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Signatures of optimal control in pairs
of schooling zebrafish
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Animals moving in groups coordinate their motion to remain cohesive. A large

amount of data and analysis of movement coordination has been obtained in

several species, but we are lacking theoretical frameworks that can derive the

form of coordination rules. Here, we examine whether optimal control theory

can predict the rules underlying social interactions from first principles. We

find that a control rule which is designed to minimize the time it would take

a pair of schooling fish to form a cohesively moving unit correctly predicts

the characteristics of social interactions in fish. Our methodology explains

why social attraction is negatively modulated by self-motion velocity and posi-

tively modulated by partner motion velocity, and how the biomechanics of

fish swimming can shape the form of social forces. Crucially, the values of

all parameters in our model can be estimated from independent experiments

that need not relate to measurement of social interactions. We test our

theory by showing a good match with experimentally observed social inter-

action rules in zebrafish. In addition to providing a theoretical rationale for

observed decision rules, we suggest that this framework opens new questions

about tuning problems and learnability of collective behaviours.
1. Introduction
Autonomous systems in general, and animals in particular, often benefit from

coordinating their behaviour with other similar agents [1,2]. In suitable con-

ditions, highly complex and coordinated multi-agent behavioural displays

may emerge through local social interactions. Many decades of research has

uncovered the functional rationale underlying the various forms of collective

behaviours, which can range from increased protection from predation and

risk dilution [3] to optimal information use and accelerated learning [4].

An improved understanding of the functional roles of collective behaviour has

opened the way to theoretical analyses that derive the rules of collective behaviour

from first principles. One example originates from the study of decision-making

in collectives. While early models were mostly phenomenological [5] (but see

Condorcet theorem [6] and information cascades models [7]), more recently,

Bayesian estimation theory has provided a gateway for predicting biologically

observed decision rules through a treatment grounded in probability theory [8,9].

In the study of collective motion, phenomenological models still dominate

over normative models. Many heuristic and data-driven models have provided

highly successful descriptions of varied systems like fish schooling, pedestrian

traffic flows, avian aerial displays and ant trail construction [1]. When attempts

have been made to theoretically predict the finer details of social interactions

through, for example, evolutionary computing [10], the underlying functional

form of animal interactions has been based on heuristic assumptions or

measurements [11–14] rather than theoretical considerations (but see [15]).

While phenomenological models use mathematical equations to fully specify

agent behaviour, these equations are arrived at primarily through the aid of

intuition or by fitting equations of motion to data. For new examples, the modeller

is given many opportunities to change the form of the equations any time an
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application shifts to a new species or domain. Normative

models are different. Rather than specifying the governing

equations directly, the theorist specifies an underlying logical

framework from which equations can be derived for particular

examples. When successful, normative models usually achieve

greater generality, a better grounding of the models in exper-

imental measurements and allow explicit connections to be

made between mechanistic and functional explanations. An

ab initio prediction of rules governing social interactions has

remained an unsolved challenge.

Here we demonstrate that control theory makes predictions

about interaction rules for pairs of schooling fish which are

qualitatively consistent with experimentally measured social

forces in zebrafish. In our control theory framework, we set

out to solve the following problem. The sensory system of a

fish has access to its own velocity, the velocity of its partner

fish and their mutual distance. The locomotor system, on

the other hand, can specify the acceleration produced by the

muscles of the fish. What relationship between the sensory

inputs of the fish and its locomotor output would enable the

schooling fish to maximize the cohesion of the group?

We developed a control-theoretic treatment of fish schooling

and we compared theoretical predictions against experiments

in an effort to test the applicability of our framework on the

domain of collective behaviour. While our treatment is

grounded in the known biology of the fish locomotor system,

we do make the simplifying assumption that fish move in a

quasi-one-dimensional environment. This is done because in

our set-up, zebrafish spend 80% of their time swimming parallel

to the walls along approximately one-dimensional tracks and

our access to two-dimensional data is thus more limited. In

addition, to the best of our knowledge, the biomechanical con-

straints of turning in fish are less well understood, which has

limited our ability to create a two-dimensional theory of turning.
2. Material and methods
(a) Experimental set-up
Ten-month-old zebrafish from the five-dimensional strain were

kept in a tank with 40 individuals (equal numbers of male and

female) in a 10 L : 14 D cycle from which pairs of animals were

randomly sampled for schooling experiments. We recorded 13

pairs of zebrafish swimming in a 35 � 35 cm tank with water

depth of 5 cm for 30 min. The fish were recorded at 30 fps and

the resulting videos were tracked using IDTRACKER [16] giving as

output 26 individual trajectories. The trajectories were first smoothed

with a 170 ms moving average filter (or 5 out of 30 frames per

second). The x-components of velocity and acceleration at time ti

were calculated as vx(ti) ¼ x(ti) 2 x(ti21) and ax(ti)¼ vx(tiþ1) 2 vx(ti),

respectively, where ti ¼ i/30, with i the frame number and ti the

acquisition time of that frame in seconds.
(b) Kinematics
For analysis of viscous drag, the local maxima and minima

were extracted for each time series of the velocity waveform.

The descending phases of the velocity trajectory were localized

and each local descending region was fitted with an equation

vmax ,i e�at, where vmax ,i was the amplitude of velocity at the

ith local maxima. The parameter a was shared for all local

descending regions and all fish. The value of a was chosen

such that the mean absolute deviation between the fit and

the observed trajectories was minimized. For quadratic drag,
the same procedure was used except for the equation which

was written as vt,i ¼ vmax ,i=ð1þ vmax ,iatÞ.

(c) Predictability of acceleration
The amount of unexplained linear variation was calculated as

U ¼
P

t,i jvt,i � vobs,t,ij, where vt,i was the predicted velocity

at time t of descent episode i and vobs,t,i was the observed

velocity. The total linear variation was calculated as

T ¼
P

t,i jvmed,i � vobs,t,ij, where vmed,i was the median velocity

of the ith decay waveform. The total fraction of explained

linear variation is f ¼ (T 2 U )/T.

In order to analyse the predictability of acceleration using

social information, we used an artificial neural network with

eight input units representing the x- and y-coordinates and the

x- and y-components of the velocity of the focal and partner fish

at time t. All input signals were normalized to unit variance and

had zero mean. The output signal was the x- and y-components

of the acceleration at time t þ 1. We used one hidden layer with

40 neurons and fitted the net individually for each fish after split-

ting its data randomly into a training set (70% of data), validation

set (15%) and test set (15%). Nets were fitted with Levenberg–

Marquard optimization using MATLAB neural networks toolbox.

For predicting acceleration at time t þ 1 from its value at time t,
ordinary linear regression was used.

(d) Empirical forcemaps
The forcemaps were extracted by analysing how the component

of acceleration of the focal fish that was parallel to focal fish

velocity depends the position of the other fish in a focal fish cen-

tric coordinate system (procedure as in [11]). The distance of the

other fish was also measured using the position vector com-

ponent that was parallel to the velocity of the focal fish. The

velocity of the other fish was similarly projected onto the velocity

of the focal fish and the amplitude of the projection was used

for analysis.

The social forcemaps might potentially suffer from contami-

nating data from periods of non-social interaction. In order to

correct for this potential bias, we analysed the expected

number of instances in which a temporally shuffled dataset

would generate observations within the variable range of our

forcemaps. We found this number to be less than 25% of total

observations in our experimental forcemaps. We corrected the

amplitude of social forces by multiplying the observed forces

by the number 1/(1 2 k), where k is the total number of obser-

vations found in a shuffled forcemap divided by the total

number of observations in the non-shuffled forcemap.
3. Results
(a) Characteristics of zebrafish swimming
A control-theoretic treatment of fish locomotion begins with a

characterization of the motor output of the fish. We first

obtained a description of the forces at play in zebrafish swim-

ming in one dimension. As in many fish species, zebrafish

swimming is a highly structured temporal process [17].

Active periods of near-maximal acceleration alternate with

periods of passive gliding where deceleration occurs due to vis-

cous drag. This process generates a saw-tooth-like evolution of

the velocity profile (figure 1a). We used the deceleration phase

of the locomotor cycle in zebrafish to characterize the drag

dynamics. We found that simple exponential decay accounted

for 62% of the linear variations in speed. This performance

measure was calculated across all decay waveforms for all

fish using only a single free parameter shared across all



20

ve
lo

ci
ty

 (
cm

s–1
)

fo
ca

l a
cc

el
er

at
io

n 
(c

m
s–2

)

fo
ca

l a
cc

el
er

at
io

n 
(c

m
s–2

)

10

0
474

10

0

–10

–20
475 476 477 478 479

time (s)

partner position, d (cm)

480 –20

20

0

–20

–40 fo
ca

l a
cc

el
er

at
io

n 
(c

m
s–2

) 20

0

–20

–10

10

20100–10

–20 20100–10
partner position, d (cm)

partner position, d (cm)

–20 20100–10

(a) (b)

(c) (d)

Figure 1. Analysis of zebrafish swimming. (a) Example of magnitude of velocity over time for one fish showing acceleration (blue) and deceleration phases (black).
Also shown are exponential decay fits to decelerating phases (green). (b) One-dimensional social force as a function of the relative distance between focal fish and
partner fish. (c) Modulation of social forces by focal fish velocity. Focal fish velocity ranges: 0 – 10.5 (blue), 10.5 – 21 (red) and 21 – 32.5 (yellow). (d ) Modulation of
social forces by partner fish velocity. Partner fish velocity ranges: 0 – 10.5 (blue), 10.5 – 21 (red) and 21 – 32.5 (yellow). n ¼ 13. Bars are s.e.m.
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traces, thus characterizing the average viscous drag on the

body of a zebrafish (see ‘Kinematics’). This is consistent with

viscous drag forces proportional to velocity, with acceleration

adec ¼ �av, ð3:1Þ

and a ¼ 2.7 s21 in our case. A drag force quadratic in velocity

gives a worse fit accounting for 50% of variation. The rising

phase of the velocity profile is well described by an acceleration

towards maximal velocity vmax as

aacc ¼ aðvmax � vÞ, ð3:2Þ

with vmax ¼ 27 cm s�1. This value is consistent with the

observed velocities, with 95% of them below this value. The

few instances of observed velocities above vmax ¼ 27 cm s�1

might be accounted for by rare periods of anaerobic acceleration.

In experiments using pairs of zebrafish, active swimming

dynamics still strongly shapes swimming patterns. The accel-

eration of a fish at time t predicts 45+0.76% of the linear

variation in its acceleration at time t þ 1 (see ‘Predictability

of acceleration’). By contrast, a neural network provided

with spatial information and the velocity vectors of both

the focal fish and its partner fish at time t, which characterizes

the social information available to a fish, can explain only

6.5+0.3% of acceleration at time t þ 1 (see ‘Predictability of

acceleration’). Our results contrast with a common view

of social interactions, which concentrates on the influence of

social parameters such as the relative inter-individual

position, heading and velocity as determinants of future

movements. In our experiments, the non-social part of the

locomotor cycle is a better predictor of future acceleration

values than social information even in social settings. The

strong influence of non-social processes on behaviour is

consistent with previous reports [18–20].
To extract the characteristics of social interactions, we

used the forcemap approach [10,11]. It consists of computing

the dependency of the mean social force (focal fish mean

acceleration) on inter-animal distance and velocity of focal

and partner. In our set-up, zebrafish spend 80% of their

time swimming parallel to the walls along approximately

one-dimensional tracks. We restricted our analysis to periods

where zebrafish velocity vectors were highly parallel to each

other, with differences in heading angles less than 458, the

distance between fish in the direction perpendicular to focal

fish velocity vector less than 7 cm and the distance of fish

in the parallel direction less than 20 cm (a total of 30% of

all data were thus used for analysis).

From these approximately one-dimensional tracks, we

measured how acceleration of a focal fish depends on its dis-

tance to its partner, the speed of the partner and the speed

of the focal fish. A partner fish located in front (behind) of

the focal fish generates a strong positive (negative) acceleration

response in the focal fish (figure 1b). The velocity of the focal

fish modulates the acceleration of the focal fish in a negative

fashion: increasing focal fish velocity causes increased decel-

eration (figure 1c). This is consistent with passive viscous

forces both reducing the maximal acceleration attainable to a

fast-moving fish as well as increased viscous deceleration

experienced during the gliding phase. By contrast, increasing

partner fish velocity appears to promote increased acceleration

of the focal fish, particularly when the partner fish is located in

front of the focal individual (figure 1d).
(b) Social interactions from optimal controller
A theoretical treatment of group swimming must also specify

the objective of the fish. This objective must be expressible in

terms of observed variables and should capture the biological
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Figure 2. State space depiction of the optimal control rule. (a) Colourmap depicting how the acceleration of the focal fish changes as a function of the velocity of
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intuition that schooling fish are trying to move in a cohesive

manner. We define a pair of fish as moving with maximal

cohesion if both individuals are moving with identical

velocities and are positioned as close to each other as phys-

ically possible. We next derived an approximately optimal

controller which tries to maintain maximal cohesion in

order to compare whether such a controller might explain

the observed characteristics of zebrafish social interactions.

Our controller takes as input the relative position of the

partner fish, as well as velocities of both the focal and partner

fish, and it outputs a dynamic decision which specifies

whether the focal fish should glide or accelerate. The controller

is designed to optimize the time it takes to bring two fish into a

maximally cohesive state from any initial state. The minimum

time objective was chosen partly because it might minimize

predation risk by allowing a dispersed group of fish to arrive

at a maximally cohesive and presumably safest group configur-

ation in the minimum amount of time. A second reason behind

our choice of cost function is mathematical. Minimum time

controllers are easy to optimize. It remains possible that

other cost functions such as minimization of inter-fish dis-

tance over time will also produce behaviours consistent with

data. The exploration of alternative cost functions is left as

future work.

The Pontryagin minimum principle specifies the bang–

bang controller as the optimal controller for our scenario

[17,21] (while this is a standard result, we have also added

the sketch of a proof for our particular problem to the elec-

tronic supplementary material). A bang–bang controller

prescribes that if an agent should decide to accelerate, it

should do so with maximal intensity. Deceleration decisions

should likewise use only passive gliding to attain maximal

possible deceleration.

The decision-making of a zebrafish is divided into a simple

classification problem: accelerate maximally or glide. From

these arguments, we obtain that the amplitude of deceleration

should be equal to aF ¼ adec ¼ 2avF and the amplitude of
acceleration should be given by aF ¼ aacc ¼ aðvmax � vFÞ,
where vF is the velocity of the focal individual and vmax is the

maximal possible speed obtainable through aerobic swimming.

The decision to glide or accelerate can then be formalized

as a three-dimensional decision problem with inputs vF (focal

fish velocity), vP (partner fish velocity) and d ¼ xpartner 2

xfocal (inter-animal distance). We derive the location of the

decision boundary from the following standard argument:

if a zebrafish is located on the decision boundary and the

partner fish is expected to maintain a constant velocity vP

(see ‘Discussion’ about possible caveats associated with this

assumption), then passive gliding will eventually bring the

focal fish to a maximally cohesive state (same point in

space and same velocity). In the electronic supplementary

material, we derive the equation describing this decision

surface as

T ¼ d� 1

a
vF � vP � vP ln

vF

vP

� �
¼ 0: ð3:3Þ

The resulting decision rule then corresponds to fish accel-

erating, aF ¼ aacc, at one side of the decision surface, T . 0,

or decelerating, aF ¼ adec, at the other side of the decision

surface, T , 0. Additionally, when it is the focal fish that is

in front of the partner, d , 0, it glides until d . 0. In sum-

mary, the rule is completely characterized by the following

equations describing how the focal agent should accelerate:

if d < 0) aF ¼ adec ð3:4Þ
else if T . 0) aF ¼ aacc ð3:5Þ
and else aF ¼ adec: ð3:6Þ

Our decision rule is fundamentally a three-dimensional

process, but it can be visualized as a series of two-

dimensional sections. In figure 2a, we depict one such cross

section, where we have fixed the value of the partner fish

velocity in order to illustrate how changes in focal fish

velocity and the inter-animal distance influence acceleration
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decisions. The decision boundary is visualized as a black line,

which separates the acceleration zone from the deceleration

zone. As can be seen from the figure, increasing focal fish

velocity increases deceleration, as is apparent from the pro-

gressively deeper blue tones as we move from the left to

the right on the graph.

One advantage of our two-dimensional visualization is

that focal fish behaviour can be visualized as trajectories in

the state space graph. In figure 2b, we have depicted one

such example trajectory in the state space. During the burst

phase (purple), the focal individual increases its velocity

and decreases its distance relative to the partner fish until it

reaches the decision boundary. After reaching the decision

boundary, the focal individual switches to gliding mode

(green) and moves along the decision boundary until its

position and velocity match with its partner. The resulting

evolution of the velocity of the focal fish is depicted in

figure 2b, with a saw-tooth-like velocity waveform from the

switch from bursting to gliding.

We present an alternative depiction of the structure of our

optimal controller, where we fix to a limited range the vel-

ocity values of the focal fish in order to see the effects of

varying partner fish velocity (figure 3a). This was modelled

with sensory noise added in the estimation of interfish

distance (see the electronic supplementary material, methods

5.3 for details of noise modelling and comparison with noise-

free predictions). We also provide analogous plots of the

experimentally measured zebrafish interactions (figure 3b).

The optimal controller has three features that are qualitatively

consistent with the measured decision maps. First, the ampli-

tude of the deceleration and acceleration zones are negatively

modulated by the focal zebrafish velocity. Second, large

values of partner fish velocities activate acceleration beha-

viours when the partner fish is located in front of the focal
fish. Third, the transition zone between the acceleration and

deceleration zones has a negative slope in the d–vpartner axis.

Overall, both the biological controller and the optimal con-

troller have a simple intuitive structure. If the partner fish is

located in front of the focal fish and moving faster than the

focal fish, then the focal fish should accelerate. This behaviour

leads to an increase in its speed and will allow it to catch up

with the partner fish. The acceleration should continue until

the focal fish reaches a sufficient speed and position such

that a switch to passive gliding is expected to bring it into a

maximally cohesive state with its partner. If the speed of the

focal fish is much greater than the speed of the partner fish,

then the focal fish should always glide. Gliding causes the pas-

sive drag of water to bring its velocity closer to the velocity of

its partner and the inter-individual distance will simul-

taneously shrink as well, since the greater speed of the focal

fish relative to the partner will cause the focal fish to approach

the partner. Finally, if the focal fish is located in front of the

partner fish, then due to the blind angle, a precise estimation

of the position and velocity of the partner fish is not possible

and the best decision is to glide passively until the partner

fish overtakes the position of the focal fish.

This qualitative consistency can be seen in figure 4. We

have divided the forcemaps into four quadrants (figure 4a)

and plotted how the average acceleration in each quadrant

varies with focal fish velocity (figure 4b). Consistent with

theory, acceleration in all four quadrants is negatively modu-

lated by focal fish velocity. The relative ranking of the

intensity of acceleration in all quadrants is also qualitatively

consistent with theory. Quadrants Q1 and Q3 have the

lowest values of acceleration, because they correspond to

situations where the partner is located behind the focal fish

and the focal fish is always decelerating. Quadrants Q2 and

Q4 partially overlap with acceleration regions so they show
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higher acceleration values. Because quadrant Q4 corresponds

to higher values of the partner fish velocity, it has higher

average acceleration values than quadrant Q2.

While the controller map is qualitatively consistent

with observed zebrafish behaviour, there are quantitative

differences. Notably, the amplitudes of the acceleration and

deceleration zones are approximately 40% weaker than pre-

dicted by theory and the transitions between acceleration and

deceleration zones are less abrupt. The sources of this discre-

pancy are further addressed in the next section, which details

a simulation approach to study contributions of non-social

behaviour to the empirical forcemaps.

One prominent feature in both the optimal controller and

biologically measured controllers is velocity-dependent modu-

lation of social interactions. In the electronic supplementary

material, we show mathematically that velocity-dependent

modulation of social interactions is a necessary characteristic

of fish social interactions given other features known about

fish swimming control systems such as the relative dominance

of frontal acceleration zones over caudal deceleration zones

as well as the use of egocentric representations of decision

rules. Control theoretic analysis is thus more generally able

to successfully explain many qualitative features of social

interactions in fish collectives.
(c) Closing the loop through simulations
We next attempted to close the loop by simulating fish fol-

lowing the optimal control rule to see if we could find a

match between the most relevant summary statistics of fish

locomotion in experiments and simulation.

Closing the loop required making some assumptions about

the non-social behaviour of fish. There is a leader fish, who

moves non-socially (it does not respond to the movements

of the follower) in a burst and glide swimming pattern. We

tested for leadership in zebrafish by examining velocity

vector cross-correlations, which showed that zebrafish pairs

exhibit both asymmetric and alternating leadership patterns

(electronic supplementary material, figure S2). The follower
fish obeyed our control rule except for non-social periods

where it exhibited burst and glide behaviour (see the electronic

supplementary material). The probability of the follower being

in a non-social state was 0.2 and the duration of a non-social

episode was 15 s on average (similar to the 5–15 s duration of

shoal cohesion oscillations in zebrafish [18]).

To calculate the forcemaps, we summed the occupancies

and accelerations of both the leader and the follower fish in

each bin, and then calculated the averaged forcemaps by

dividing the net acceleration with the net occupancy. This

is important because zebrafish leadership can switch unpre-

dictably during the recording session and our experimental

forcemaps contain contributions from both the leader and

the follower fish. We subsequently extracted empirical force-

maps from simulated trajectories and found them to have a

good qualitative match with experimental measurements

(figure 5; cf. figure 3).

We note the following key features: even though our con-

trol rule generated peak acceleration values of 60 cm s22,

the simulated forcemaps have peak acceleration amplitudes of

25 cm s22, which is much closer to the experimentally measured

peak values of 26 cm s22. It appears that non-social behaviour

dilutes the contribution of the control rule both in simulation

and in experiments. A second feature of the simulations

which is qualitatively consistent with the experimental force-

maps is the non-uniform appearance of acceleration and

deceleration zones. For example, in the medium- and low-

velocity maps in both experiments and simulations, regions of

peak acceleration are concentrated in the lower part of quadrant

4. Such peaks are absent from the theoretical approximations

and again suggest the importance of the influence of non-

social periods of activity on the maps. Our simulations also

closely reproduced key summary statistics of fish velocity

(simulations: 13.5+5.8 cm s21 and 12+6.5 cm s21).

Even in our simulations a certain mismatch remains with

experiments. First, the simulated deceleration zones tend to

have smaller amplitudes. This may be caused by an overly

simplistic model of non-social fish behaviour, which lacks

known features like homebase behaviour [22], sporadic
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aggression [16], and switching between fearful and more

pacific internal states [23]. Second, the median interfish dis-

tance in our simulations was 4.6 cm while in experiments

this measure was 5.6 cm. This is easily explained because in

experiments fish often spend extended periods exploring

the arena. Overall, our simulations reproduced the most

salient experimental features of zebrafish schooling.
4. Discussion
Early phenomenological descriptions of fish schooling used

self-propelled particle models where agents kept a constant

velocity [1,13]. Experimental measurements of schooling

recently found that changes in the magnitude of velocity

were integral to the process of schooling [11,12]. The same

studies also first described velocity-dependent modulation of

social forces although the functional reason behind this modu-

lation was not discussed. Our theoretical framework provides a

strong rationale behind this phenomena. Velocity-dependent

modulation of interactions is a necessary precondition for

stable schooling in fish species where acceleration and decel-

eration zone amplitudes have a rostro-caudal asymmetry and

the frontal acceleration zone has a stronger amplitude than

the caudal deceleration zone. A more precise coordination of

velocity-dependent forces can even be used to construct a

near-optimal controller, and signatures of such a controller

appear present in the experimental data for zebrafish.

The results of our study suggest many new avenues of

experimental research. One exciting approach concerns

inter-species comparison of schooling. Different fish species

exhibit different locomotor dynamics and it will be important

to test the effects of altered locomotion on the characteristics

of forcemaps. The characteristics of forcemaps are also influ-

enced by the behaviour of fish during non-social episodes.

It would be interesting to apply our approach to fish species

where leadership is less dynamic and more asymmetric than

in zebrafish. In such species, where leaders and followers

are easier to separate, the leader and follower maps might

look substantially different [24]. Comparing the predictions

of theory with experiments in these species represents a further

important test of our theory.

The presence of signatures of optimal control in simple

situations where pairs of zebrafish interact in a quasi-

one-dimensional geometry raises multiple questions. One is
how the framework extends to two- and three-dimensional

scenarios and to larger group sizes. Another is how fish esti-

mate the variables needed for real-time computation of the

decision boundary from their retinal image. A third is how

these variables are re-estimated during development, as

changes in fish body shape modify viscous drag.

We believe that a joint solution to these problems can

be found through the methodology of deep multi-agent

reinforcement learning [25,26]. Multi-agent reinforcement learn-

ing can learn to solve complex control problems in situations

where analytical methods of traditional control theory are no

longer tractable. Extensions of our model to multi-agent three-

dimensional scenarios would be one such example situation,

although this extension will also require modifications to our

cost function, which is currently only stated for the case of pair-

wise interactions. Deep reinforcement learning also provides a

solution to the sensory estimation problem, because it can learn

useful policies directly from high-dimensional data such as

retinal activity patterns. As deep reinforcement learning is fun-

damentally an adaptive method which responds to changes in

the environment or the body of the zebrafish, it also provides

a natural solution to the problem of tuning the decision

boundary [15,27] over developmental time scales.

Multi-agent deep reinforcement learning is not only

conceptually attractive [28], but also inherently biologically

plausible, because the neural apparatus needed to implement

its computations is present in vertebrate brains [29]. One poten-

tial challenge to the use of deep learning in schooling is the

large hunger for data often needed to train such systems.

Our preliminary computational experiments indicate that this

is not a problem for the case of schooling in pairs, because an

artificial neural network composed of just 200 neurons is

capable of learning competent schooling policies using data

gathered in under 30 min of real-time schooling behaviour.

The present work has outlined how control theory can pro-

vide a simple mathematical description of zebrafish schooling

in pairs. We believe that the presence of simple signatures of

optimal control in relatively simple scenarios is not accidental

but a sign of a more complex controller, which (among many

other problems) is also able to find near-optimal ways to coor-

dinate collective behaviour in simple scenarios. An important

future extension of this work would explore whether methods

such as deep reinforcement learning could provide a unified

description of the diversity of social behaviours seen in

different species and in different environments.
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