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Nitrogen fixation sustained productivity in the wake
of the Palaeoproterozoic Great Oxygenation Event
Genming Luo1,2, Christopher K. Junium3, Gareth Izon2, Shuhei Ono2, Nicolas J. Beukes4, Thomas J. Algeo1,5,6,

Ying Cui7, Shucheng Xie1 & Roger E. Summons2

The marine nitrogen cycle is dominated by redox-controlled biogeochemical processes and,

therefore, is likely to have been revolutionised in response to Earth-surface oxygenation. The

details, timing, and trajectory of nitrogen cycle evolution, however, remain elusive. Here we

couple nitrogen and carbon isotope records from multiple drillcores through the

Rooihoogte–Timeball Hill Formations from across the Carletonville area of the Kaapvaal

Craton where the Great Oxygenation Event (GOE) and its aftermath are recorded. Our data

reveal that aerobic nitrogen cycling, featuring metabolisms involving nitrogen oxyanions, was

well established prior to the GOE and that ammonium may have dominated the dissolved

nitrogen inventory. Pronounced signals of diazotrophy imply a stepwise evolution, with a

temporary intermediate stage where both ammonium and nitrate may have been scarce. We

suggest that the emergence of the modern nitrogen cycle, with metabolic processes that

approximate their contemporary balance, was retarded by low environmental oxygen

availability.
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N itrogen is an essential component of amino acids,
nucleotides and other compounds central to the cellular
metabolism. Although nitrogen is one of the most

abundant terrestrial elements—comprising 78% of the Earth’s
present atmosphere as N2—it can only be biologically assimilated
in certain oxidised (e.g., NO3

−) or reduced (e.g., NH4
+) forms.

Thus, bioavailable nitrogen is a key nutrient influencing primary
productivity, thereby linking global biogeochemical cycles and the
Earth’s climate1,2.

The contemporary marine nitrogen cycle, in which nitrate is
the dominant bioavailable nitrogen species, is overwhelmingly
governed by biological processes3. Microbial nitrogen fixation by
diazotrophs, reducing atmospheric N2 to ammonia, is the pri-
mary source of bioavailable nitrogen and likely had its roots in
the Mesoarchaean4. In the presence of oxygen, ammonium
formed via organic matter remineralisation undergoes a stepwise
oxidation to nitrite (NO2

−) and ultimately to nitrate (NO3
−;

nitrification), mediated by aerobic ammonium/ammonia-oxidis-
ing bacteria (AOB), archaea (AOA) or methanotrophs5,6. In the
largely oxygenated contemporary ocean, nitrification is quanti-
tative3. Once oxidised, however, bioavailable nitrogen can then be
lost in oxygen-deficient settings by denitrification (dissimilatory
nitrate reduction) and/or anaerobic ammonium oxidation (ana-
mmox; ammonium oxidation coupled to nitrite reduction). These
are the principal sinks for bioavailable nitrogen in the present-day
ocean3,7.

In the absence of oxygen, ammonium remains stable and can
accumulate in deep waters, as exemplified by the anoxic water
column of Framvaren Fjord, Norway, which supports ammonium
concentrations in excess of 1 mM8. It follows, therefore, that in
the oxygen-free early Archaean9,10, the nitrogen cycle would have
been relatively simple and vastly different from its contemporary
counterpart3. Ammonium would have been the predominant
form of fixed nitrogen and would have been both assimilated
directly and recycled within the water column11. Given this
intrinsic link between environmental oxygen availability and
nitrogen cycling, the timing of the transition from an anaerobic to
an aerobic nitrogen cycle (i.e., featuring metabolisms involving
nitrogen oxyanions) has been used as a line of evidence to con-
strain the minimum age of the emergence of oxygenic
photosynthesis12,13.

Although the early Earth’s marine nitrogen cycle was almost
certainly different from today’s, the timing and trajectory of the
transition towards a modern nitrogen cycle (the relative impor-
tance of the metabolisms in the nitrogen cycle are similar to those
in the modern ocean) remains poorly understood. For example, a
recent study proposed that the aerobic nitrogen cycle emerged
and stabilised in the immediate aftermath of the Great Oxyge-
nation Event (GOE)14. This model, however, is not universally
accepted, with others favouring a more protracted evolution.
Specifically, Fennel et al.15, and others since3,16, proposed that the
early anaerobic nitrogen cycle evolved to today’s aerobic
equivalent in a more protracted or stepwise manner. Beginning
with an ammonium-dominant stage, extremely oxygen-deficient
(<11 μM) conditions are thought to have resulted in less efficient
nitrification (versus denitrification), stabilising ammonium as the
dominant bioavailable nitrogen species. Ushered in by moderate
increases in environmental oxygen availability, the second stage is
thought to have featured nitrification in more oxygen-replete
surface waters and quantitative denitrification in adjacent
oxygen-deficient deep waters. During this stage, both ammonium
and nitrogen oxyanions (nitrate and nitrite) were destabilised,
instigating a hypothetical nutrient deficiency—a ‘nitrogen fam-
ine’. Finally, in the third stage, progressive ventilation of the deep
oceans led to the establishment of a nitrogen cycle where both

nitrate and nitrite were stabilised as dominant bioavailable
nitrogen species.

The transition between successive stages in the evolution of the
nitrogen cycle was undoubtedly complex and remains poorly
known. Despite these difficulties, nitrogen cycling can be tracked
by determining the nitrogen isotopic composition of sedimentary
organic phases, which can be applied to illuminate processes
active in both recent and ancient oceans alike17,18. Biologically
mediated redox cycling exerts the dominant control on the δ15N
of dissolved nitrogen species, which is ultimately communicated
to the geological record after biological assimilation18. These
principles were recently applied to reveal how the GOE impacted
nitrogen cycling ~2300 million years ago (Ma) through the upper
Rooihoogte and lowermost Timeball Hill Formations14.

Building on this initial study, we determined the δ15Nkerogen,
δ15Nbulk and δ13Corg from an extended stratigraphic succession
spanning the upper Rooihoogte to upper Timeball Hill forma-
tions in three drillcores (EBA-2, EBA-4 and KEA-4, separated by
~5 km; Methods) from the Carltonville area of South Africa
(Fig. 1), which record the first irreversible rise in atmospheric pO2

above 10−5 present atmospheric levels (PAL)19,20. Geochrono-
logical constraints (Fig. 1)21,22 suggest that the uppermost part of
the upper Timeball Hill Formation is roughly correlative with the
prelude of the oxygen overshoot inferred to have occurred during
the Lomagundi event (~2220–2060Ma)23–26. Thus, the investi-
gated succession spans the first increase in atmospheric pO2 from
near zero to potentially significantly elevated levels23, providing a
unique opportunity to examine the evolution of the marine
nitrogen cycle in response to evolving atmospheric chemistry.

Our study reveals that aerobic nitrogen cycling was established
prior to the disappearance of sulphur mass-independent fractio-
nation (S-MIF); however, the evolution towards its modern
counterpart was far from simple, negotiating an ephemeral
interval of bioavailable nitrogen scarcity. Rather than instigating a
nitrogen famine, promoted by rising environmental oxygen
availability, diazotrophy was sufficient to replenish bioavailable
nitrogen losses and sustain primary productivity in the wake of
planetary oxygenation.

Results
Chemostratigraphic trends. With few exceptions, the δ13Corg

values from all three of the studied cores range from ‒36 to ‒32‰
(Supplementary Table 1), consistent with typical lower Proter-
ozoic values (Figs. 2 and 3)27. A modest increase, from −33 to ‒
31‰, is observed between the S-MIF interval and the overlying
transitional interval, followed by a negative shift to ‒36‰ directly
after the disappearance of S-MIF (Fig. 2). Above this stratigraphic
level, throughout the Timeball Hill Formation, the δ13Corg values
are relatively stable at ‒32.3 ± 0.8‰ (1σ; n= 31; Fig. 3). This
pattern of stabilised δ13Corg is similar to that reported by Zerkle
et al.14 (Fig. 3), but differs from the record of Coetzee et al.28, who
reported greater variability. This difference may reflect a slight
lithofacies dependency, given that we targeted mainly organic-
rich mud rocks and Coetzee et al.28 analysed a more diverse range
of lithologies.

The bulk (δ15Nbulk) and kerogen (δ15Nkerogen) nitrogen isotope
profiles show similar intra- and inter-core stratigraphic trends
(Figs. 2 and 3). Kerogen δ15N values are consistently depleted by
2 to 4‰ compared with δ15Nbulk values for the same sample. The
magnitude of this offset is variable and less pronounced in the
Timeball Hill Formation relative to the Rooihoogte Formation. In
the S-MIF and transitional interval, δ15Nkerogen values vary
around +3.8 ± 0.85‰ (1σ; n= 19; Fig. 2). Concurrent with the
loss of S-MIF, both δ15Nkerogen and δ15Nbulk increase to +7 and
to +9‰ in the lowermost Timeball Hill Formation and then
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recover to +5 and to +7‰ throughout the remainder of the
lower Timeball Hill Formation, respectively (Figs. 2 and 3).
Except for one sample in core EBA-4, the transition from the
lower to upper Timeball Hill Formation is marked by
pronounced ~4‰ negative shifts in both δ15Nbulk and δ15Nkero-

gen, with δ
15
Nkerogen declining to +1.1‰ ± 1.35‰ (1σ; n= 17). In

the uppermost part of the Timeball Hill Formation, a small
increase in δ15Nkerogen is observed in cores EBA-2 and EBA-4 but
not in core KEA-4, which may reflect sampling biases given the
different resolutions of the records.

The fidelity of the isotope records. The analysed samples lack
obvious evidence for hydrothermal alteration and are surprisingly
well preserved given their age29. The absence of significant rela-
tionship between δ13Corg and total organic carbon (TOC)
(Fig. 4a) suggests that thermal alteration is unlikely to have sig-
nificantly altered the δ13Corg of the studied samples, and the
samples lack a significant detrital organic carbon component30.

Both early and late diagenetic processes have the potential to
alter original δ15Nkerogen values17. It has been shown that the
δ15N of surface sediments approximates that of sinking organic
particles in areas with high sediment accumulation rates, high
organic matter content and reducing bottom-water conditions31.
The expected high sedimentation rates in a deltaic sedimentary
environment, and the relatively high TOC content (1.5 ± 1.9 wt.%;
1σ) of the studied samples, suggest that early diagenesis probably
had a limited effect on δ15Nkerogen. The high C/Nkerogen ratios
(245 ± 120, n= 75) are similar to those from other Archaean and
lower Palaeoproterozoic successions and are consistent with
nitrogen loss during mild post-depositional thermal altera-
tion12,13,32. Given that the Carletonville strata experienced only
lower greenschist metamorphism28, thermal alteration is not
expected to have increased δ15N by more than~1 to 2‰33,34. This
inference is braced by the lack of significant correlations between
δ15Nkerogen and [N kerogen] (Fig. 4b), and δ15Nkerogen and C/
Nkerogen (Fig. 4c), which is consistent with evidence suggesting
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that δ15N values remain largely impervious to heating despite
large increases in C/Norg ratios35. Additionally, high C/N ratios
typify black shales throughout the Phanerozoic and are a known
by-product of high organic content and diffusion of ammonium
out of the sediment during early diagenesis36.

Bulk sedimentary nitrogen consists not only of organic
nitrogen but also of ammonium adsorbed to, and trapped within,
the interlayers of clay minerals after substitution for potassium.
Generally, ammonium originates from in situ deamination of
organic nitrogen, a process that does not result in significant 15N
fractionation37. Clay-hosted ammonium, however, may also have
an allochthonous source, originating from either detrital clays or
metamorphic/diagenetic fluids. Inclusion of ammoniacal-
nitrogen from any of these sources may consequently mute or
obscure the primary marine δ15N signal. In our sample set,
interaction with diagenetic fluids and uptake of ammonium onto
mineral surfaces/interlayer sites may have lowered the Corg/Nbulk

of some samples; however, this only becomes a major concern
when δ15Nbulk deviates significantly from δ15Nkerogen values38,
which is clearly not the case here. Importantly, previous work
from core EBA-2 has shown there is no significant correlation
between potassium abundance and δ15Nbulk, suggesting that any
hypothetical nitrogen exchange did not significantly affect the
original δ15Nbulk values14.

Covariation between δ15N and C/H ratios has recently been
used to argue for a thermally driven intra-sample equilibrium
effect, which lowers δ15NKerogen by ~2‰ in rocks that have
experienced lower-greenschist facies metamorphic histories39.
Consistent with this inference, where we have available coupled
δ15NKerogen and δ15NBulk data, Δ15N (=δ15NKerogen− δ15NBulk)
values vary around −1.3 ± 1.3‰. This close agreement between
δ15Nbulk and δ15Nkerogen (Figs. 2 and 3) demonstrates that neither
nitrogen pool has experienced significant nitrogen addition, and
instead both have experienced typical post-depositional histories,
with their respective δ15N values closely approximating that of
the precursor biomass.

Discussion
Prior to the advent of oxygenic photosynthesis, the Earth’s
nitrogen cycle operated in an almost entirely anaerobic mode,
dominated by diazotrophy and ammonification17,18. Diazotrophy
is typically accompanied by a small nitrogen isotopic fractiona-
tion, whose magnitude is prescribed by the specific nitrogenase
responsible for nitrogen fixation (‒7 to 0‰)4,40. While microbial
culture experiments indicate that trace metal availability can alter
the magnitude of the nitrogen isotopic fractionation associated
with diazotrophy, they demonstrate that nitrogen fixation is
unlikely to produce biomass with a δ15N much higher than 0‰
41,42. Likewise, remineralisation of diazotrophic biomass carries
no appreciable isotope effect (~−1‰)18, and simply serves to
shuttle 15N-depleted ammonium to the deep ocean. By contrast,
the large fractionation associated with ammonium assimilation
(>15‰)43 produces strongly 15N-depleted biomass, with δ15N
values lower than the precursor ammonium, as is sometimes
suggested for the Archaean record11,14. Although ammonium
dissociation to ammonia and degassing could conceivably pro-
duce positive δ15N values under an anoxic atmosphere44, it
requires a high pH and is therefore unlikely to have operated
outside of atypical and isolated evaporative lacustrine settings45.
Consequently, the emergence of positive δ15N values (>3‰) in
well-preserved and unaltered sedimentary rocks from open-
marine settings is generally interpreted as the isotopic fingerprint
of an aerobic nitrogen cycle, constraining when nitrate first
formed part of the dissolved nitrogen inventory11–14.

It is striking that while S-MIF persists into the early Palaeo-
proterozoic9,20,46, Archaean sequences commonly feature positive
δ15N values11,18. Although ammonium oxidation to N2 by ferric
oxyhydroxides may produce positive δ15N values, the magnitude
of this fractionation remains uncertain47. Moreover, it is unlikely
to have been of significance in the examined cores given their low
ferric oxyhydroxide contents14. Therefore, despite the anoxic
backdrop, the preferred explanation of these positive δ15N values
commonly invokes the intermittent operation of an aerobic
nitrogen cycle12–14,32. The sustained positive δ15Nbulk and
δ15Nkerogen values preserved in the lower part of all three exam-
ined cores (Figs. 2 and 3), in association with pronounced S-
MIF20, imply that nitrification was active and was at least
regionally pervasive prior to the accumulation of atmospheric O2

above 10−5 PAL10, consistent with the earlier inferences drawn by
Zerkle et al.14 Given the diminishingly low atmospheric oxygen
contents necessitated by the persistence of S-MIF (<10−5 PAL)10,
and the correspondingly short half-life of oxygen in the highly
reducing pre-GOE atmosphere (~9 h)48,49, aerobic nitrogen
cycling, and thus dissolved nitrate availability, must have been
spatially variable and confined to sites of nutrient availability and
active oxygenic photosynthesis—so-called ‘oxygen oases’50. Thus,
the advent of oxygenic photosynthesis must have significantly
predated the GOE, and the positive δ15N values in the Archaean
record might constitute some of the earliest evidence for inter-
mittent biogenic oxygen production12,13.

In detail, multiple metabolic processes within the aerobic
nitrogen cycle produce 15N-enriched biomass. Nitrification, for
example, produces 15N-depleted nitrate while simultaneously
driving the residual ammonium pool to more positive δ15N
values51–53. Similarly, denitrification and anammox preferentially
shuttle 14N to the atmosphere as N2, concomitantly increasing the
δ15N of the residual dissolved nitrogen oxyanion pool7,54. In
present-day marine settings, the fractionation accompanying
nitrification is typically not expressed owing to rapid and quan-
titative ammonium oxidation to nitrate7, leaving nitrogen losses,
via either denitrification and/or anammox, as the dominant
control on the δ15N of dissolved inorganic nitrogen7. By analogy,
the positive δ15N values observed in the prelude to the GOE,
reflected in the basal part of our record, have been ascribed to
complete nitrification coupled with incomplete denitrification11–
14. While we acknowledge that most of the processes central to
the modern nitrogen cycle (eg, diazotrophy, nitrification and
denitrification) had almost certainly evolved by the late
Archaean4,14, their relative importance remains unresolved. This,
in turn, leaves an open question: How did the nitrogen cycle
evolve in the aftermath of the GOE?

Even directly after the termination of S-MIF, the chemical
composition of the early-Palaeoproterozoic ocean–atmosphere
system would have remained vastly different from its present-day
counterpart, with low atmospheric pO2 and a ferruginous and
ammonium-rich deep ocean55. At low oxygen concentrations
denitrification outpaces nitrification resulting in quantitative loss
of nitrite and nitrate. Modelling approaches suggest denitrifica-
tion outpaced nitrification when dissolved oxygen concentrations
were <~11 μm15, yet the threshold value where ammonium
concentrations exceed nitrate concentrations can be substantially
higher in contemporary anoxic settings (~35 μm)8. Admittedly,
evaluating the absolute oxygen contents of the Palaeoproterozoic
surface ocean remains difficult; however, dissolved oxygen con-
centrations were certainly low before and in the immediate
aftermath of the GOE, encroaching on the threshold where
nitrate/nitrite losses exceeded their replenishment56–58. Given
these boundary conditions, with a potentially large ammonium
reservoir at depth, localised rapid and quantitative denitrification
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of a relatively small standing nitrate reservoir may have mini-
mised denitrification’s characteristic isotope effect.

Alternatively, the isotope effect associated with nitrification
may have been more important than it is today, and offers
another explanation for the positive δ15N values observed in the
Carletonville records. In regions where the chemocline was
relatively shallow, ammonium may have been the preferred
bioavailable nitrogen species, especially given that ammonium
suppresses the expression of nitrate reductase and the genes that
regulate nitrate assimilation59. This explanation, although not
universally accepted45, has been proposed previously to explain
the extreme positive δ15N values recorded in the 2.7 billion-year-
old Tumbiana Formation32. Given this oxygen-poor backdrop,
the nitrogen cycle would have been subtly different and could
have been both spatially and diurnally variable. Despite the pre-
valence of ammonium, in regions of active photosynthetic activity
and O2 production, nitrate may have been stable and utilised by
phytoplankton as their preferred nitrogen-substrate. Taken
together, we argue that, at least initially, the positive δ15N values
seen at and around the termination of S-MIF could have origi-
nated from a combination of incomplete nitrification, as well as
incomplete denitrification as others have proposed11–14. This
represents a subtle but distinct difference in the operation of the
Palaeoproterozoic nitrogen cycle relative to its present-day
counterpart (Fig. 5a). We concede, however, that unequivocally
discriminating between incomplete nitrification and denitrifica-
tion as a source of the positive δ15N values is impossible. Spec-
ulatively, we suggest that the former surrendered to the latter,
which attained dominance as the Earth’s surface became more
oxidised as shown by the stratigraphic δ15N evolution of the
Carletonville records (Figs. 2 and 3).

Throughout the Rooihoogte Formation and up into the low-
ermost Timeball Hill Formation, δ15Nkerogen values increase from
around +2 to +8‰, while δ15Nbulk values increase from around
+6 to +9‰ (Fig. 2). These chemostratigraphic trends are
accompanied by a decrease in δ13Corg and δ34Spyrite, consistent
with increased surface-water oxygen production/availability in
turn promoting aerobic nitrogen cycling, oxidation of 13C-
depleted carbon phases (eg, methane or dissolved organic car-
bon), as well as an increase in the marine sulphate inventory20.
These coeval isotopic changes argue for a strong yet evolving
connection between the biosphere and the chemical composition
of the atmosphere and ocean, whereby the chemical evolution of
Earth’s surficial environments influenced the emergence and
distribution of ecological niches, not to mention the metabolisms
that filled them. Previously, a negative correlation between
δ13Corg and δ15Nkerogen was used to argue that aerobic metha-
notrophy mediated nitrification in the 2.7 billion-year-old
Tumbiana Formation32. Aerobic methanotrophy, however, is
unlikely to have been important in the Carletonville area over the
examined time interval because the δ13Corg values are incom-
patibly high (>−37‰), and there is no significant correlation
between δ13Corg and δ15Nkerogen (Fig. 4d). Therefore, we suggest
that AOB and/or AOA were the most likely nitrifiers in this part
of the Palaeoproterozoic ocean.

Punctuating the increase in δ15N, in concert with the loss of S-
MIF, δ15Nkerogen values are initially extremely variable in core
EBA-2 (+1 to +12‰; Fig. 2)14; a trend that is mirrored in the
other cores, although admittedly at a lower resolution and mag-
nitude (Fig. 2). Given the transiency of the observed δ15N vola-
tility, the associated nitrogen cycle instability was likely a product
of regional water column dynamics and variable redox condi-
tions. Indeed, Fe-speciation data from the basal 20–40 m of core
EBA-2 implicate predominantly anoxic (euxinic/ferruginous)
depositional conditions, with occasional relaxations toward oxic
deposition14. Consequently, the decimetre-scale 6–8‰ negative

δ15Nkerogen excursions can be explained by the occasional injec-
tion of ammonium-rich anoxic deep-water into the photic zone.
Alternatively, denitrification and concomitant nitrogen limitation
could have also periodically stimulated diazotrophy, whose iso-
tope effect would have been more pronounced if nitrogen-
deficient and Fe2+-replete waters were emplaced from depth41.
Following the initial variability, δ15Nkerogen values stabilise
around 5.6 ± 1.5‰ in the lower Timeball Hill Formation (Fig. 3).
In this interval, although Fe-speciation data imply localised oxic
conditions14, geochemical proxies (eg, iodine speciation and
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Fig. 5 Schematic model of the evolving marine nitrogen cycle in response to
increasing atmospheric pO2. a shows the pre-GOE to early GOE (dissolved
O2 content < 11 μM; first stage of Fennel et al.15), when the rate of nitrate
loss via denitrification exceeded its replenishment via nitrification. Here,
ammonium was relatively stable and potentially served as the main source
of biologically available nitrogen. b depicts the nitrogen cycle after a further
increase in environmental oxygen availability (dissolved O2 content > 11 μM;
potentially second stage of Fennel et al.15), with quantitative nitrification and
denitrification destabilising nitrate and ammonium. Microbial nitrogen fixation
served as the main source of biologically available nitrogen. c depicts the
contemporary nitrogen cycle dominated by nitrate in a predominantly
oxygenated ocean. We hypothesise that a encompasses the upper
Rooihoogte Formation to the lower Timeball Hill Formation, b encompasses
the lower part of the upper Timeball Hill Formation and c represents the
uppermost Timeball Hill Formation and following Lomagundi event.
Geochemical evidence suggests that any rise in atmospheric oxygen was
transient and confined to the Lomagundi interval, decreasing in its immediate
aftermath55. Widespread deep-ocean oxygenation was a much later
phenomenon beginning in the Neoproterozoic; therefore, c represents a
transient state that was not seen for perhaps 1.5 billion years
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selenium isotope ratios)57,58 and modelling approaches indicate
that the global ocean remained stratified with anoxic water
beneath oxygen-deficient surface waters (≤10 µM O2)57. These
data, therefore, require the operation of nitrification, but we are
unable to unequivocally decipher whether the positive δ15N
values were a product of an ammonium precursor.

Further up-section, the decrease and stabilisation of δ15N
values to around 0‰ in the upper Timeball Hill Formation
(Fig. 3) requires yet another nitrogen cycle adjustment within the
Transvaal Bain. Here, the low δ15N values are consistent with a
significant diazotrophic input to the bioavailable nitrogen pool
(Fig. 5b). Considering that nitrogen fixation is energetically
expensive, these isotopic data imply that the regional bioavailable
nitrogen pool had likely been exhausted. In the context of an
evolving nitrogen cycle, the transition to diazotrophy in cores
separated by upwards of 5 km may provide the first evidence
chronicling the inception of widespread nitrogen limitation—a
nitrogen famine—driven, perhaps, by redox-controlled bioavail-
able nitrogen loss, as hypothesised by Fennel et al.15. A corollary
of the postulated nitrogen famine15 is that rising oxygen avail-
ability prompted quantitative nitrification in the surface ocean as
the ocean’s interior remained predominantly anoxic57. Geo-
chemical data are consistent with these prerequisites, and suggest
that dissolved oxygen concentrations were higher during
deposition of the upper Timeball Hill Formation relative to its
older lithostratigraphic counterpart26,60,61.

The global expression of nitrogen limitation, and the feasibility
of a widespread nitrogen famine, is dependent on the global
balance between nitrogen losses via canonical denitrification, its
retention as ammonia following dissimilatory nitrate reduction62,
and its replenishment via diazotrophy. The secular evolution of
P/Fe ratios suggests that dissolved phosphate remained replete
throughout the early Palaeoproterozoic and that non-ferrous
trace metals may have been biolimiting63. Conceptually,
enhanced metal sequestration beneath a euxinic water column,
driven by enhanced sulphate availability, was envisaged to have
dampened trace metal inventories in the wake of the GOE64.
Given that molybdenum is an essential enzymatic-cofactor in
nitrogen fixation4, it has been proposed that molybdenum and
nitrogen co-limitation could have curtailed biological activity
throughout the mid-Proterozoic64. Cyanobacterial metal limita-
tion experiments, however, demonstrate that contemporary
nitrogen fixation rates can be maintained at vanishingly low
molybdenum concentrations (~5 nM)65,66, which approximate
those predicted for Proterozoic oceans67. Given that molybdenum
concentrations encroached on levels where co-limitation could
have occurred, the Mo-N co-limitation hypothesis cannot be
unequivocally dismissed. Nevertheless, several lines of evidence
suggest that diazotrophy could keep pace with bioavailable
nitrogen losses, sustaining primary productivity in this part of the
Palaeoproterozoic ocean.

The continued and prodigious release of O2 necessitated by the
Lomagundi carbon isotope excursion23, requires quantitative
recycling of organic nitrogen and/or pervasive diazotrophy.
Consequently, extrapolating our observations outside of the
Carletonville area, we hypothesise that enhanced phosphorous
availability—derived from enhanced weathering68 coupled with
intensified redox-promoted recycling69,70—associated with evol-
ving ocean–atmospheric chemistry55,61, was capable of sustaining
widespread, and potentially more efficient diazotrophy16,
replenishing the lost nitrate and preventing any long-lived
nitrogen famine. The poorly defined positive shift in the upper-
most part of the upper Timeball Hill Formation (Fig. 3), in the
prelude to the Lomagundi oxygen overshoot (Fig. 1)22, is also
consistent with short-lived nitrate scarcity. Here δ15N values
approximate those of contemporary dissolved nitrate (~4‰),

which tentatively suggest increasing denitrification, consistent
with contraction of anoxia and partial oxygenation of the deep
ocean24,25,57,58. Consequently, we argue that any hypothetical
nitrogen famine would have been a transient Earth-system state,
and would have most likely been terminated by the onset of the
Lomagundi Event (~2220Ma). Therefore, assuming the decrease
in δ15N values to around 0‰ represents a global nitrogen cycle
response, constrains any potential nitrogen famine to
~2250–2220Ma.

Further increases in atmospheric pO2, during the Lomagundi
interval and beyond, would have ultimately stabilised dissolved
nitrogen oxyanions and ushered in a nitrogen cycle more remi-
niscent of the present day (Fig. 5c). This newly plentiful nitrate
has been suggested to have catalysed the diversification of nitrate-
assimilating cyanobacteria and potentially the emergence of
eukaryotes14; yet, was apparently insufficient to expedite the
proliferation of eukaryotes71. High-resolution δ15N studies, par-
ticularly in the prelude and aftermath of the Lomagundi event,
are required to test our inferences and more completely explore
whether the evolution of the marine nitrogen cycle was uni-
directional, or whether it was spatio-temporally dynamic, as
might be predicted from consideration of other oxygen sensitive
proxy records55,58. Coupling more complete δ15N records with
biomarker and molecular clock approaches will further refine our
understanding of the ancient nitrogen cycle, providing insight
into the emergence and proliferation of specific metabolisms
responsible for nitrogen cycling—unveiling the timing, tempo
and trajectory of when the nitrogen cycle became ecologically
modern.

Methods
Samples and geological background. The samples from the upper Rooihoogte to
uppermost Timeball Hill formations were collected from cores KEA-4, EBA-4 and
EBA-2, which were drilled in the Carltonville area of South Africa (Fig. 1). Details
about the sedimentary environments of this succession can be found in Coetzee29.
Briefly, the upper Rooihoogte Formation comprises mudstones, siltstones and
silicified stromatolites, which were deposited in a delta-front environment29. The
Timeball Hill Formation contains two upward-coarsening parasequences, each
representing a prograding deltaic complex comprised of prodeltaic mudstones
overlain by delta-front mudstones. The lower parasequence is bound by a quartzite
and oolitic ironstone at its top, while a glacial diamictite delimits the top of the
upper parasequence28,29. The geochronological framework of the studied succes-
sion is well established (Fig. 1). The Rooihoogte–Timeball Hill formation boundary
has been dated to 2316 ± 7Ma using the Re-Os system21, which is consistent with a
2310 ± 9Ma zircon U-Pb age for the base of the Timeball Hill Formation (Fig. 1)22.
Additionally, the lower part of the upper Timeball Hill Formation has been dated
to ~2250 Ma (Fig. 1)22, which is close to the inception of the Lomagundi oxygen
overshoot (~2220–2060Ma)23–26.

Kerogen isolation. Core samples were cut into small pieces, removing all exterior
surfaces. Fresh chips were ultrasonically cleaned with successive deionised water,
methanol, and dichloromethane rinses prior to homogenisation (<100 mesh) using
a precleaned stainless steel puck mill20. Aliquots of samples used previously for
sulphur isotope analysis20 were quantitatively decalcified using 6M HCl before
being rinsed to neutrality using ultra-pure water and dried at 60 °C. Kerogens were
isolated at Massachusetts Institute of Technology using a method modified from
Zerkle et al.14. Briefly, the carbonate fraction was removed from ~4 g aliquots of
rock powder via an overnight 6M HCl dissolution. The residues were then rinsed
to neutrality using successive ultra-pure water, decanting the supernatant following
centrifugation. The silicate fraction was then volatilised via duplicate overnight
treatments with 20 ml of a mixed HF and HCl (3:2) solution. Each acid treatment
was followed by multiple (n= 4) 1M HCl rinses and then dried for mass spec-
trometric analysis. The low carbonate abundances and the high thermal maturity
negated the need for replicate 6 M HCl and dichloromethane treatments. Heavy
minerals such as pyrite were not removed as they do not affect nitrogen isotopic
compositions.

Nitrogen and carbon isotope analysis. Bulk nitrogen (δ15Nbulk) and carbon
(δ13Corg) isotope values were determined by flash combustion using an elemental-
analyser (EA) coupled to a continuous-flow isotope ratio mass spectrometer
(IRMS) at Massachusetts Institute of Technology. The low nitrogen content pre-
vented simultaneous δ15Nbulk and δ13Corg determinations. For δ15Nbulk analysis,
the decalcified residues (~40 to 80 mg) were combusted at 1040 °C, and the
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resulting nitrogen oxides were reduced to N2 by Cu at 650 °C. The analyte gas
stream was then stripped of CO2 and water via contact with Carbosorb® and
anhydrous magnesium perchlorate, respectively. For δ13Corg analysis, smaller ali-
quots of decarbonated residues (~1–8 mg) were combusted and dried as detailed
for δ15Nbulk determination. Most samples were analysed in triplicate, yielding
standard deviations (1σ) for δ15Nbulk and δ13Corg better than 0.3‰ (1σ) and 0.2‰
(1σ), respectively. All isotope data are reported in standard delta-notation,
reflecting per mille variations from their respective international reference stan-
dards:

δaXð‰Þ ¼ ðaX=bXÞsample=ðaX=bXÞstandard � 1; ð1Þ

where aX/bX is the ratio between the heavier (a; 13C or 15N) and the lighter isotope
(b; 12C or 14N) of element X (C or N), and the standard is either air for δ15N or
VPDB for δ13C. Nitrogen isotope data were calibrated using IAEA-N-2 (δ15N=
+20.3 ± 0.2‰), IAEA-NO-3 (δ15N=+4.7 ± 0.2‰) and urea (δ15N=+0.3 ±
0.25‰), and C-isotope data were calibrated using urea (δ13C=−34.1‰), sucrose
(δ13C=−10.5‰), Arndt acetanilide (δ13C=−29.5‰), and an internal laboratory
standard (Pennsylvania State University; δ13C=−48.3‰). Nitrogen and TOC
abundances were calculated from the integrated N2 and CO2 peak areas, respec-
tively. Replicate analysis of samples and standards demonstrates a relative precision
of better than 10%.

The isotopic composition of kerogen-bound nitrogen (δ15Nkerogen) was
determined in the GAPP Lab (Syracuse University, NY) using an automated Nano-
EA system similar to that described by Polissar et al.72 The use of a Nano-EA
system facilitates determination of δ15N in nitrogen-lean Precambrian kerogens,
permitting analysis of 1–3 mg of kerogen equating to 25–100 nanomoles of
nitrogen. Sample capsules were evacuated and purged with argon prior to
introduction into the EA (Elementar Isotope Cube) to remove interstitial
atmospheric nitrogen. A 90-s O2 pulse ensured complete combustion after an
initial 45-s He purge. The combustion products were then carried in a He stream
(150 ml per min), via oxidation (1100 °C) and reduction (650 °C) reactors, to a
silica gel cryotrap immersed in liquid nitrogen. Using a reduced He carrier flow
(~2 ml per min), the analyte N2 was introduced to the Isoprime 100 IRMS through
an Agilent CarboBond column (25 m × 0.53 mm × 5 μm). Given the high C/N
ratios, the CO2 generated during combustion was retained in a molecular sieve
trap, eliminating CO2 carryover and preventing the generation of neoformed
isobaric CO in the ion source. Additionally, the use of small sample sizes permitted
by the Nano-EA technique eliminates the potential for incomplete oxidation and
generation of CO during combustion.

Individual kerogen samples were run in triplicate using sequentially larger
samples and blank-corrected using Keeling-style plots. International (IAEA N1,
+0.4‰; IAEA N2, +20.3‰ and NIST 1547, +2.0‰) and in-house (Messel Oil
Shale, +7.0‰) reference materials were run in a similar manner to samples, using
equivalent quantities of nitrogen. The resulting blank-corrected sample and
standard data were expressed in delta-notation (Eq. 1) and corrected to the certified
values of the reference materials using the correction scheme described in Coplen
et al.73 Reproducibility for samples and standards (±0.25‰) approaches that
reported for reference materials (±0.2‰) approximating standard EA-IRMS
techniques.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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