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Abstract
Introduction Adequate cardiorespiratory fitness is of utmost importance during spaceflight and should be assessable via 
moderate work rate intensities, e.g., using kinetics parameters. The combination of restricted sleep, and defined physical 
exercise during a 45-day simulated space mission is expected to slow heart rate (HR) kinetics without changes in oxygen 
uptake ( V̇O

2
 ) kinetics.

Methods Overall, 14 crew members (9 males, 5 females, 37 ± 7 yrs, 23.4 ± 3.5 kg  m−2) simulated a 45-d-mission to an aster-
oid. During the mission, the sleep schedule included 5 nights of 5 h and 2 nights of 8 h sleep. The crew members were tested 
on a cycle ergometer, using pseudo-random binary sequences, changing between 30 and 80 W on day 8 before (MD-8), day 
22 (MD22) and 42 (MD42) after the beginning and day 4 (MD + 4) following the end of the mission. Kinetics information 
was assessed using the maxima of cross-correlation functions  (CCFmax). Higher  CCFmax indicates faster responses.
Results CCFmax(HR) was significantly (p = 0.008) slower at MD-8 (0.30 ± 0.06) compared with MD22 (0.36 ± 0.06), MD42 
(0.38 ± 0.06) and MD + 4 (0.35 ± 0.06). Mean HR values during the different work rate steps were higher at MD-8 and MD + 4 
compared to MD22 and MD42 (p < 0.001).
Discussion The physical training during the mission accelerated HR kinetics, but had no impact on mean HR values post 
mission. Thus, HR kinetics seem to be sensitive to changes in cardiorespiratory fitness and may be a valuable parameter to 
monitor fitness. Kinetics and capacities adapt independently in response to confinement in combination with defined physi-
cal activity and sleep.
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Abbreviations
ACF  Auto-correlation function
ANOVA  Analysis of variance
CCFs  Cross-correlation function
CCFlag(x)  Lag between the maximum of the ACF and 

the CCF
CCFmax(x)  Maximum of the cross-correlation function
HERA  Human exploration research analog
HR  Heart rate
HRV  Heart rate variability
mBP  Mean blood pressure
MD  Mission day
NASA  National aeronautics and space 

administration
PRBS  Pseudo random binary sequences
Q̇  Cardiac output
SV  Stroke volume
V̇O2  Oxygen uptake
V̇O2musc  Muscular oxygen uptake
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V̇O2peak  Peak oxygen uptake
V̇O2pulm  Pulmonary oxygen uptake
VT  Ventilatory threshold
VT1  First ventilatory threshold
WR  Work rate

Introduction

One of the main goals of life sciences in space research is 
to maintain the physical and cognitive fitness of individu-
als for future long-duration travels to the moon, Mars or 
even beyond (Strangman et al. 2014; Fomina et al. 2017; 
Norsk 2020). Safe, and time efficient diagnostic tools are 
needed to assess physical fitness in conditions without the 
possibility of medical interventions or close surveillance. 
Peak and/or maximal exercise performance [e.g., peak oxy-
gen uptake capacity ( V̇O2peak ); maximal oxygen uptake 
( V̇O2max )] (Hawkins et al. 2007; Poole and Jones 2017) as 
well as ventilatory thresholds (VTs) (Poole and Jones 2017) 
are usually assessed applying cardiopulmonary exercise 
tests and provide a comprehensive description of individual 
aerobic capacity and physical fitness. Another possibility to 
describe the functionality of the cardiorespiratory system 
is to analyze the response times (kinetics) of the different 
physiological parameters, e.g. heart rate (HR) and oxygen 
uptake ( V̇O2 ) after changes in work rate (WR). The analysis 
of kinetics of the cardiorespiratory system offers valuable 
insights in cardiovascular and metabolic regulation (Hugh-
son et al. 2001; Grassi 2000 2006; Rossiter 2011) and can be 
performed applying moderate WR intensities. One possibil-
ity to evaluate cardiorespiratory kinetics are WR protocols 
with sequences of pseudo randomly changing intensities 
(Hoffmann et al. 2013; Drescher et al. 2015; Koschate et al. 
2016b). So-called pseudo random binary sequences (PRBS), 
as used by e.g., Hoffmann et al. (2013), are comparable to 
metabolic demands during every day habitual activities 
(Rossiter 2011). Since the assessment does not require high 
motivation or close medical surveillance, as would be the 
case for the assessment of V̇O2peak (Myers et al. 2014), the 
analysis of cardiorespiratory kinetics might be a valuable 
approach to monitor fitness during long duration missions 
to space, while supervision by medical staff is not directly 
available.

After prolonged missions to the International Space Sta-
tion (ISS), a slowing of muscular oxygen uptake ( V̇O2musc ) 
kinetics was observed (Hoffmann et al. 2016). Additionally, 
the change in HR kinetics from pre- to post-flight was associ-
ated with changes in V̇O2peak . These decrements in physical 
performance during space flight are caused by the combina-
tion of microgravity, sleep problems (Barger et al. 2014; Yi 
et al. 2015; Mairesse et al. 2019), high and very controlled 

daily workloads as well as the confined living situation (De La 
Torre et al. 2012). Except for microgravity, these conditions 
can be simulated at the Lyndon B. Johnson Space Center of 
the National Aeronautics and Space Administration (NASA) 
in Houston, inside the Human exploration research analog 
(HERA) facility.

In former space analog conditions, using confined habitats, 
greater parasympathetic system activity during the wake time 
in the resting state was assessed throughout simulated space 
missions of 125 and 520 d (Vigo et al. 2012, 2013). After 
70 d of confinement in a submarine, no changes in V̇O2peak , 
but an increase in the VT was reported in an exercise group, 
while decrements for the control group were observed in both 
parameters (Bennett et al. 1985).

Results from (partial) sleep deprivation experiments indi-
cate a correlation between the onset of fatigue and heart rate 
variability (HRV) (Fogt et al. 2011), as well as higher sympa-
thetic system activity, elevated autonomic stress and reduced 
HRV (Dettoni et al. 2012; Glos et al. 2014; Fogt et al. 2011; 
Liu et al. 2015), whereas after a fatiguing physical activity pro-
gram, higher parasympathetic system activity was described 
(Jouanin et al. 2004). Greater global HRV in turn was associ-
ated with higher energy expenditure in everyday life and bet-
ter perceived health status (Buchheit et al. 2005). HR kinetics 
seem to be very individual and react to the different physical 
and psychological stresses, the person experiences (Ludwig 
et al. 2018). To date, no information on HR kinetics, assessed 
during physical exercise as another indicator of neural control 
of HR, after sleep deprivation or during confinement is avail-
able. Since physical activity is restricted in a confined space, 
HR kinetics could be slowed, but if parasympathetic system 
activity is increased (Vigo et al. 2012, 2013), HR kinetics 
should be faster during isolation (Coote 2010).

The analysis of kinetics parameters during exercise can 
potentially help to monitor individual physical fitness during 
the isolation phase and may provide a tool for the estimation of 
performance in daily activities, which require an appropriate 
level of physical fitness.

On the basis of previous work in this field, the following 
hypotheses were investigated: the combination of restricted 
sleep and physical activity during 45 days of confinement (i) 
does not affect peak exercise capacity and V̇O2musc kinetics, 
but (ii) HR kinetics are slowed as a result of partial sleep depri-
vation in combination with the limited possibility to be physi-
cally active in the confined habitat.

Methods

Participants

The following inclusion criteria were applied: age range 
from 26 to 60 years, technical skills demonstrated through 
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professional experience, motivation and work ethics similar 
to the current astronaut population, psychological qualifica-
tion, at least bachelor’s degree in engineering, biological sci-
ence, physical science or mathematics. Ethical approval was 
obtained from the Institutional Review Board at the NASA 
Johnson Space Center (Protocol number: Pro2320) as well 
as the Ethical Committee of the German Sport University 
Cologne (Protocol number: 074/2016), and the experi-
ments were conducted in accordance with the Declaration 
of Helsinki (including its amendments until 2013). Written 
informed consent was available from all participants prior 
to the experiments.

Overall, the HERA campaign four consisted of five 45 d 
missions, including four crew members each (N = 20). Due 
to Hurricane Harvey in August 2017, one mission with four 
participants had to be terminated early, and it was not pos-
sible to analyze these data sets. Further, data of two subjects 
could not be included for data analysis, because they had to 
terminate one of the exercise tests during the mission early. 
Both individuals exceeded the allowed HR or blood pres-
sure values during the moderate exercise test protocol set 
by NASA medical board. Therefore, data of 14 individuals 
(9 males, 5 females) were included for statistical analyses. 
Anthropometric data of the subjects are shown in Table 1.

Study outline

The five 45-d-mission scenarios were identical and designed 
as follows: baseline data collection was performed over the 
two weeks prior to the isolation period. During the mis-
sion, the individuals simulated a mission to the asteroid 
‘Geographos’ and back. Five consecutive nights per week 
they were restricted to five hours of sleep per night and dur-
ing the weekends, two nights of eight hours of sleep were 
scheduled. During the missions three to five, an experimen-
tal lighting protocol was tested. One hour prior to sleep, 
the light was blue-depleted and two hours post sleep, the 
light was blue-enriched. Since only one mission (n = 4) was 
finished using the standard lighting protocol, the lighting 
procedures will not be included in the statistical analyses.

Every second day, the crew exercised either on a cycle 
ergometer or they performed toning and stretching exercises 
over a time period of 30 min, while the allowed HR during 
exercise was restricted to below 85% of their age adjusted 
maximum.

The subjects filled in a questionnaire about the general 
frequency of their exercising habits and their physical activi-
ties during the year before the first exercise test prior to the 
beginning of the mission.

Exercise test protocol

Before, during and after the mission, a standardized exer-
cise test was applied to determine the kinetics responses 
in the moderate exercise range. The tests were scheduled 
eight days before the start of the mission (MD-8), on day 22 
(MD22) and day 42 (MD42) of the mission, as well as four 
days after the mission ended (MD + 4). Eight hours ahead 
of the exercise test, the subjects stopped to consume alcohol 
and nicotine eight hours before, they stopped drinking caf-
feine four hours prior to the test and they started fasting two 
hours ahead of the beginning of the test. Additionally, eight 
hours before the test, no exercise was permitted and 24 h 
prior to the test session no maximal exercise was allowed. 
The exercise tests on MD22 were scheduled on day five of 
a sleep restriction period and MD42 was day four of a sleep 
restriction phase.

The exercise test was performed on a cycle ergometer 
(Lode Corival, Lode BV, Groningen, The Netherlands) 
and consisted of two parts: the first part started with the 
resting condition, followed by a 300 s phase at a low con-
stant exercise intensity (30 W), which was followed by 
two PRBS with dynamic WR changes (30 and 80 W) for 
300 s each. Thereafter, a constant phase of the higher WR 
(80 W) was applied for 300 s. The second part of the WR 
protocol was only performed on MD-8 and MD + 4. On 
these days, the WR was further increased to 100 W for one 
minute and afterwards WR was increased by 25 W every 
minute until fatigue (Fig. 1A).

Table 1  Anthropometric data of 
the crew

MD-8 8 days before the beginning of the mission, MD22 mission day 22, MD42 mission day 42, MD + 4 
4 days after the end of the mission

N = 14 MD-8 MD22 MD42 MD + 4

Mean SD Mean SD Mean SD Mean SD

Age (years) 37 7
Height (cm) 176 9
Body mass (kg) 73.4 14.6 72.3 13.8 72.3 13.8 72.3 13.5
BMI (kg  m2) 23.4 3.5 23.3 2.9 23.1 3.0 23.1 3.0
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During all tests, gas exchange was measured breath-
by-breath, using a metabolic cart (Metalyzer 3B, Cortex 
Biophysik GmbH, Leipzig, Germany), including the cor-
rections of Beaver et al. (1981) for alveolar gas exchange. 
The metabolic cart was calibrated according to the manu-
facturer’s guidelines, prior to all tests. HR was measured 
using an ECG (CustoGuard belt 3, CustoMed, Ottobrunn, 
Germany) and blood pressure was recorded beat-to-
beat via Portpares Model 2 (Finapres Medical Systems, 
Amsterdam, The Netherlands). Using the blood pressure 
values, stroke volume (SV) was calculated applying the 
Modelflow Algorithm of the beatscope software (Finapres 
Medical Systems, Amsterdam, The Netherlands), consid-
ering age, height and body mass.

Breath-by-breath data were interpolated step-wise and 
beat-to-beat data linearly to 1-s-intervals to obtain homog-
enous sampling.

Peak data of V̇O2 , HR and WR before and after the mis-
sion are reported as averages over the last 30 s before the 
termination of the WR protocol. The first VT  (VT1) was 
determined using the V-slope method in combination with 
the ventilatory equivalents and endtidal values of  O2 and 
 CO2, as suggested by Beaver et al. (1986).

To receive the kinetics information of the data, time-
series analysis was applied. The PRBS signal was auto-
correlated (ACF) and interpreted as a WR impulse (Ben-
nett et al. 1981). The Cross-correlation functions (CCFs) 
between WR and the respective parameters as i.e., HR and 
pulmonary V̇O2 ( V̇O2pulm ) were calculated and interpreted as 

Fig. 1  Description of the work 
rate (WR) protocol (A) and the 
kinetics analysis (B) before, 
during and after the mission. 
HR heart rate, V̇O2pulm pulmo-
nary oxygen uptake; V̇O2musc 
muscular oxygen uptake, MD-8 
day 8 before the start of the mis-
sion, MD + 4 four days after the 
end of the mission, CCFmax(x) 
maximum of the cross-corre-
lation function between WR 
and the respective parameter 
(x), CCF(x) cross-correlation 
function between WR and the 
respective parameter (x)



2525European Journal of Applied Physiology (2021) 121:2521–2530 

1 3

the parameters’ response to this WR impulse. The higher the 
maximum of the CCF  (CCFmax), the faster was the kinetics 
response. The greater the lag between the  CCFmax and the 
maximum of the ACF  (CCFlag), the more time delayed was 
the onset of the response (compare Fig. 1B). Muscular V̇O2 
( V̇O2musc ) was estimated from HR and V̇   O2pulm, using the 
approach of Hoffmann et al. (2013). In this method, a spe-
cific venous volume in combination with V̇O2 and perfusion 
of the remainder of the body is estimated to calculate transit 
times of the V̇O2musc signal from muscle to mouth.

Statistical analysis

Normal distribution of the respective parameters was tested 
applying the Kolmogorov–Smirnov test. If normal distri-
bution could be assumed, analysis of variance (ANOVA) 
with repeated measures on the factor day (MD-8, MD22, 
MD42, MD + 4) and Bonferroni post hoc tests were cal-
culated for the  CCFlag and  CCFmax values. In case normal 
distribution could not be assumed, Friedman tests with 
Wilcoxon post hoc tests were used and the False Discovery 
Rate correction procedure (Benjamini and Hochberg 1995) 
for multiple testing was applied. ANOVA with the factors 
day (MD-8, MD22, MD42, MD + 4) and step [Rest, 30 W, 
53.3 W (2xPRBS), 80 W] with repeated measures on both 
factors were applied to compare the mean values of HR, 
V̇O2pulm , mean arterial blood pressure (mBP), SV and car-
diac output ( Q̇ ). In case sphericity could not be assumed, 
the Huynh–Feldt correction was used to assess the inner 
subject effects. Bonferroni post hoc tests were applied, if 
appropriate. The Pearson product-moment correlation coef-
ficient (one-tailed) was calculated for normally distributed 
data to test for correlations. The level of significance was set 
to α = 5%. All statistical tests were performed using SPSS 
26 (IBM, Amonk, New York, USA).

Results

The results of the peak exercise test before and after the mis-
sion are shown in Table 2.

Over the 12 months prior to the start of the mission, the 
participants exercised 15 ± 6 times per month and about 
46 ± 33 min each day.

Comparing the mean values during the different WR steps 
of the exercise protocol, HR, V̇O2pulm , mBP and SV, but not 
Q̇ showed significant differences over time (see Table 3). 
Only HR showed a significant interaction for time × step 
(post hoc results are shown in Table 3). Independent of the 
steps during the WR protocol, V̇O2pulm was significantly 
higher at MD-8 compared with MD22 (p = 0.009) and MD42 
(p = 0.003). Similarly, mBP values were significantly higher 
at MD-8 in comparison with MD22 (p = 0.028) and MD42 

(p = 0.007). At MD-8, SV was significantly lower compared 
with MD42 (p = 0.031). Further post hoc results of the inter-
action effects (time × step) are shown in Table 3.

Comparing the  CCFmax and  CCFlag values of V̇O2musc , 
HR, V̇O2pulm and mBP between the different mission days, 
significant differences were observed for  CCFmax(HR) only 
(p = 0.008). Post hoc results are shown in Table 4.

Significant correlations were found between the change 
in V̇O2peak from MD-8 to MD + 4 and the baseline V̇O2peak 
values at MD-8 (r = − 0.614, p = 0.010; Fig. 2).

Further, the change in  CCFmax(V̇O2musc ) from MD-8 
to MD + 4 correlated significantly with the baseline value 
(MD-8) of  CCFmax(V̇O2musc ) (r = − 0.763, p = 0.001; Fig. 3).

Discussion

The aim of the experiment was to show the effect of 45 days 
of confinement in combination with the prescribed exer-
cise training and sleep restrictions on parameters of exer-
cise capacity and cardiorespiratory regulation. In accord-
ance with the proposed hypothesis, (i) neither V̇O2peak nor 
V̇O2musc kinetics changed significantly over the different test 
days during the HERA C4 missions. Therefore, the combi-
nation of confinement and sleep restrictions did not affect 
overall exercise capacity and the regulation of V̇O2musc . 
However,  CCFmax(HR) was higher during and after the mis-
sion, when compared with the values before the mission. 
Hence, HR kinetics can be interpreted as faster during and 
after the simulated space mission, which is in contrast to the 
established hypothesis of slower HR kinetics as a result of 
the combination of partial sleep deprivation and restricted 

Table 2  Peak values before and after the mission as well as exercise 
habits before the mission

MD-8 8 days before the beginning of the mission, MD + 4 4 days after 
the end of the mission, VT1 first ventilatory threshold, WRpeak peak 
work rate, HRpeak peak heart rate, V̇CO2peak peak carbon dioxide out-
put, V̇O2peak peak oxygen uptake, RERpeak peak respiratory exchange 
ratio, WR @ VT1 work rate at the first ventilatory threshold, HR @ 
VT1 heart rate at the first ventilatory threshold, V̇O2 @ VT1 oxygen 
uptake at the first ventilatory threshold

N = 14 MD-8 MD + 4 Sig

Mean SD Mean SD

WRpeak (W) 257 63 259 56 0.661
HRpeak  (min−1) 180 12 179 12 0.506
V̇CO2peak (L  min−1) 3.45 0.97 2.82 0.62 0.747
V̇O2peak (ml  kg−1  min−1) 37.79 5.85 38.92 4.62 0.221
RERpeak (a.u.) 1.23 0.07 1.21 0.06 0.486
WR @  VT1 (W) 163 34 182 36 0.033
HR @  VT1  (min−1) 156 19 156 13 0.826
V̇O2 @VT1 (L  min−1) 1.92 0.35 2.04 0.44 0.135
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physical activity during the confinement phase (ii). Further, 
absolute values of HR were higher before and after the mis-
sion, compared with the values during the mission.

Oxygen uptake–peak values and its regulation

The V̇O2peak values did not change significantly from 
MD-8 to MD + 4. Therefore, the applied exercise program 
was sufficient to mitigate the potentially deconditioning 
effects of lower physical activity throughout the 45 d of 
confinement in combination with sleep restrictions. How-
ever, the small but significant increase in WR of 20 W 
at  VT1 after the end of the mission (MD + 4), suggests 
a slightly increased exercise tolerance. Similar results 
were found for a submarine crew, living in confinement 

for 70 d. V̇O2peak did not change significantly, but  VT1 as 
a percentage of V̇O2peak increased after 8 weeks of endur-
ance exercise training, which is comparable to the effects 
of the exercise training program applied during HERA 
C4 (Bennett et al. 1985). However, correlation analyses 
revealed, that HERA crew members with greater V̇O2peak 
and faster V̇O2musc kinetics before the mission showed 
greater declines in the respective parameters after the 
mission. Moraes et al. (2018), analyzing V̇O2peak values 
of differently trained crew members (mountaineers and 
scientists) before and after an Antarctic field expedi-
tion reported comparable findings. Similar results were 
reported for Astronauts during spaceflight (Moore et al. 
2014): the V̇O2peak did not decrease in all crew members, 

Table 3  Means and standard deviations for the different steps of the work rate protocol

Phase phase of the test protocol, WR work rate, HR heart rate, V̇O2pulm pulmonary oxygen uptake, mBP mean arterial pressure, SV stroke vol-
ume, Q̇ cardiac output, MD-8 8 days before the beginning of the isolation period, MD22 Day 22 of the isolation period, MD42 Day 42 of the 
isolation period, MD + 4 4 days after end of the isolation period
a Significantly different to MD22
b Significantly different to MD42
c Significantly different to MD-8
d Significantly different to MD + 4

N = 14 Phase MD-8 MD22 MD42 MD + 4 Time Step Time × step

Mean SD Mean SD Mean SD Mean SD

HR  (min−1) Rest 86 11 80 8 79 14 86 10  < 0.001  < 0.001 0.009
30 97 13 a, b 88 11 c, d 87 11 c, d 95 11 a, b

53.3 109 15 a, b 97 13 c, d 96 11 c, d 105 13 a, b

53.3 113 17 a, b 99 14 c, d 99 13 c, d 109 14 a, b

80 130 21 a, b 111 13 c, d 111 13 c, d 125 18 a, b

V̇O2pulm (L  min−1) Rest 0.37 0.08 0.36 0.09 0.33 0.06 0.37 0.08 < 0.001 < 0.001 0.758
30 0.75 0.08 b 0.71 0.07 0.69 0.09 c 0.72 0.07
53.3 0.95 0.08 a, b 0.90 0.06 c 0.89 0.06 c, d 0.93 0.07 b

53.3 0.97 0.07 a, b 0.92 0.06 c 0.90 0.06 c 0.94 0.08
80 1.25 0.07 b 1.14 0.20 1.13 0.17 c 1.21 0.11

mBP (mmHg) Rest 95 14 89 12 87 8 91 9 0.001 < 0.001 0.087
30 105 12 a, b 90 12 c 89 6 c 94 10
53.3 105 12 a, b 93 12 c 92 7 c 96 10
53.3 104 11 a, b 92 10 c 90 8 c 95 9
80 105 13 a, b 93 11 c 93 9 c, d 99 9 b

SV (ml) Rest 68 19 68 14 73 19 75 15 0.045 < 0.001 0.227
30 82 31 96 26 97 34 92 18
53.3 87 32 b 99 24 108 35 c 97 21
53.3 91 30 102 25 105 28 96 19
80 94 31 99 27 102 35 101 19

Q̇ (L  min−1) Rest 5.83 1.53 5.39 1.29 5.79 2.12 6.27 1.41 0.652 < 0.001 0.296
30 7.89 2.85 8.44 2.42 8.35 3.00 8.26 2.88
53.3 9.31 2.88 9.55 2.62 10.25 3.16 9.91 2.80
53.3 10.02 2.73 9.96 2.46 10.23 2.54 10.37 2.36
80 11.97 3.35 10.91 3.15 11.10 3.37 12.36 2.54
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but those starting with higher levels of V̇O2peak were more 
prone to losses at the first inflight test, and those who 
maintained their preflight V̇O2peak values after return to 
Earth, spent about 80% of their inflight aerobic training 
time at ~ 80% of their maximum HR (Moore et al. 2014). 
For the HERA crew, training prescriptions should have 
been more customized for the individual training status of 
the crew members, to apply individually adequate train-
ing stimuli throughout the mission phase. Highly trained 

individuals need a higher training volume to sustain their 
personal fitness level, which is also known from longitu-
dinal ageing studies (Katzel et al. 2001).

The training effect, indicated by an increased WR at  VT1 
did not result in faster V̇O2musc kinetics. This suggests differ-
ent timelines for the adjustment of peak exercise capacities 
( V̇O2peak ), submaximal aerobic capacities  (VT1) and regula-
tory parameters (kinetics) at muscular level.

Table 4  Kinetics responses 
during the exercise test

V̇O2musc muscular oxygen uptake, HR heart rate, V̇O2pulm pulmonary oxygen uptake, mBP mean arterial 
pressure, MD-8 8 days before the beginning of the isolation period, MD22 Day 22 of the isolation period, 
MD42 Day 42 of the isolation period, MD + 4 4 days after the end of the mission, Sig significant effect
a Significantly different to MD-8 (p ≤ 0.05)
b Significantly different to MD22 (p ≤ 0.05)
c Significantly different to MD42 (p ≤ 0.05)
d Significantly different to MD + 4 (p ≤ 0.05)

N = 14 MD-8 MD22 MD42 MD + 4 Sig. for 
factor 
timeMean SD Mean SD Mean SD Mean SD

V̇O2musc CCFmax [a.u.] 0.35 0.05 0.35 0.05 0.38 0.06 0.35 0.05 0.354
CCFlag [s] 22 10 26 9 22 10 25 14 0.770

HR CCFmax [a.u.] 0.30b,c,d 0.06 0.36a 0.06 0.38a 0.06 0.35a 0.06 0.008
CCFlag [s] 24 29 19 6 26 21 21 18 0.142

V̇O2pulm CCFmax [a.u.] 0.35 0.06 0.35 0.06 0.35 0.04 0.34 0.05 0.781
CCFlag [s] 31 14 33 7 30 11 36 15 0.326

mBP CCFmax [a.u.] 0.25 0.07 0.28 0.09 0.26 0.05 0.23 0.04 0.216
CCFlag [s] 108 73 116 94 73 77 88 86 0.653

Fig. 2  Correlation (r = − 0.614, p = 0.010) between peak oxygen 
uptake ( V̇O2peak)on MD-8 and the difference in V̇O2peak from pre 
to post test. Negative values on the ordinate indicate decreases in 
V̇O2peak from pre to post test (N = 14). MD-8: 8 days before the begin-
ning of the mission, MD + 4: 4 days after the end of the mission

Fig. 3  Correlation (r = − 0.641, p = 0.007) between muscular oxygen 
uptake kinetics  (CCFmax ( V̇O2musc )) on MD-8 and the difference in 
 CCFmax ( V̇O2musc ) from pre to post test. Negative values on the ordi-
nate indicate lower  CCFmax ( V̇O2musc ) from pre to post test (N = 14). 
MD-8: 8  days before the beginning of the mission, MD + 4: 4  days 
after the end of the mission
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Heart rate–mean values and regulatory aspects

In comparison with the pre and post-tests, mean HR val-
ues during the constant phases of the WR protocol dur-
ing the mission phase were lower. However, HR kinetics 
at MD-8 were slower compared with MD22, MD42 and 
MD + 4. Hence, changes in the absolute HR values during 
the WR step and the speed of adjustment of HR (kinetics) 
in response to increased metabolic demands are not similar. 
Regarding the altered regulatory behavior of HR, a train-
ing effect of the exercise countermeasure can be concluded, 
which is not evident in the mean values of HR. Therefore, 
two aspects should be considered: (1) a training effect via the 
exercise countermeasure and (2) autonomic system changes 
caused by reduced external stimuli. Regarding the effect of 
the exercise countermeasure (1), the accelerated HR kinetics 
starting at MD22 are in accordance with the increased WR 
at VT1 after the end of the mission (MD + 4). For compari-
son, after bed rest, HR kinetics were significantly slowed as 
a result of deconditioning (Koschate et al. 2018) and were 
correlated with changes in V̇O2peak in astronauts before and 
after their mission to the International Space Station (Hoff-
mann et al. 2016). After 12 weeks of endurance exercise 
training, HR kinetics were accelerated in a group of male 
type 2 diabetes patients (Koschate et al. 2016a). Hence, HR 
kinetics seem to be a sensitive parameter to observe changes 
in cardiovascular regulation in response to exercise train-
ing stimuli. These training effects were not visible in the 
mean values of HR during the exercise test throughout the 
HERA missions. Considering the potential changes in the 
autonomic nervous system due to the confinement phase (2), 
either a higher parasympathetic system activity during the 
mission or an increased sympathetic system activity before 
and after the mission (Coote 2010) should be considered, 
which might (although not statistically significant between 
MD42 and MD + 4) also slightly dampen the potential train-
ing effect, which was observed for HR kinetics at MD42. 
During Russian confinement experiments with durations 
of 120 and 520 d (Vigo et al. 2012, 2013), a greater HRV 
and reduced cortical activation levels were reported (Weber 
et al. 2020; Jacubowski et al. 2015). Greater HRV was sug-
gested to be influenced by boredom, artificial light or greater 
parasympathetic system activity during isolation (Vigo et al. 
2012, 2013). These circumstances might have altered the 
exercise HR during the HERA C4 missions as well.

In experiments, applying acute and chronic (partial) sleep 
deprivation, reduced HR variability, higher HR, increases 
in sympathovagal activity and decreases in vagal activity 
in the resting condition and/or during sleep were described 
(Tobaldini et al. 2017a, b; Dettoni et al. 2012; Glos et al. 
2014; Fogt et al. 2011; Liu et al. 2015). Dettoni et al. (2012) 
found increased sympathetic activity in the resting supine 
position after only five nights of partial sleep restriction, 

which is comparable to the HERA campaign (5 h). Using 
linear mixed-effects models, significant linear relationships 
were found between fatigue level and HRV (Fogt et al. 
2011). This is in contrast to the observed cardiovascular data 
during exercise in this experiment. The findings of the pre-
sent experiment, supported by the data of Vigo et al. (2012, 
2013) suggest, that the effect of confinement and reduced 
external stimuli in combination with the applied exercise 
countermeasure during the simulated mission to an asteroid 
might have had a greater effect on the cardiovascular sys-
tem, than partial sleep deprivation. Therefore, partial sleep 
deprivation, at least when combined with the applied exer-
cise countermeasure does not yield negative effects regard-
ing the regulation of the cardiovascular system at moderate 
WR intensities. In line with this, no correlations were found 
between baseline V̇O2peak , V̇O2musc or pre to post changes in 
these parameters with HR kinetics.

Limitations

No further parameters to explain the lower HRs during the 
mission compared with the pre and post mission values 
were assessed. Therefore, it remains unclear whether the 
sympathetic nervous system activity was increased before 
or decreased during the mission and vice versa, whether the 
parasympathetic system activity was higher during or lower 
before and after the mission. The effect of confinement on 
cardiorespiratory fitness, cannot be evaluated separately 
from the effect of sleep restrictions, since no test during the 
mission was performed after recovery sleep.

Two participants had to terminate the test early, because 
they exceeded threshold values for HR or blood pressure, 
which were set by the NASA medical board. Hence, for 
future confinement experiments, a further reduction of the 
applied WR intensities should be considered.

Conclusions

The kinetics of HR were significantly faster during and at the 
end of the simulated space mission including sleep depriva-
tion, compared to the values before the mission. Therefore, 
HR kinetics seem to indicate changes in cardiovascular regu-
lation very sensitively. Absolute values of HR during the 
exercise test followed a different timeline, with higher val-
ues before and after the mission. Changes in V̇O2musc kinet-
ics and V̇O2peak were not significant, but less fit individuals 
seemed to benefit more from the applied exercise training 
countermeasure, than crew members with a high baseline 
fitness level. Hence, for future missions, the exercise coun-
termeasure protocol should be intensified for people with a 
higher fitness status. The applied exercise test seems promis-
ing for the evaluation of the cardiovascular and respiratory 



2529European Journal of Applied Physiology (2021) 121:2521–2530 

1 3

system during circumstances where medical support is not 
consistently available, or in patients where maximal exercise 
intensities are not suitable, since it requires only moderate 
WR intensities and only a short amount of time. Especially, 
HR kinetics should be investigated in more detail. The kinet-
ics of HR are simple to assess during exercise and provide 
more sophisticated information about the status of the car-
diovascular system, than absolute values of HR alone.
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