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Abstract: In this work, Fe2O3@TiO2 nanostructures with staggered band alignment were newly
designed by an aerobic oil-phase cyclic magnetic adsorption method. XRD and TEM analyses were
performed to verify the uniform deposition of Fe2O3 nanoparticles on the nanotube inner walls of TiO2.
The steady-state degradation experiments exhibited that 1FeTi possessed the most superior performance,
which might be ascribable to the satisfying dark adsorption capacity, efficient photocatalytic activity,
ease of magnetic separation, and economic efficiency. These results indicated that the deposition of
Fe2O3 into TiO2 nanotubes significantly enhanced the activity of Fe2O3, which was mainly ascribed
to the Fe2O3-induced formation of staggered iron oxides@TiO2 band alignment and thus efficient
separation of h+ and e−. Furthermore, the PL intensity and lifetime of the decay curve were considered
as key criterions for the activity’s evaluation. Finally, the leaching tests and regeneration experiments
were also performed, which illustrated the inhibited photodissolution compared with TiO2/Fe3O4

and stable cycling ability, enabling 1FeTi to be a promising magnetic material for photocatalytic
water remediation.

Keywords: 1D nanostructures; TiO2 nanotubes; iron oxides; visible-light photocatalysis

1. Introduction

In recent years, water pollution has become an international environmental problem that constricts
the development of human health, economy and sustainability [1,2]. To solve this problem, various
efficient technologies have been developed and employed to purify wastewater, such as photocatalysis,
adsorption, chemical precipitation, and membrane filtration [3–6]. Among them, photocatalysis has
been regarded as a promising approach due to its convenient operation, effective remediation and
low environmental impacts [7,8]. Among the well-studied photocatalysts, nano iron oxides including
α-Fe2O3, γ-Fe2O3 and Fe3O4 have received extensive investigations and increasing attentions in the
field of photocatalytic decontamination, benefiting from low cost, nontoxicity, large surface area,
and especially strong absorption in the visible light region [9,10]. Moreover, the favorable magnetism
of iron oxides makes the recovery of catalysts more convenient and economical via applying an external
magnetic field for cyclic utilization after wastewater treatment [11].
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However, the major drawbacks of iron oxides including low charge carriers’ mobility and rapid
photogenerated electron–hole recombination rate restrict its practical applications in photocatalysis [12].
Consequently, various strategies were developed to enhance its photocatalytic properties, such as
controlling diverse morphologies (e.g., nanoparticles, nanocubes and nanodiscs) [13], doping metal or
non-metal ions such as Ca and I [14,15], and coupling with other semiconductors to generate satisfactory
photocatalytic heterostructures. Among them, the coupling strategy with other semiconductors has been
receiving extensive attentions since these heterostructures can efficiently suppress recombination rates
and promote transportation rates of photo-generated charge carriers. For instance, the heterogeneous
photocatalysts including α-Fe2O3@AgCO3 [16], γ-Fe2O3@Mn3O4 [17] and Fe3O4@TiO2 [18] all
displayed significantly increased photocatalytic performance compared with pure iron oxides.

Among the various semiconductors combined with iron oxides, TiO2 has been extensively
investigated for their stable, nontoxic and economical properties [19,20]. Particularly, abundant
attentions have been given to 1D TiO2 nanotubes (abbreviated as TNT in this article) due to their
unique 1D nanotube architectures accompanied with superior charge transport property and large
internal surface to disperse doped iron oxides nanoparticles [21–23]. Especially, the constructed
heterostructures of TiO2 and iron oxides could further enhance the separation of charge carriers
in this heterostructure. Recently, the majority of the researches on FexOy@TNT nanocomposites
focused on Fe3O4@TNT composites [24,25]. Unfortunately, the narrow bandgap of Fe3O4 brought
serious photodissolution of Fe3O4, which would deactivate the composites and induce the decrease
of photocatalytic performance [25]. As a result, iron oxide species with larger bandgaps such as
Fe2O3 (bandgap ~2.3 eV) rather than Fe3O4 with narrow bandgap (0.1 eV), are more beneficial for
the separation of photo-induced charge carriers in the heterojunctions [26,27]. On the other hand,
Fe2O3 possesses higher chemical stability than Fe3O4 at room temperature, which can be oxidized
in the presence of oxygen. From this point of view, it is reasonable to believe that introducing Fe2O3

nanoparticles into TiO2 nanotubes would significantly enhance the separation of charge carriers
in Fe2O3@TiO2 heterojunctions. Furthermore, the excellent magnetic property of Fe2O3 would
make them easier to be recycled and regenerated in the photocatalytic decontamination research,
which is considered as a sustainable material for future applications [11]. Although Fe2O3@TNT
composites have bright prospects and potential applications in photocatalytic water remediation,
efficient methods to synthesize TiO2 nanotubes with uniform Fe2O3 nanoparticles deposition still
need to be developed since the agglomeration of Fe2O3 nanoparticles would act as the recombination
center and accelerate the destruction of excitons. The extensively used manner to prepare this
heterostructure is the dipping method, which is limited by the low-dispersion loading and severe
agglomeration under high deposition [28,29]. In our previous work, an anaerobic oil-phase cyclic
magnetic adsorption (OCMA) method was developed to uniformly deposit Fe3O4 nanoparticles into
TNT, which would provide inspiration to inhibit the agglomeration of Fe2O3 nanoparticles in this work.
Especially, although the carbon species was introduced into the designed Fe3O4@TiO2 composites to
inhibit the migration of e- towards Fe3O4, 13.5% (in 3 h) of Fe3O4 in the prepared Fe3O4@C@TiO2

composites were still photo-dissolved, which might induce poor recycling performance [27]. As a
result, the wide-bandgap Fe2O3 nanoparticles, instead of narrow-bandgap Fe3O4, were designed for
fabricating Fe2O3@TiO2 composites with enhanced photocatalytic performance and inhibited photo
dissolution. Especially, the designed Fe2O3@TiO2 heterostructures avoid the incorporation of carbon
materials, which might have unassessed toxicity to the environment. Nevertheless, there was little
work on the synthesis method and photocatalytic investigation of TiO2 nanotubes with uniform
deposition of Fe2O3 nanoparticles.

In this work, uniform 1D magnetic Fe2O3@TNT composites with excellent dispersive Fe2O3 deposition
were newly synthesized through a new aerobic OCMA method. This new synthesizing method is more
convenient and economical compared with other reported methods. Moreover, the photocatalytic
performance of these nanocomposites containing different amounts of Fe2O3 under visible light irradiation
were evaluated and discussed. The results indicated that there was an optimum amount of Fe2O3
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deposition, which could be well explained by the physicochemical properties including Fe2O3 dispersion,
PL intensity and charge carriers’ lifetime. Finally, the photo dissolution of the obtained composites was
further examined by the leaching experiments and the results indicated superior repression of photo
dissolution and stable regeneration of Fe2O3@TiO2 compared with Fe3O4@TiO2 and Fe3O4@C@TiO2.

2. Materials and Methods

2.1. Materials and Reagents

Titanium foil (10 × 25 mm2, 0.1 mm thickness, ≥99.5%) was purchased from Beijing Qianshuo
Non-ferrous Metal Co., Ltd. (Beijing, China). FeCl3·6H2O (≥99 wt%), FeSO4·7H2O (≥99 wt%) and
NH4F (≥99.5 wt%) were supplied by Aladdin Co., Ltd. (Tianjin, China). n-hexane (C6H14), ethanol
(C2H5OH), ethylene glycol ((CH2OH)2), oleic acid (C18H34O2), Rhodamine B (RhB), and ammonia
water (NH3·H2O, 25 wt%) were provided by Guangfu Co., Ltd. (Tianjin, China). All reagents were
analytical grade and used as received without further purification.

2.2. Synthesis of TiO2 Nanotubes

Electrochemical anodization was applied to synthesize self-organized porous TNT [30]. Prior to
anodization, the Ti foils were ultrasonically treated in n-hexane, followed with dipping in ethanol and
deionized water respectively, and then dried in a nitrogen stream. Then, the Ti foils were anodized
under constant potential (60 V) for 4 h in a two-electrode system where Ti served as the working
electrode and platinum (Pt) foil served as the counter electrode. The electrolyte was an ethylene glycol
solution containing NH4F (0.135 M) and H2O (2% in volume). After anodization, the as-anodized
samples were ultrasonically cleaned in ethanol for 5 min to remove surface debris and then stored in
hexane for further deposition.

2.3. Synthesis of Fe3O4@oleic Acid

Fe3O4@oleic acid nanoparticles were prepared by chemical co-precipitation method [31].
The procedure was as follows: FeCl3·6H2O (140 mmol) and FeSO4·7H2O (70 mmol) were dissolved
into 100 mL deionized water and then the solution was heated to 80 ◦C in 20 min with vigorous
stirring. Then, 3 mL oleic acid and 15 mL ammonia water were added rapidly into this solution.
After stirring for 1 h, the black magnetic gel was cooled to 25 ◦C and separated by magnetic decantation.
The precipitated particles were washed several times by ethanol to remove the excess oleic acid,
followed by drying in vacuum oven at 60 ◦C for 12 h.

2.4. Synthesis of 1D Fe2O3@TiO2 Nanotube Composites

Fe2O3@TiO2 nanotube composites were first synthesized via an aerobic OCMA method [27].
Firstly, certain amounts of Fe3O4@oleic acid were ultrasonically dispersed in hexane and this suspension
was filtered to remove the undispersed particles thoroughly and prepare a homogeneous solution of
1 g/L Fe3O4@oleic acid (The preparation of 1 g/L Fe3O4@oleic acid solution: Firstly, certain amounts
(marked as M1) of Fe3O4@oleic acid were ultrasonically dispersed in hexane. Then, this suspension
was filtered to remove the undispersed particles thoroughly. The mass of these undispersed particles
can be determined and marked as M2. Therefore, the real amounts of Fe3O4@oleic acid dissolved in
hexane can be calculated by M1 −M2. After adding hexane to a certain volume, the concentration of
“Fe3O4@oleic acid” in the homogeneous solution can be confirmed). Then, different volumes of the
homogeneous solution (0.5 mL, 1 mL, 2 mL) were added onto the anodized TNT arrays under the effect
of an external magnetic field beneath the TNT arrays, as shown in Scheme 1. It should be noticed that
magnetic force played a vital role in loading Fe3O4@oleic acid nanoparticles into TiO2 nanotubes and
the volatilization of hexane also made a contribution. Finally, these 0.5, 1, and 2 mL suspension-loaded
TNT arrays were annealed at 450 ◦C for 2 h in air atmosphere to obtain Fe2O3@TNT composites
with high crystallinity, which were recorded as 0.5FeTi, 1FeTi and 2FeTi, respectively. In addition,
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Fe3O4@oleic acid was also annealed at the same conditions to prepare pure Fe2O3 nanoparticles for
comparative experiments.
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2.5. Photocatalytic Experiments

For assessments of the photocatalytic activity of the samples, Rhodamine B (RhB) solutions in
concentration of 10 mg/L were first prepared. Then, 70 mg as-prepared catalysts (Fe2O3, 0.5FeTi, 1FeTi
and 2FeTi) were suspended into 70 mL RhB solutions, respectively. After dark adsorption for 2 h and
reaching equilibrium, the mixed solutions were illuminated for 6 h under visible light (λ ≥ 400 nm)
using a 300 W Xenon lamp (light intensity of 90 mW·cm−2 at distance of 15 cm from the light source).
During the photocatalytic experiments, 3 mL samples of the mixed solutions were taken out and
centrifuged at a given time interval. Finally, the photocatalytic activity was analyzed by UV−vis
absorption measurement of the characteristic peak of RhB at 554 nm. For each sample, all photocatalytic
experiments were carried out for irradiation duration of 6 h at 20 ◦C and were repeated three times.

2.6. Characterizations

The obtained samples were characterized by an XRD diffractometer (Rigaku, D/max 2500,
Cu Kα radiation, λ = 1.5418 Å, Tokyo, Japan) within the scanning angle range of 15◦–60◦ at rate of 8◦ min−1.
The morphology was studied by scanning electron microscopy (SEM, Nanosem 430, FEI, Eindhoven,
The Netherlands) and high-resolution transmission electron microscopy (HRTEM, Tecnai G20&F20,
FEI, Eindhoven, The Netherlands). UV-Vis measurements were performed on a Hitachi U4100 UV
Spectrometer and Fluorescence spectra were measured with FLS980 Series of Fluorescence Spectrometers
(excited at λ = 420 nm). X-ray photoelectron spectroscopy (XPS, ESCALAB 250XI, Thermo, MA, USA) with
monochromatic Al Kα (1486.6 eV) X-ray source was employed to analyze elemental contents and the chemical
states of these composites. All the binding energies were calibrated by contaminant carbon at 284.8 eV.
BET surface areas, BJH pore volume and average pore size were determined by N2 adsorption–desorption
isotherms, which was measured by SSA-7000 (BJ Builder, Beijing, China). FTIR spectra were recorded on
Bruker Alpha spectrometer from 4000 to 400 cm−1 (Regensburg, Germany). The magnetic properties
were measured by vibrating sample magnetometer (VSM, MPMS SQUID XL, Quantum Design,
Santiago, MN, USA) in the field from −20,000 to 20,000 Oe. High-resolution mass spectra (HR-MS) were
measured by a mass spectrometer (Bruker, solanX 70 FT-MS, Regensburg, Germany) in electrospray
ionization (ESI) mode.

3. Results and Discussion

3.1. Structural and Elemental Characterizations

The crystal structures of these as-synthesized samples were determined by XRD analysis, as shown
in Figure 1A. It can be found that the XRD patterns of as-prepared pure Fe2O3 contain diffraction peaks
of both α-Fe2O3 at 33.2◦ (104) and γ-Fe2O3 at 30.2◦ (220), which indicates the coexistence of α-Fe2O3

and γ-Fe2O3 [32,33]. After the formation of a heterojunction, a series of new peaks, which can be well
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indexed to anatase TiO2 (JCPDS 21-1272), appear in the 1D Fe2O3@TNT composites. Since the peaks
related to iron species were hardly to be observed due to the small amount of deposited Fe2O3 in
Figure 1A, the narrow-range XRD spectra with higher resolution were further performed to examine the
iron oxide species. As shown in Figure 1B, the characteristic peak intensity at 35.6◦ increases with the
rising contents of Fe2O3 in 0.5FeTi, 1FeTi and 2FeTi, which further confirms the successful deposition
of iron oxides. Furthermore, 2FeTi and Fe2O3 samples were further selected and analyzed by selective
area electron diffraction (SAED) to ensure the existence of Fe2O3 (Figure 1C,D). As shown in Figure 1C,
the SAED pattern of Fe2O3 with characteristic rings at 3.023 Å, 2.736 Å and 2.565 Å (from inside to
outside) is in good agreement with the d-spacing of γ-Fe2O3 (d220 = 2.953 Å), α-Fe2O3 (d104 = 2.700 Å)
and γ-Fe2O3 (d311 = 2.518 Å) [34]. For the SAED pattern of 2FeTi composite in Figure 1D, the diffractive
rings of Fe2O3 are weak but still in agreement with corresponding crystal planes of Fe2O3, which might
be due to the low and uniform dispersion of Fe2O3. Especially, it should be mentioned that the
SAED patterns of 1FeTi and 0.5FeTi are also examined while the weak signals of Fe2O3 hinder their
further characterization by this method. Nevertheless, the coexistence of α-Fe2O3 and γ-Fe2O3 in these
composites is reasonable considering that all the samples are annealed at the same condition.
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Figure 1. XRD full-range spectra (A) and narrow-range spectra (B) of Fe2O3 (magenta), 0.5FeTi (red),
1FeTi (blue) and 2FeTi (green); SAED images of Fe2O3 (C) and 2FeTi (D).

To further confirm the inner structures of the prepared samples, SEM, TEM and HRTEM analyses
were employed and the results are shown in Figure 2. SEM image of anodized TiO2 nanotubes in
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Figure 2A reveals that the nanotubes are highly ordered with a uniformed outer diameter distribution
of ~108 nm. After doping with Fe2O3, the well dispersed black iron oxides nanoparticles on the inner
walls of TNT can be clearly observed in the HRTEM image of 0.5FeTi, as presented in Figure 2B.
The nanotubes with diameter of 105 nm also meet well with the SEM image in Figure 2A. With the
increasing deposition, it is observed that the number of black Fe2O3 nanoparticles on the inner walls
increases, as shown in Figure 2B,C,E. Furthermore, the Fe2O3 nanoparticles in 1FeTi (Figure 2C) and
2FeTi (Figure 2E) have similar inner structures with 0.5FeTi (Figure 2B) and are also well dispersed on
TNT inner walls, indicating the successful deposition of Fe2O3 into TNT. Then, the crystalline forms
of the synthesized composites were further examined by the HRTEM image of 1FeTi in Figure 2F.
The lattice fringes with interplanar spacings of 0.187 nm, 0.205 nm and 0.482 nm are well ascribed
to the (200) plane of TiO2, (202) plane of α-Fe2O3 and (111) plane of γ-Fe2O3, respectively, which is
consistent with the observations from XRD. Finally, pure Fe2O3 nanoparticles were also examined
by TEM (Figure 2D) and the aggregation of Fe2O3 particles is quite obvious, indicating the uniform
dispersion could be easily achieved after doping into TiO2 nanotubes.
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Figure 2. SEM and HRTEM morphologies for the samples. (A) SEM image of anodized TNT; (B) HRTEM
image of 0.5FeTi; (C) HRTEM image of 1FeTi; (D) HRTEM image of Fe2O3; (E) HRTEM image of 2FeTi;
(F) HRTEM image of 1FeTi.

After the determination of crystalline forms and inner structures of the synthesized composites,
XPS analysis was carried out to further characterize the doping contents and surface chemical states of
the obtained products, and the results are displayed in Figure 3. Figure 3A is the full-range spectra
of the synthesized Fe2O3@TNT nanocomposites and the presence of C, Ti, O, Fe elements could be
ascertained according to the peaks of C 1s, Ti 2p, O 1s, and Fe 2p. Specifically, the characteristic peak of
C 1s situated at ~284.8 eV is attributed to the contaminant carbon, which is used for the calibration
of the XPS spectra [35]. The Ti 2p1/2 and 2p3/2 peaks are observed at 464.1 and 458.0 eV respectively,
which is in agreement with the typical anatase TiO2 [36]. The O 1s spectrum centered at 529.0 eV is
ascribed to the metal oxides including Fe2O3 and TiO2. The Fe 2p spectra at 710.2 and 724.1 eV are
the characteristic peaks of Fe2O3 and they were selected to analyze the chemical states of the doped
Fe2O3 [37], as shown in Figure 3B–D. The Fe 2p spectra exhibit two contributions of 2p1/2 and 2p3/2

located at 723.9 and 710.4 eV, which can be assigned to Fe(III) oxidation state [37]. The additional peaks
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at 729.6 and 716.4 eV are ascribable to the satellite peaks of Fe(III) oxidation state. Especially, the peak
intensity of Fe 2p increases with the growth of the Fe2O3 content, which is well consistent with the
XRD results in Figure 1.
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In order to identify the elemental molar ratios of the samples, careful calculation based on
Figure 3A was performed after subtracting the peak of contaminant carbon, and the results are listed in
Table 1. The O/Ti ratios in 0.5FeTi, 1FeTi and 2FeTi are 2.02, 2.17 and 2.31 respectively, which are close
to theoretical values (2). Especially, the O/Ti ratios increase with the rising depositions, which further
confirms the successful loading of Fe2O3 on the inner walls of TNT. It should be mentioned that the
calculated Fe content at low deposition (0.5FeTi) was smaller than the theoretical value, which might
be due to the fairly slight and highly dispersed Fe2O3 nanoparticles on the surface of TiO2 nanotubes.
Except for the XPS detection, FTIR analysis was further carried out to characterize the chemical
groups of the synthesized composites, which further confirms the successful deposition of Fe2O3

(shown in Figure S1).

Table 1. Molar content of carbon-subtracted peak area in Figure 3A.

Sample Ti 2p/% O 1s/% Fe 2p/%

0.5FeTi 32.97 66.57 0.47
1FeTi 30.90 67.02 2.09
2FeTi 29.04 66.94 4.02

To further determine the inner structures of the synthesized nanocomposites, nitrogen
adsorption/desorption isotherms analyses were utilized to examine the surface area and the pore
information, and the results are presented in Figure 4 and Figure S2. The specific surface areas and
pore sizes as well as volumes were calculated according to BET and BJH methods and the results are
displayed in Table 2. Figure 4 shows that all the samples exhibit typical type IV isotherms with H3

hysteresis loop, suggesting the mesoporous structure of all the synthesized materials according to the
IUPAC classification [38]. As shown in Table 2, the BET specific surface areas of these composites
(0.5FeTi, 1FeTi, 2FeTi) increase significantly compared to bare Fe2O3. Considering the less BET-specific
surface area of TNT (17.53 m2/g) than the composites, the enlargement of surface area is mainly
ascribable to the uniformly doped Fe2O3 particles on TNT inner walls, which could not only enlarge
the dispersibility of the iron oxides but also increase the contact area with the organic pollutants and
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thus enhanced photocatalytic performance. On the other hand, the BJH desorption branch pore sizes
and volumes were selected to analyze the inner structures of the synthesized materials, as shown in
Table 2. It can be observed that the pore sizes and volumes decrease with the increment of iron oxides,
which also verifies the successful deposition of Fe2O3 in TiO2 nanotubes. The large pore size and
pore volume of 0.5FeTi reveal that the Fe2O3 nanoparticles are highly dispersed on the inner walls of
TiO2 nanotubes. With the increment of deposition, the pore sizes of 1FeTi and 2FeTi decrease sharply
and fall into a range near pure Fe2O3, which is probably associated with the smaller inner structures
between Fe2O3 nanoparticles, characterized at about 4 nm (as shown in the inset Figure of Figure 4).
Furthermore, it could be observed from the pore volume results of 1FeTi and 2FeTi that this value does not
significantly decrease with the pore size, which further indicates more abundant pores in 1FeTi and 2FeTi
and verifies the deduction mentioned above. Finally, it is observed that the peak area associated with Fe2O3

(marked by shadow ellipse in Figure 4) increases following this order: 1FeTi > 2FeTi > Fe2O3 > 0.5FeTi,
which indicates the best deposition and dispersion of Fe2O3 nanoparticles in 1FeTi.
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Table 2. BET surface area and BJH pore results of the as-prepared catalysts.

Sample SBET/(m2
·g−1)

Adsorption Branch Desorption Branch

Pore
Size/nm

Pore
Volume/cm3

·g−1
Pore

Size/nm
Pore

Volume/cm3
·g−1

0.5FeTi 28.46 24.77 0.195 22.72 0.186
1FeTi 29.36 23.31 0.160 12.23 0.148
2FeTi 28.29 24.42 0.192 9.76 0.174
Fe2O3 10.96 13.77 0.079 11.99 0.069
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3.2. Photo-Chemical and Bandgap Characterizations

After the determination of the inner structures and chemical contents, the photo-chemical
properties and bandgap information of the synthesized 1D nanocomposites were investigated through
UV-Vis and PL spectra, as presented in Figures 5 and 6.
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Figure 5 shows the UV–vis absorption spectra of Fe2O3@TNT samples with variable Fe content
and pure Fe2O3. The tangent lines at different wavelength range were used to determine the gap
information of the synthesized materials. Fe2O3 possessed excellent absorption in both UV region
and visible region. The tangent line of Fe2O3 in the wavelength from 240 nm to 255 nm correlated
well with the bandgap of 2.33 eV, which is consistent with the reported value for Fe2O3 [26]. Besides
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the bandgap of Fe2O3 observed in Figure 5A, one more weak peak is observed in Figure 5C and
the absorption bandgap energy can be extended to 0.79 eV, which is correlated with the midgap of
Fe2O3. As for Fe2O3@TNT composites, the first peak that appeared in Figure 5A is mainly related to
the doped iron oxides and it can be seen that the absorption bandgap energy improves slightly with
increasing Fe content. Additionally, similar results are found in the third peak shown in Figure 5C.
Furthermore, a new peak appeared in the range from 354 nm to 380 nm after the generation of
Fe2O3@TNT heterojunction in Figure 5B, which is probably due to the migration of photogenerated
charge carriers between TiO2 and Fe2O3. After the correlation, it was found that the derived bandgap
energy in Figure 5B decreases significantly with increasing loading of iron oxides.

Generally, single bandgap derived by UV-Vis spectrum cannot determine the band position,
and further characterizations such as ultraviolet photoelectron spectroscopy (UPS) or Mott-Schottky
measurement should be utilized to determine the position of valence band or conduction band [14,39].
Nevertheless, as the gaps derived in Figure 5B were regarded as the results of electron migration between
Fe2O3 and TiO2, the relative positions of their individual gaps could be obtained. Thus, based on the
extrapolation of UV–vis spectra in Figure 5, the band structures of these four catalysts were derived
and are schematically shown in Scheme 2. It is interesting to note that the band alignment of these
heterostructures are staggered form, which is not in accordance with the native included alignment of
FexOy@TiO2 [40]. Such band alignments might be attributed to the coexistence α-Fe2O3 and γ-Fe2O3,
resulting in the formation of staggered band alignment of α-Fe2O3/γ-Fe2O3 heterojunction. Finally,
it should be mentioned that the staggered band form between Fe2O3 and TiO2 would significantly
hinder the recombination of charge carriers and thus enhance the photocatalytic performance [41].
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Figure 6 shows the PL spectra and decay curves of the synthesized materials. PL spectra were
traditionally applied to detect the photo-chemical properties of the synthesized materials and it was
considered that higher PL intensity indicated more electron-hole pairs generated in the heterostructures
containing iron oxides [42]. Figure 6A clearly shows that the PL spectra of Fe2O3 nanoparticles is
lower than that of three Fe2O3@TNT composites, implying that combining Fe2O3 with TiO2 nanotubes
could effectively promote the generation of charge carriers. Except for the fluorescence intensity,
the luminescence efficiency should also be considered by analyzing fluorescence lifetime. It can be
observed in Figure 6B that the intensity of the decay curves fast diminishes after reaching the top of
peak instead of a slow tailing trend, which might be due to the high charge carriers recombination
rate of Fe2O3. Then, the fluorescence lifetimes of 0.5FeTi, 1FeTi, 2FeTi, and Fe2O3 were determined
from the decay curves and fitted by a single exponential term. According to the corresponding
equation (as shown in Figure S3), the lifetimes of 2FeTi, 1FeTi, 0.5FeTi, and Fe2O3 were calculated
to be 0.6844 ns, 0.6759 ns, 0.6475 ns, and 0.6306 ns, respectively, indicating that the lifetimes also
increase with the increment of Fe2O3 deposition. Additionally, these results also reveal the superb
migration and effective separation of electrons and holes between Fe2O3 and TiO2, which is also shown
in Scheme 2. Under the consideration of both charge carriers’ generation and their lifetimes, 2FeTi has
the highest fluorescence intensity and fluorescence lifetime, which indicates that 2FeTi might have the
best photocatalytic activity, followed by 1FeTi or 0.5FeTi and lastly bare Fe2O3.
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3.3. Magnetic Characterizations

Finally, the magnetic property of as-obtained products was evaluated by using a vibrating
sample magnetometer, which is of great importance for practical applications. Figure 7 exhibits the
magnetization curves measured at 300 K, and the insert graph shows the magnetic separation result
of 1FeTi by using a magnet. The suspension containing well-dispersed particles of 1FeTi turned
into clear solution without residues left in only several seconds via a magnet, which implies that
the synthesized 1D Fe2O3@TNT composites possess good magnetic separation ability. In addition,
the magnetization curves passing through the origin with the magnetic saturation (Ms) values of 0.23,
0.48 and 1.18 emu/g for 0.5FeTi, 1FeTi and 2FeTi indicated that they all possessed superparamagnetic
behaviors. Accordingly, the molar contents of Fe2O3@TNT composites were estimated to be 1.06%,
2.23% and 5.54% for 0.5FeTi, 1FeTi and 2FeTi respectively, which is calculated by comparing the
Ms values of the synthesized composites and pure Fe2O3 (the Ms value was 27.48 emu/g, shown in
Figure S3). The results derived from Ms values are a little higher than the contents derived from
the XPS spectra, which is ascribed to more excellent magnetism originating from the mini “magnet”
formed along the nanotubes after the magnetic Fe2O3 nanoparticles are confined in the nanotubes.
On the other hand, XPS technique is a surface-sensitive technique that excites electrons from the top
surface of 1–12 nm thick, which might also be a reason for lower contents.
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3.4. Photocatalytic Activity

The photocatalytic activities of as-synthesized composites under visible light were assessed
by the degradation experiments of RhB (10 mg/L) using Xe light irradiation (300 W, λ ≥ 400 nm).
The variation of the concentration with the time of irradiation is plotted in Figure 8. During dark
equilibrium period, these Fe2O3@TNT composites possess more efficient adsorption capacity for
RhB compared with pure Fe2O3 and TNT (Figure S5), which is mainly ascribed to the homogeneous
dispersity of Fe2O3 on TNT, as illustrated in Figures 2 and 4. Especially, it is observed that 1FeTi
shows the optimal adsorption property, which might have resulted from the most dispersive Fe2O3

inner structures in 1FeTi (Figure 4). After the visible-light irradiation, Fe2O3@TNT composites show
remarkably enhanced photocatalytic activity compared to pure Fe2O3, which is attributed to the
efficient separation of charge carriers after doping onto TiO2 nanotubes. Briefly, Fe2O3 would act as
the electron trappers in the composites which would enhance separation of excitons and thus the
photocatalytic performance. In addition, the performances of 1FeTi and 2FeTi are almost the same and
much better than 0.5FeTi, which might be due to the more abundant electron trappers accompanied
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with the moderate increment of Fe2O3 deposition. Hence, 1FeTi and 2FeTi are considered as the
candidates with the most potential for organics degradation. However, 1FeTi consumes less iron oxides
and thus was more cost-effective. Above all, 1FeTi is considered to be a better Fe2O3@TNT composite
under the consideration of dark adsorption capacity, photocatalytic activity and economic efficiency.
Finally, the rate constant ka is fitted according to the pseudo-first order reaction kinetics (Equation (1)),
and the results are displayed in Table 3. The order of the rate constants is in good agreement with the
curves in Figure 8B. Interestingly, it is observed that the trend of rate constant is coincident with the
deduction of the PL results, which implies that fluorescence intensity and fluorescence lifetime could
describe the photocatalytic property of Fe2O3 and its composites effectively. Finally, the comparison of
this study with other similar Fe2O3-based materials reported in other literatures is given in Table 4.
As seen in Table 4, the photodegradation activity of 1FeTi is significantly improved, which further
demonstrates that 1FeTi could be a promising material for photocatalytic wastewater remediation.

ln C0/C = kt (1)

where C0 and C are the original concentration of RhB and the corresponding concentration at the
reaction time (t), respectively, and k is the pseudo-first degradation rate constant.
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Table 3. Photodegradation parameters of the synthesized catalysts.

Sample 0.5FeTi 1FeTi 2FeTi Fe2O3

Degradation Efficiency (%) 72.11 84.96 86.53 43.55
k/h−1 0.2010 0.2663 0.2875 0.0890

R2 0.9985 0.9987 0.9936 0.9972

Table 4. Comparison of the photocatalytic performances of Fe2O3-based materials.

Materials Light Source Time (h) Photodegradation
Amount (%) Ref.

α-Fe2O3 Visible light 3 38% MB [43]
Fe2O3/SnO2 UV light 4 70% MB [44]

α-Fe2O3/γ-Fe2O3 Visible light 12 90% RhB [45]
γ-Fe2O3@TiO2 UV light 5 ~18% 4-chlophenol [46]
Fe2O3@WO3 Polychromatic light 3 18% RhB [47]

Fe2O3 Visible light 6 ~70% RhB [48]
2FeTi Visible light 6 86.53% RhB This work
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3.5. Intermediate Products and Degradation Pathway of RhB

Although it has been claimed that 84.96% of the RhB could be degraded by 1FeTi in 6 h in
Section 3.4, the specific mineralization efficiency has not been determined. Consequently, the intermediate
products during photocatalysis of RhB over 1FeTi for 0–6 h were identified by HR-MS. As shown
in Figure S6, the HR-MS spectra of RhB solution (t = 0 h) shifted from m/z = 443 (characterized as RhB)
to m/z = 415, 387, 359, 331, 304, 302, and 272 after photo illumination, which might be ascribable to the
N-de-ethylating process under the effects of photogenerated radicals [49,50]. Then, the N-de-ethylated
intermediates would react with functional radicals to produce opening-ring intermediates (e.g., phthalic
acid), which could be further mineralized to CO2 and H2O [49,50]. Based on these deductions,
the degradation pathway of RhB was proposed and is displayed in Scheme 3. Finally, it should be
mentioned that the intensity of MS spectrum at t = 6 h is much weaker than that at t = 0 h, indicating
the almost total mineralization of RhB in the wastewater.
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3.6. Recyclable Performance

Before the regeneration experiments, the leaching test should be probed to examine the loss of
supported Fe2O3 particles and to ensure the maintenance of superior photocatalytic performance [27].
As a result, 1FeTi after photocatalysis was sampled and tested by XPS, and the results are displayed
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in Figure S7 and Figure 9A. It could be observed from the Fe 2p spectra in Figure 9A that peak
shape and intensity is almost unchanged after photocatalysis, indicating the effective inhibition of
photo dissolution of the doped Fe2O3 [25]. Furthermore, the dissolution amount was determined to
be 13.4% in 6 h according to Table 1 and Figure S7, which is much less than 17.5% in 0.5 h for the
Fe3O4@TiO2 and 13.5% in 3 h for Fe3O4@C@TiO2 heterostructures [25,27], verifying the hypothesis
that the photo dissolution could be significantly hindered by incorporating wide-gap Fe2O3 instead of
narrow-gap Fe3O4.

Considering the good stability of 1FeTi during photocatalysis, the regeneration experiments were
performed. As shown in Figure 9B, the recyclable performance is almost stable in three cycles, and the
slight reduction might be due to the moderate dissolution of Fe2O3 from the composite. Generally,
1FeTi exhibits superior repression for photo dissolution and stable regeneration, which could be
considered as a promising photocatalytic medium for water remediation.
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4. Conclusions

In this work, 1D Fe2O3@TiO2 nanotube composites were first successfully synthesized by an
aerobic OCMA method. The structural and photo-chemical properties of the prepared Fe2O3 and
Fe2O3@TNT composites were characterized via XRD, XPS, FTIR, HRTEM, BET, UV-Vis, and PL spectra.
Based on the XRD results, both α-Fe2O3 and γ-Fe2O3 were found to exist in pure Fe2O3. The successful
deposition of Fe2O3 was further confirmed by XPS and FTIR spectra. In addition, HRTEM was
also applied to evaluate the dispersity of the Fe2O3 nanoparticles, and the results indicated that the
nanoparticles were well dispersed on the TNT inner walls, resulting in efficient separation of charge
carriers and homogeneous dispersion of Fe2O3 nanoparticles, which was further verified by the PL and
BET analysis. According to the UV–vis spectra, the band structures of these catalysts were derived and it
was found that the band alignments of these heterostructures were staggered, which might have resulted
from the coexistence of α-Fe2O3 and γ-Fe2O3. Benefiting from the superior structural and photo-chemical
properties, the composites exhibited much higher photocatalytic degradation efficiency towards RhB
than pure Fe2O3 under visible-light irradiation. The photocatalytic results were in good agreement with
PL results, which revealed the photoactivity tendency of the heterojunctions could be well predicted
through fluorescence intensity and fluorescence lifetime. Furthermore, the introduction of Fe2O3

in Fe2O3@TNT nanostructures made them easy to be separated and recovered in a magnetic field,
which further confirmed that the synthesized Fe2O3@TNT composites are efficient and cost-effective
materials. Finally, the photo dissolution phenomenon of 1FeTi was examined and the low leaching
amount as well as stable recycling performance illustrated the promising prospects of 1FeTi for water
remediation and rational design of Fe2O3 into TiO2 instead of Fe3O4.
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