antimycobacterials, such as phenotypic screens, which do
not attempt to identify the targets of potential new drugs,
have exhibited very low hit rates. This is likely due to the
limited chemical diversity of the compound libraries, but
also may be a result of a focus on drug-like molecules and
therefore the omission of smaller and larger molecules that
may more efficiently penetrate the mycobacterial cell wall
(Payne et al., 2007; Koul et al., 2011). On the other hand
high-throughput, target-based screening campaigns have
often appeared successful in vitro, but this is not always
reflected in vivo. Clinical trials of potential drugs have
also highlighted increased challenges in finding suitable
candidates. This is often due to the complexity of replication
states in M. tuberculosis and the variety of lesions present
within patients, neither of which are adequately addressed
within the in vitro screening (Zumla et al., 2013; Prideaux
et al., 2015). As a consequence, there has been a focus on
alternative approaches, including the use of natural products and
drug repurposing.

In an earlier review article (Waman et al., 2019), we
discussed various computational approaches and experimental
strategies for drug target identification and structure-guided drug
discovery. In this review we discuss the impact of the era of
precision medicine, where the genome sequences of pathogens
can give clues about the choice of existing drugs, and repurposing
of others. Our focus is directed toward combatting antimicrobial
drug resistance with emphasis on tuberculosis and leprosy.
We describe structure-guided approaches to understanding
the impacts of mutations that give rise to antimycobacterial
resistance and the use of this information in the design
of new medicines.

GENOME SEQUENCES AND
PROTEOMIC STRUCTURAL DATABASES

In recent years, there have been many focused efforts to
define the amino-acid sequences of the M. tuberculosis

pan-genome and then to define the three-dimensional
structures and functional interactions of these gene products.
This work has led to essential genes of the bacteria being
revealed and to a better understanding of the genetic
diversity in different strains that might lead to a selective
advantage (Coll et al., 2018). This will help with our
understanding of the mode of antibiotic resistance within
these strains and aid structure-guided drug discovery.
However, only ∼10% of the ∼4128 proteins have structures
determined experimentally.

Several databases have been developed to integrate the
genomic and/or structural information linked to drug resistance
in Mycobacteria (Table 1). These invaluable resources can
contribute to better understanding of molecular mechanisms
involved in drug resistance and improvement in the selection of
potential drug targets.

Our own laboratory has developed a database, CHOPIN
(Ochoa-Montano et al., 2015), which records experimental
structures of the proteins. It then adds homology
models developed by techniques, for example FUGUE
for sequence-structure alignment (Shi et al., 2001) and
MODELER for comparative modeling by satisfaction of
spatial restraints (Sali and Blundell, 1993), to accumulate
information about structures of ∼3000 gene products.
This corresponds to ∼73% of the proteome. These models
have been elaborated using a complex pipeline to reflect
different functional states of the proteins, characteristics of
different oligomeric states and ligand binding. Additionally,
CHOPIN includes structural analyses of mutations
potentially associated with drug resistance. Results are
made available at the web interface, which also serves as
an automatically updated repository of all published TB
experimental structures.

Mycobacterium leprae has a reductively evolved genome of
1,614 protein coding genes (Singh and Cole, 2011), of which
595 code for hypothetical proteins and 1,010 for proteins
with functional assignments. Most of these are annotated
by homology with phylogenetically related species in the
family of Mycobacteriaceae. The first analysis was of the
3.26Mb genome of the TN strain of M. leprae which was
sequenced from an armadillo-derived Indian isolate in 2001
(Cole et al., 2001). The genome contains 49.5% protein
coding regions and 27% of inactive reading frames that
have functional orthologs in M. tuberculosis. The rest of the
genome contains either regulatory elements or repetitive non-
coding regions. The average G + C content of the genome
is 57.8% (Cole et al., 2001). In a more recent study ∼1,310
pseudogenes were identified in the genome of M. leprae
(Chavarro-Portillo et al., 2019).

There is a dearth of information related to structural aspects
of proteins from M. leprae and their oligomeric and hetero-
oligomeric organization, which has limited the understanding
of physiological processes of the bacillus. The structures of only
12 proteins have been solved and deposited in the protein data
bank (PDB). However, the high sequence similarity in protein
coding genes between M. leprae and M. tuberculosis allows
computational methods to be used for comparative modeling
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TABLE 1 | List of databases/resources for structural and/or mutational analyses in Mycobacteria.

Database Description Type of data Date of
publication

References Last
release

MycoResistance A curated resource of drug resistance
molecules in Mycobacteria.

Anti-tuberculosis drug resistance
molecules found in 6 mycobacterial
species with detailed annotations.

07-2019 Dai et al., 2019 18-02-2019

MUBII-TB-DB A database of mutations associated with
antibiotic resistance in M. tb.

Mutations associated with drug
resistance occurring at seven loci: rpoB,
pncA, katG, mabA (fabG1)-inhA, gyrA,
gyrB, and rrs in M. tb.

04-2014 Flandrois et al.,
2014

TuberQ M. tb protein druggability database. Structural information and pocket
analysis of M. tb protein structures and
models. Also includes information about
gene essentiality, gene relevance and
off-target criteria.

05-2014 Radusky et al.,
2014

TDR Targets A database that focuses on pathogens
responsible for neglected human
diseases and is designed to facilitate the
identification and prioritization of
molecular targets for drug development.

Pathogen specific genomic information
with functional data and information on
drugs and bioactive compounds.

10-2008 Agüero et al., 2008;
Magariños et al.,
2012; Urán
Landaburu et al.,
2020

04-2019

TBDreaMDB A repository of drug resistance mutations
in M. tb.

Drug resistance mutations in M. tb with
relative frequency and geographical
distribution.

02-2009 Sandgren et al.,
2009

PolyTB A resource to identify polymorphisms
within genes of interest in M. tb, as well
as examine the genomic diversity and
distribution of strains.

SNPs, small indels and larger structural
variants from M. tb genomic datasets
along with geographical map and
phylogenetic views

05-2014 Coll et al., 2014

TBDB An integrated database providing access
to M. tb genomic data and resources,
relevant to the discovery and
development of M. tb drugs, vaccines,
and biomarkers.

Gene-expression data from M. tb and
related bacteria

01-2009 Reddy et al., 2009 02-11-2009

CHOPIN A web resource for the structural and
functional proteome of M. tb

Experimental structures and homology
models for M.tb proteins, Structural
analysis of drug resistant mutations in
M.tb.

03-2015 Ochoa-Montano
et al., 2015

of the proteins of M. leprae. Mainly monomeric models using
single template modeling have been defined and deposited in
the Swiss Model repository (Bienert et al., 2017), in Modbase
(Pieper et al., 2014), and in a collection with other infectious
disease agents (Sosa et al., 2018). There is a need for multi-
template modeling and building homo- and hetero-oligomeric
complexes to better understand the interfaces, druggability and
impacts of mutations.

We are now exploiting Vivace, a multi-template modeling
pipeline developed in our lab for modeling the proteomes of
M. tuberculosis (CHOPIN, see above) and M. abscessus [Mabellini
Database (Skwark et al., 2019)], to model the proteome of
M. leprae. We emphasize the need for understanding the protein
interfaces that are critical to function. An example of this is that
of the RNA-polymerase holoenzyme complex from M. leprae.
We first modeled the structure of this hetero-hexamer complex
and later deciphered the binding patterns of rifampin (Vedithi
et al., 2018; Figures 1A,B). Rifampin is a known drug to treat
tuberculosis and leprosy. Owing to high rifampin resistance in
tuberculosis and emerging resistance in leprosy, we used an
approach known as “Computational Saturation Mutagenesis”, to
identify sites on the protein that are less impacted by mutations.
In this study, we were able to understand the association between

predicted impacts of mutations on the structure and phenotypic
rifampin-resistance outcomes in leprosy.

DRUG DISCOVERY USING
STRUCTURE-GUIDED
FRAGMENT-BASED APPROACHES

Structure-guided fragment-based drug discovery (FBDD) is
a powerful approach to create novel high quality drug-like
molecules (Blundell et al., 2002; Murray and Rees, 2009; Murray
and Blundell, 2010; Mashalidis et al., 2013). The low molecular
weights of fragments (MW < 300) facilitate recognition of
hotspots where binding compensates for the loss of rotational
and translational entropy of the ligand by increasing entropy of
“unhappy” waters displaced (Radoux et al., 2016). This allows
an efficient exploration of chemical space even with libraries of
around 1000 fragments, which due to their small size, interact
weakly with the target protein (affinities usually between 0.1-
5 mM). Fragments tend to bind to hotspots and form well defined
interactions with the target protein. These initial hits can be
subsequently elaborated into larger molecules with higher affinity
(Murray and Blundell, 2010).
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FIGURE 1 | (A) The hetero-hexameric model of the holoenzyme complex of RNA polymerase in Mycobacterium leprae. The colors represent each chain in the
model (β, β′, α′, α′ ′, ω, σ subunits) (Vedithi et al., 2018). (B) The ß-subunit of RNA polymerase (RpoB) with mutations (highlighted in red). Mutations at these residue
positions are known to confer rifampin resistance in leprosy. Rifampin is colored in green (Vedithi et al., 2020).

In FBDD a variety of biochemical, biophysical and structural
biology methods are exploited. Popular approaches include
differential scanning fluorimetry (DSF), often known as thermal
shift. This is a technique that allows for the detection of
compounds that increase the melting temperature (unfolding
temperature, Tm) of a target protein upon binding, by
promoting protein stability (Niesen et al., 2007). DSF hits can
then be confirmed by ligand-based one-dimensional 1H NMR
spectroscopy Carr-Purcell-Meiboom-Gill (CPMG), saturation
transfer difference (STD) and water ligand observed gradient
spectroscopy (WaterLOGSY) (Dalvit et al., 2001; Klages et al.,
2007). Functional biochemical assays can also sometimes be used
as a high-throughput method to screen for inhibitors. Once
hits have been identified, the 3D structures of the fragment-
protein complexes are defined through X-ray crystallography
(usually to better than 2.5 Å resolution). Isothermal titration
calorimetry (ITC) is also used to characterize fragment-
binding affinities and the thermodynamics of binding. A typical
fragment-based campaign for tuberculosis is described in
Mendes and Blundell (2017).

For leprosy we have used the fragment hotspot maps
(Radoux et al., 2016) program to indicate binding sites on the
RNA polymerase holoenzyme complex in M. leprae (Vedithi
et al., 2020). The hotspots with a contouring score of 17
were mapped to the regions of fragment binding and at
the site of entry of template DNA strand into the active
center cleft of the polymerase core. The accurate prediction
of sites with high propensity for donor, acceptor and apolar
groups (benchmarked by overlaying the hotspot maps on the
rifampin-binding site) provided insights into the characteristics
of the binding site and scope for novel small molecule
discovery (Cambau et al., 2018). Similar programs like SiteMap
(Thomas A. Halgren, 2009) and FT Map (Kozakov et al., 2015)

also aid in mapping small molecule binding sites on the
protein surfaces.

Mapping interactions between amino acid residues in protein-
ligand complexes provides a better understanding of the
structural implications of mutations conferring drug resistance
in leprosy. We used Arpeggio (Jubb et al., 2017), an in-house
developed software to map interatomic interactions. Arpeggio
calculates all the intra- and inter-atomic interactions in protein-
protein, protein-ligand and protein-nucleic complexes. This tool
allows us to understand changes in interactions of mutant
residues with the residue environment in the rifampin resistance
strains of M. leprae (Vedithi et al., 2018; Figures 2A,B). Similar
tools that aid in calculation of inter-residue interactions and
energy matrices of the protein subunit interfaces are also available
(Galgonek et al., 2017).

UNDERSTANDING MECHANISMS OF
ANTIBIOTIC RESISTANCE

Mutations can lead to antibiotic resistance not only from
direct interference with drug binding but also through allosteric
mechanisms that arise from mutations distant from the drug-
binding site. Additionally, drug resistance can arise through
mechanisms that disturb protein-protein or protein-nucleic
acid interactions.

Most of the early approaches to predicting the impacts of
mutations on protein structure and function were focused on
the amino-acid sequence of a single protein. They included
sequence-based methods such as SIFT (Ng and Henikoff, 2003)
and PolyPhen (Adzhubei et al., 2010). The realization that
much could be gained by knowledge of the structure of the
protein led to approaches that were based on potential-energy
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FIGURE 2 | (A) Stability changes predicted by mCSM for systematic mutations in the ß-subunit of RNA polymerase in M. leprae. The maximum destabilizing effect
from among all 19 possible mutations at each residue position is considered as a weighting factor for the color map that gradients from red (high destabilizing
effects) to white (neutral to stabilizing effects) (Vedithi et al., 2020). (B) One of the known mutations in the ß-subunit of RNA polymerase, the S437H substitution
which resulted in a maximum destabilizing effect [-1.701 kcal/mol (mCSM)] among all 19 possibilities this position. In the mutant, histidine (residue in green) forms
hydrogen bonds with S434 and Q438, aromatic interactions with F431, and other ring-ring and π interactions with the surrounding residues which can impact the
shape of the rifampin binding pocket and rifampin affinity to the ß-subunit [-0.826 log(affinity fold change) (mCSM-lig)]. Orange dotted lines represent weak hydrogen
bond interactions. Ring-ring and intergroup interactions are depicted in cyan. Aromatic interactions are represented in sky-blue and carbonyl interactions in pink
dotted lines. Green dotted lines represent hydrophobic interactions (Vedithi et al., 2020).

functions or statistics of amino acid mutations with respect to
the local structural environment. For example, environment-
specific substitution tables, which describe the propensities
of residues to mutate in a local structural environment are
used in SDM (Topham et al., 1997; Worth et al., 2011;
Pandurangan et al., 2017). In PoPMuSiC (Dehouck et al.,
2009), and more recently BeAtMuSiC (Dehouck et al., 2013),
predictions of the impact of mutations are based on multiple
energy functions, with parameters trained using artificial
neural networks.

Machine learning-methods have also been used to predict
the impacts of mutations on protein stability from either
sequence or structural features (Capriotti et al., 2005a,b; Cheng
et al., 2005) and more recently to predict disease-related
mutations (Capriotti and Altman, 2011). Alternatively, residue
environments can be represented as graphs with atoms as
nodes and interactions as edges. For example, Bongo (Cheng
et al., 2008) predicts structural effects of nsSNPs using graph
theoretic metrics. Graph-based structural signatures are used
in mCSM for prediction of impacts of mutations on protein
stability and protein-protein and protein-nucleic acid affinity
(Pires et al., 2013). This approach was developed further in
mCSM-lig to predict the impacts of mutations on ligand binding
(Pires et al., 2016). This is based on Platinum, a database of
experimentally measured effects of mutations on structurally
defined protein-ligand complexes (Pires et al., 2015). This

computational approach provides predictions that correlate well
with experimental data (up to ρ = 0.67) in explaining Mendelian
disease mutations and in predicting mutations that give rise to
antibiotic resistance.

EXAMPLES OF UNDERSTANDING AND
COMBATTING RESISTANCE

The availability of whole genome sequences in the present
era has greatly enhanced the understanding of emergence of
drug resistance in infectious diseases like tuberculosis. The data
generated by the whole genome sequencing of clinical isolates
can be screened for the presence of drug-resistant mutations.
A preliminary in silico analysis of mutations can then be
used to prioritize experimental work to identify the nature of
these mutations.

Tuberculosis
We have used this combination of computational and
experimental approaches in our recent studies on tuberculosis.
We utilized programs developed in our lab, SDM (Pandurangan
et al., 2017) and mCSM (Pires et al., 2013, 2016) to predict the
effects of mutations linked to INH and rifampin resistance.
These were derived from whole genome sequencing of 98 clinical
isolates from Southern India (Munir et al., 2019).
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INH is a pro-drug, which is activated by the haem-dependent
catalase peroxidase, KatG. Following activation, the drug creates
an INH-NAD adduct (Figure 3A), which binds to InhA, an
enoyl-acyl carrier protein reductase, and inhibits the synthesis
of mycolic acids (Figure 3). InhA is an important enzyme
in the fatty acid synthase II pathway of M. tuberculosis.
Mutations in the KatG and InhA are responsible for the
mechanism of resistance to INH. We have mapped the resistance
mutations in KatG and InhA onto their protein structures
and predicted the effects on protein stability, protein-protein
interactions and protein-drug interactions using SDM and
mCSM (Munir et al., 2019).

A common mutation found in KatG is S315T, which is
present in more than 60% of the isoniazid-resistant isolates.
This mutation has been shown previously to constrict the
entrance leading to the haem active site (Zhao et al.,
2006). Other mutations include S315N/I, and W300G. All
of these mutations in KatG are located in the N-terminal
domain of the protein, which comprises the haem-binding
active site of the enzyme (Figure 3B). We found using
computational approaches that these mutations affect the
stability of the protein and the interatomic interactions in
the local surrounding environment of the mutant residue
(Figure 4). The substitution of W300 to a glycine resulted
in the loss of all the hydrophobic, carbon-pi, atom-pi and
weak hydrogen bond interactions made by the wild-type

tryptophan with the surrounding residues. We have also recently
carried out experimental work on several of these resistance
mutations that surround the haem pocket in KatG. We
have utilized X-ray crystallography, cryo-EM and biophysical
methods to characterize the mutations and demonstrated
the affects that they have on protein stability and haem
binding. Among the isoniazid-resistant mutations in InhA,
three mutations (S94A, I194T and I21T) were mapped onto
the structure. All three mutations were located around the
drug-binding pocket. The mutation S94A was predicted to
decrease the affinity of drug binding to the protein, hence
causing resistance to the drug. It has also been shown
previously to cause a reduction in the NADH affinity and
affect drug binding (Dias et al., 2007). The mutations I194T
and I21T resulted in the loss of hydrophobic interactions
made by the wild-type isoleucine with the surrounding residues
and were predicted by mCSM-lig to decrease the drug
binding affinity.

To understand the drug-resistance mechanism for rifampin,
we mapped the mutations onto the RpoB (the target for
rifampin), and RpoC subunits of the RNA polymerase assembly
(Munir et al., 2019). Mutations in RpoB were located in the
rifampin -binding pocket and S450L was the most common
rifampin-resistant mutation occurring in 52% of the rifampin-
resistant isolates. This mutation was predicted by mCSM-
lig to decrease the affinity of the drug toward the protein,

FIGURE 3 | (A) Mechanism of isoniazid activation and INH-NAD adduct formation. (B) Mutations mapped (Munir et al., 2019) on the structure of KatG (PDB
ID:1SJ2; Bertrand et al., 2004).
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FIGURE 4 | The interatomic interactions in KatG formed by the wild-type residue S315 and the mutants S315T, S315N and S315I. (A) The wildtype residue S315 of
KatG forms a hydrogen bond (shown as red dotted lines) with the main chain of I317 and a weak hydrogen bond (orange dotted lines) with haem (HEM) and
sidechain of I317. (B) The mutant residue T315 gains an additional weak hydrogen bond and hydrophobic interactions with haem. (C) The mutant residue loses the
hydrogen bond with I317 and a weak hydrogen bond with haem. (D) The hydrophobic sidechain of isoleucine retains the weak hydrogen bond with HEM and gains
hydrophobic interaction with haem (Reproduced with permission from Munir et al., 2019).

see Munir et al. (2019). The interatomic analysis clearly
showed that the mutation causes the loss of a hydrogen
bond formed between the drug and S450 with substitution
to the bulkier side chain of leucine causing a steric clash
with the drug. This likely decreases the affinity of the
drug toward the protein. Other mutations in RpoB included
D435Y/V, H445R/Y, S428R, V359A, S441P, L452P, and L449Q.
These mutations were also found to alter the interactions
either with the drug or the surrounding residues, and were
predicted by mCSM-lig to decrease the affinity of the drug
toward the protein. We also analyzed the impact of four
mutations (L516P, N416T, V483G, and I491T) on RpoC, which
are located at the interfaces with other subunits in RNA
polymerase complex (Munir et al., 2019). These mutations were
predicted to have a destabilizing impact on protein stability and
protein-protein interactions.

Overall, in our analyses, we showed that the mutations
not only affect the stability and drug binding affinity but

might also act through allosteric mechanisms arising at the
protein-protein interfaces.

Leprosy
Drug resistance in leprosy continues to be a significant health
problem in endemic countries. While some of the burden is
overt in patients with clinical signs of relapse and/or non-
responsiveness to multidrug therapy, there is a high likelihood
for undetected extant strains of rifampin-resistant M. leprae in
the leprosy communities. Computational simulations indicate
that the mechanisms of rifampin resistance in leprosy and
tuberculosis are similar (Vedithi et al., 2018). In the absence of
an experimental method to culture M. leprae in the lab, drug
resistance in leprosy is determined by in vivo propagation in
mouse footpads (Levy and Ji, 2006) and by associating mutations
in the drug-resistance-determining regions of the target coding
genes with clinical manifestations. Missense mutations noted in
rifampin, dapsone and ofloxacin-resistant strains of M. leprae
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are associated with clinical drug-resistance outcomes in leprosy
(Williams et al., 2013).

Elucidating structural impacts of point mutations in the drug
target proteins and their influence on function of the drug targets
in mycobacteria is vital to understanding molecular mechanisms
of drug resistance. We used a suite of in-house-developed tools
initially to study the impacts of a few known mutations that
confer rifampin resistance in leprosy (Vedithi et al., 2018).
Later we used a saturation mutagenesis model where every
residue in the protein is mutated to all other 19 possibilities and
evaluated for protein stability, stability of the protein-protein
interfaces, and affinity of the protein for nucleic acids and
ligands. We then used the machine learning software, mCSM,
mCSM-PPI, and mCSM-NA (Pires et al., 2013) and mCSM-
lig (Pires et al., 2016), together with the statistical approach
SDM (Pandurangan et al., 2017; Pandurangan and Blundell,
2020) and external tools including Maestro (Laimer et al.,
2015), CUPSAT (Parthiban et al., 2006), I-Mutant (Capriotti
et al., 2005a), DynaMut (Rodrigues et al., 2018) and FoldX
(Schymkowitz et al., 2005). Most of these tools predict changes
in Gibbs free energy of the system (44G in kcal/mol), with
the exception of mCSM-lig, which calculates the log change
in affinity. For all the 40 experimentally identified rifampin-
resistant mutations in M. leprae, mCSM-lig predicted a decrease
in affinity between rifampin and RNA polymerase complex. In
the saturation mutagenesis model, we have also noted similar
findings in the entire conserved region of the active site in the
ß sub-unit of RNA polymerase (Vedithi et al., 2020).

DISCUSSION

In this review, we have discussed the value of understanding the
structure of drug targets in M. tuberculosis and M. leprae, first in
designing new drugs and second in understanding the impacts
of mutations that give rise to antimycobacterial resistance. In an
earlier review article of ours (Waman et al., 2019), we discussed
various computational approaches and experimental strategies
for drug target identification, structure-guided drug discovery
and understanding the structural implications of the mutations
conferring antimicrobial resistance in mycobacterial diseases. In
this review, our focus is directed toward reviewing the application
of these computational tools and experimental approaches in

the context of mycobacterial drug discovery and antimicrobial
drug resistance with emphasis on tuberculosis and leprosy. This
can then provide a greater understanding of how we may in
the future redesign currently available drugs and how we may
develop new ones.

In this respect the saturation mutagenesis approach, described
above for the RNA polymerase complex in M. leprae, enables
an understanding of the mutational landscape of a protein. Of
particular value is the provision of insights into which regions
around the drug-binding site will less easily accept mutations
and therefore less likely to experience the emergence of drug
resistance mutations. This should be a useful factor to take
into account during drug redesign. With respect to the RNA
polymerase such regions and their relationship to fragment
hotspots allow identification of two novel small-molecule binding
sites. An approach like this can facilitate novel drug discovery
to treat resistant strains of M. leprae and M. tuberculosis
(Vedithi et al., 2020).
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