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Abstract
Sexually reproducing organisms face a strong selective pressure to find a mate 
and ensure reproduction. An important criterion during mate-selection is to avoid 
closely related individuals and subsequent potential fitness costs of resulting inbred 
offspring. Inbreeding avoidance can be active through kin recognition during mate 
choice, or passive through differential male and female-biased sex ratios, which ef-
fectively prevents sib-mating. In addition, sex allocation, or the resources allotted to 
male and female offspring, can impact mating and reproductive success. Here, we 
investigate mate choice, sex ratios, and sex allocation in dispersing reproductives 
(alates) from colonies of the termite Cubitermes tenuiceps. Termites have a short time 
to select a mate for life, which should intensify any fitness consequences of inbreed-
ing. However, alates did not actively avoid inbreeding through mate choice via kin 
recognition based on genetic or environmental cues. Furthermore, the majority of 
colonies exhibited a female-biased sex ratio, and none exhibited a male-bias, indicat-
ing that differential bias does not reduce inbreeding. Sex allocation was generally 
female-biased, as females also were heavier, but the potential fitness effect of this 
costly strategy remains unclear. The bacterium Wolbachia, known in other insects 
to parasitically distort sex allocation toward females, was present within all alates. 
While Wolbachia is commonly associated with termites, parasitism has yet to be dem-
onstrated, warranting further study of the nature of the symbiosis. Both the apparent 
lack of inbreeding avoidance and potential maladaptive sex allocation implies possi-
ble negative effects on mating and fitness.
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1  | INTRODUC TION

For sexually reproducing organisms, selecting a mate and secur-
ing reproduction are critical steps in maximizing individual fitness. 
Mating with a relative can have high costs, including the expression 
of deleterious recessive mutations through increased homozygosity 
(Andersson & Hughes, 1996; Charlesworth & Willis, 2009; Pusey & 
Wolf, 1996). Inbreeding is avoided in many animals through kin rec-
ognition (Blouin & Blouin, 1988; Pusey & Wolf, 1996), sex-biased dis-
persal (Noirot, 1989; Pusey & Wolf, 1996), and differential sex ratios, 
where individuals in a population specialize on producing predomi-
nantly males or females, consequentially reducing the likelihood of 
mating with a sibling (Vargo & Husseneder,  2010). Sex allocation, 
defined as the energy invested in male and female offspring, can 
influence the mating, resources procurement, and reproductive suc-
cess of these individuals or their kin, ultimately impacting inclusive 
fitness (Fisher, 1930; West, 2009). For monogamous organisms, in 
particular, inbreeding or maladaptive sex allocation may carry sub-
stantial fitness costs.

The lifetime monogamy of termites means that their single mate 
choice has lasting consequences with regards to inbreeding. Unlike 
social Hymenoptera, termites are diplo-diploid, and different selec-
tion pressures can affect whether inbreeding is avoided, preferred, 
or tolerated. Although inbreeding has been predicted to often be 
tolerated in many organisms due to increased fitness benefits of 
passing on related genes and increased parent-offspring relatedness 
(Duthie & Reid, 2015), egalitarian parental care (such as in termites) 
is predicted to undermine this and lead to inbreeding avoidance 
(Kokko & Ots, 2006); for example through kin recognition or differ-
ential sex ratios. Furthermore, inbreeding should not be favored in 
monogamous organisms unless inbreeding avoidance carries a cost 
(Waser et al., 1986). Reproductive termites alates leave their natal 
nest in a nuptial flight, during which they must rapidly choose a mate 
for life amidst substantial environmental risk (Dial & Vaughan, 1987; 
Nutting, 1969). This environmental risk during the mating flight could 
represent a high potential cost to inbreeding avoidance. This in turn 
could select for behavior that minimizes time spent aboveground, 
thus reducing the amount of mates that can be encounter, leading to 
higher inbreeding tolerance (Kokko & Ots, 2006). After the mating 
flight, the alate pair starts a colony that will undergo multiple repro-
ductive episodes (Eggleton, 2010); thus, mate choice during this brief 
period can influence lifetime reproductive success across decades. 
Inbreeding between related alates regularly occurs in termite popu-
lations and can result in negative fitness effects (Calleri et al., 2006; 
DeHeer & Vargo, 2006), which makes it likely that inbreeding should 
preferentially be avoided if possible. Although sufficient disper-
sal distances can facilitate outbreeding (Husseneder et  al.,  2006; 
Vargo & Husseneder, 2010), termites are generally not considered 
as apt flyers (Nutting,  1969). Therefore, if inbreeding avoidance 
is important in this termite species, it is likely that kin recognition 
or differential sex ratios could also play a role. Alates of basal ter-
mite clades (lower termites) do not display kin recognition (but see 
Aguilera-Olivares et al., 2015; DeHeer & Vargo, 2006; Husseneder 

& Simms, 2008; Kitade et al., 2004; Shellman-Reeve, 2001), yet the 
capacity for kin recognition in derived termite lineages (higher ter-
mites) is poorly understood (Vargo & Husseneder, 2010). Differential 
bias in sex ratios between colonies has only been observed in lower 
termites (Husseneder et al., 2006). Thus, in higher termites, kin rec-
ognition and/or sex ratios could potentially play a vital role in reduc-
ing the risk of inbreeding when choosing a monogamous mate.

Organisms are predicted to equally allocate resources to male 
and female offspring (Fisher, 1930), and biased allocation can have 
positive or negative effects on offspring's mating and reproductive 
success. Sex allocation measurements, as opposed to sex ratio, not 
only incorporate the number of offspring, but also an energetic esti-
mate of each sex. Generally, bias is maladaptive because it increases 
the reproductive value of the rarer sex or sex with lesser allocation 
(Fisher,  1930). However, adaptive bias may occur if a specific sex 
reaps higher fitness benefits under good environmental conditions, 
and thus receives greater allocation (Trivers & Hare, 1976). Bias can 
also improve mating success or resource procurement in cases of 
cooperation or competition with kin, such that allocation maximizes 
inclusive fitness (Hamilton, 1967; Clark,  1978; Taylor, 1981). In ter-
mites, adaptive sex allocation bias can further arise through within-
colony mother-son or father-daughter mating, which generates 
differential fitness between sexes (Hellemans et al., 2019; Kobayashi 
et  al.,  2013; Roisin & Lenz,  2002; Vargo et  al.,  2012). Conversely, 
maladaptive bias can be caused by sex allocation distorters like the 
bacterial symbiont Wolbachia, which commonly occurs in insects 
(Charlat et al., 2003; Correa & Ballard, 2016). Wolbachia is vertically 
transmitted by females, and thus the parasite can increase its fitness 
by inducing female bias through male-killing, feminization, and par-
thenogenesis (Werren et al., 2008). Multiple termite taxa associate 
with Wolbachia (Bandi et al., 1997; Bordenstein & Rosengaus, 2005; 
Hellemans, Kaczmarek, et  al.,  2019; Lo & Evans,  2007; Roy & 
Harry, 2007; Salunke et al., 2010) but parasitic manipulation has yet 
to be observed.

Here, we evaluate inbreeding avoidance and sex allocation to 
infer the potential effects on termite mating and reproductive suc-
cess. We utilized reproductive alates from the soil-feeding higher 
termite Cubitermes tenuiceps, since moderate inbreeding and sym-
biosis with Wolbachia have been observed within the genus (Roy 
et  al.,  2010; Roy & Harry,  2007). Inbreeding avoidance was as-
sessed based on kin recognition during a behavioral assay with a 
male choosing between a nestmate and non-nestmate female from 
a local or foreign location; thus, determining if genetic or environ-
mental cues affect mate choice. Differential sex ratio bias among 
colonies was examined by counting all alates from each colony prior 
to the nuptial flight. Sex allocation was then determined based on 
the number and dry weights of each sex, as dry weight is a common 
proxy used for energetic investment in termites and other social 
insects (Cremer & Heinze, 2002; Hellemans, Fournier, et al., 2019; 
Kobayashi et al., 2013; Sundstrom et al., 1996; Trivers & Hare, 1976). 
Finally, the incidence of Wolbachia infection in alates was examined 
to investigate whether this co-occurred with sex allocation, indicat-
ing potential parasitism.
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2  | MATERIAL S AND METHODS

2.1 | Colony sampling and termite identification

Twelve nests of Cubitermes tenuiceps from two locations around 
Pretoria, South Africa, (Table S1) were systematically excavated in 
October 2019 when no rain had fallen for 5 months (South African 
Weather Service, weathersa.co.za), with the aim to collect all alates. 
Upon collection, alates were stored in boxes humidified with moist 
tissue paper, where they were kept for 1–2 hr before being brought 
to the laboratory at FABI, University of Pretoria. Alates were col-
lected 1–2  days before the first rains, after which Cubitermes has 
its nuptial flight (Nutting, 1969). The day after the first rain, several 
colonies from both locations were excavated and no alates were 
found. Therefore, the alates collected should represent the full an-
nual reproductive investment per colony.

2.2 | Species identification

Soldiers from each colony were used for genus-level classifica-
tion (Uys,  2002) while DNA barcoding was used for species iden-
tification. Legs were removed from four males and four females 
from each colony for a DNA extraction using Chelex (0.2  ml 10% 
Chelex solution, 99.9°C for 15 min). We then amplified Cytochrome 
c oxidase subunit II (COXII) for each sample (Primers: A-tLeu 
5′-CAGATAAGTGCATTGGATTT-3′; (Miura et  al.,  1998); and B-tLys 
5′- GTTTAAGAGACCAGTACTTG-3′; (Liu & Beckenbach, 1992). The 
PCR mix consisted of 12.5 µl Red Taq master mix (Ampliqon), 1.0 µl 
forward primer, 1.0 µl reverse primer, 0.1 µl bovine serum albumin 
(BSA), and 8.4  µl H2O for a total volume of 25  µl. PCR conditions 
were as follows: 94°C for 5 min, 35 cycles of 94°C for 10 s, 50°C for 
20 s, and 72°C for 45 s. The program ended with a final elongation of 
72°C for 7 min. PCR success was determined using agarose gel elec-
trophoresis. PCR products from 2 specimens (1 female and 1 male) 
from each colony were then purified using MSB Spin PCRapace 
(STRATEC Molecular, Germany), and underwent Sanger sequencing 

at Eurofins (Ebersberg, Germany). The resulting sequences (1 for the 
forward and 1 for the reverse primer) for each specimen were then 
aligned using a pairwise Geneious alignment with default settings in 
Geneious 2019 (Biomatters Ltd., New Zealand). The highest-quality 
consensus sequence from each colony was checked against the 
NCBI nucleotide database using BLASTn.

2.3 | Inbreeding avoidance: kin recognition during 
mate choice and sex ratios

In Cubitermes, similar to many termites, initial mate choice during pair-
ing is performed by males. Female Cubitermes raise their abdomen 
in calling behavior, presumably releasing sex-pairing pheromones 
to attract a male (Bordereau & Pasteels,  2010; Williams,  1959). 
Subsequently, males choose and follow the female in a tandem run 
until they establish a nest. Males occasionally exhibit choosiness by 
changing female partner during the tandem run (Williams,  1959). 
Therefore, we examine male mate choice between females during 
pairing and tandem running. Mate choice assays were conducted by 
observers who did not know the origin of the female. The observers 
monitored male choice and a coordinator that recorded the colony of 
origin of the termites. Two females, a nestmate and a non-nestmate 
from either the same or foreign collection location, were placed 
away from each other, in an arena (90 mm Ø Petri dish) with soil from 
the local environment. The observer followed one of the females, 
assigned as the focal female, for the remainder of the assay. The 
females were given 1 min to acclimatize, during which they would 
often raise their abdomens. Sometimes females would walk around 
for some time before standing still. In the rare occasion that females 
met each other, they appeared to ignore each other and continue 
walking until raising their abdomen. After acclimatizing, a male was 
added (Figure 1a). After 3 min, his choice of female (focal, nonfocal, 
or no choice) was communicated to the coordinator. The coordinator 
marked whether the chosen female was nestmate or non-nestmate. 
During the observation period, few males changed their choice of 
female, and only the final choice was recorded.

F I G U R E  1   (a) Schematic of mate choice test between nestmate and non-nestmate females, whose raised abdomens demonstrate calling 
behavior to attract a male. (b) Proportion of males that preferred nestmate or non-nestmate females (choice-tests: nforeign = 35; nsame = 43). 
Male choice did not significantly differ from random, which is shown by the dotted line, regardless of non-nestmate female location of origin. 
Error bars indicate 95% confidence intervals
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Termites were only used for a single assay, resulting in 78 assays 
of mate choice (n = 35 non-nestmate from foreign location, n = 43 
non-nestmate from same location), in which eleven colonies were 
used (Table S2). The data were analyzed using a binomial generalized 
linear mixed model (GLMM) with “mate choice” as the dependent 
variable, “female origin” the predictor, and “male colony of origin” a 
random effect. “No choice” occurred 14 times and was not consid-
ered in the data analysis. To test whether mate choice was random, 
we implemented an intercept offset using the logit of 0.5.

Heterogeneity between colonies was tested using a G-test.
Sex ratios were determined by quantifying the number of male 

and female alates found in each colony (ncolony = 11; Table S2). Alates 
were sexed using morphological characteristics (Krishna et al., 2013), 
and sex ratio was calculated by dividing the number of males by the 
total number of alates. For each colony, we analyzed whether sex 
ratio deviated from 0.5, representative of a balanced sex ratio, using 
a test of equal proportions (prop.test function, R).

2.4 | Sex allocation and Wolbachia identification

In addition to the examination of sex ratios, energy allocation to 
each sex was estimated by measuring the dry weight of ten males 
and ten females per colony (ncolony = 9; Table S2). Termites were eu-
thanized at −20°C, dried at 60°C for 48 hr, and then weighed. Data 
were analyzed using a LMM in the lme4 package (Bates et al., 2015, 
p. 4) in R (R Core Team, 2018) with “dry weight” as the dependent 
variable, “sex” as the predictor and “colony” as a random effect. 
Additionally, the total investment in each sex was estimated by mul-
tiplying the number of alates of a sex by their average dry weight 
per colony. The estimated colonial energetic allocation was then 
analyzed using a linear mixed-effects model (LMM; lmer function, 
lme4 package), with the logarithm of “total weight” as the dependent 
variable, “sex” as the predictor, and “colony” as a random effect. In 
addition, a 0.7 power conversion factor was applied to total female-
to-male dry weight ratio to correct potential disparities between 
metabolic rate and dry weight proxies for energetic allocation, which 
has been found in ants (Boomsma, 1989; Boomsma et al., 1995). This 
conversion factor in ants is driven partly by differences in biology 
and partly by differences in size, and thus might not be appropriate 
for termites. However, studies in termites are lacking, and thus we 
include both analyses with and without conversion factor.

We screened for the presence or absence of Wolbachia to test 
whether differences in sex allocation co-occurred with the symbiont. 
Using the DNA extracts from the termite species identification, we 
ran PCRs with Wolbachia-specific primers for two different regions: 
16S rRNA (16SWol-F: 5′-TTGTAGCCTGCTATGGTATAACT-3′ and 
16SWol-R: 5′-GAATAGGTATGATTTTCATGT-3′; (O'Neill et al., 1992)) 
and the ftsZ gene (ftsZuniF: 5′-GGYAARGGTGCRGCAGAAGA-3′ 
and ftsZuniR: 5′-ATCRATRCCAGTTGCAAG-3′; (Lo et al., 2002)). The 
PCR mix was the same as for COXII and had a total volume of 25 µl. 
The conditions for the PCR followed Lo et  al.  (2002). Successful 
amplification was confirmed using agarose gel electrophoresis. To 

confirm that it was Wolbachia which had been successfully ampli-
fied, a subset of ftsZ PCR products were purified using MSB Spin 
PCRapace (STRATEC Molecular, Germany), and underwent Sanger 
sequencing at Eurofins (Ebersberg, Germany). The resulting for-
ward and reverse sequences for each primer were aligned using a 
pairwise Geneious alignment with default settings in Geneious 2019 
(Biomatters Ltd., New Zealand), and the consensus sequences were 
checked against the NCBI nucleotide database using BLASTn.

3  | RESULTS

3.1 | Termite identification

All colonies except one were identified to Cubitermes tenuiceps, 
with 97%–98% nucleotide sequence similarity to the BLASTn hit 
MN685946.1 in GenBank. The remaining colony also matched best 
Cubitermes tenuiceps, but with a lower match of 92%, so we removed 
it from further analyses.

3.2 | Inbreeding avoidance: no apparent kin 
recognition during mate choice but female-biased 
sex ratios

Our observations matched previously published literature in that 
only males appear to be involved in mate choice. As soon as a male 
taps a female on the abdomen with his antennae, or attaches to the 
female abdomen with his mandibles, the female starts running and 
finding a place to dig a nest. The female never appears to turn around 
to contact the male, and the male continuously remains in contact 
with the female's abdomen during this process. Overall, mate choice 
appeared random (Figure  1, GLMM, intercept, z  =  1.60, p  =  .11). 
When males had a choice between a nestmate female and a non-
nestmate female from the same location, males chose a nestmate 
female during 45.5% of the trials. When the non-nestmate female 
was from a different location, males joined a nestmate female in 
62.9% of the trials. This difference in choice depending on location 
was, however, not significant (Figure 1; GLMM: location, z = −1.42, 
p = .16). Colonies were homogeneous in their choice of mate (G-test, 
G = 12.618, df = 10, p =  .25, Figure S1). The sex ratios of colonies 
were largely female-biased. The average sex ratio was 0.33 ± 0.13 
(mean ± SD) and significantly female-biased in 8 out of 11 colonies 
(Figure 2a, Table S4). No colonies exhibited male-bias.

3.3 | Female-biased sex allocation and ubiquitous 
presence of Wolbachia

Sex allocation was also found to be largely female-biased. Dry 
weights differed significantly between sexes (Figure  2b; LMM, 
Sex, χ2 = 213.73, p < .001, Table S5), with females (4.92 ± 0.35 mg, 
mean ±  SD) being heavier than males (4.23 ±  0.21 mg). Thus, sex 
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significantly affected the total energetic investment (LMM, Sex, 
χ2 = 30.80, p < .001), represented by the estimated cumulative dry 
weight of each sex per colony (Figure S2). The ratio of female-to-
male dry weight remained female-biased with the power conversion 
factor (Table S6), further corroborating our findings of skewed sex 
allocation.

Wolbachia was successfully amplified for both regions for 
alates from all colonies (Table  S2). All sequenced PCR products 
were closest to Wolbachia from the termite Kalotermes flavicollis 
(98.4%–98.8% sequence similarity; GenBank: AJ292345), with 
the exception of Wolbachia from colony B, which matched clos-
est to Wolbachia from a bush cricket (Bit score: 1,229; sequence 
identity: 96.9; GenBank: DQ536100) but had highest sequence 
identity to the K. flavicollis Wolbachia (Bit Score: 1,227; sequence 
identity: 97.0%). Wolbachia from both of the closest BLAST hits 
are within the Wolbachia group F (Lo & Evans, 2007; Panaram & 
Marshall, 2007), which is commonly associated with termites (Lo 
& Evans, 2007).

4  | DISCUSSION

We sought to investigate characteristics of inbreeding avoidance 
and sex allocation, which may influence the mating and reproduc-
tive success of the higher termite Cubitermes tenuiceps. No appar-
ent male mate choice was found, and sex ratios were female-biased. 
This suggests that C.  tenuiceps neither avoids inbreeding through 
kin recognition nor through differential sex ratios. As females were 
heavier than males, sex allocation was also female-biased. Wolbachia 
was consistently present in alates, warranting further research into 
potential parasite distortion of termite sex allocation.

Although the cost of inbreeding has not been quantified in C. te-
nuiceps, there is evidence from other termites that costs can be high 
(DeHeer & Vargo,  2006), for example in regards to compromised 
immune defenses (Calleri et al., 2006). If inbreeding has a tangible 
fitness cost in this monogamous species, reproductive alates must 
either rarely encounter related individuals, for example, due to suf-
ficient dispersal during mating flights (Vargo & Husseneder, 2010), 

or trade-offs / evolutionary constraints must exist that prevent the 
evolution of inbreeding avoidance. Mating flights are extremely dan-
gerous (Nutting, 1969), which could lead to males choosing the first 
female they encounter regardless of relatedness (Waser et al., 1986). 
Another potential trade-off may be related to pathogen pressure. 
In the termites Zootermopsis angusticollis and Coptotermes formosa-
nus, mating with an unrelated individual increases mortality of the 
mated pair, likely due to exposure to foreign fungi and bacteria (Fei 
& Henderson, 2003; Rosengaus & Traniello, 1993). Increased risk of 
infection could outweigh any inbreeding costs. Our results show a 
trend, although nonsignificant, that males prefer nestmate females 
when the non-nestmate female is from a different location. If differ-
ent locations harbor different pathogens, inbreeding could be adap-
tive to avoid novel pathogens.

Differentially biased sex ratios, where colonies specialize in 
producing either males or females to prevent sib-mating, can ef-
fectively reduce the effect of inbreeding (Noirot,  1989) and have 
been observed in Coptotermes formosanus (Husseneder et al., 2006). 
However, we found female-biased sex ratios for all but three colo-
nies, which did not demonstrate male-bias, indicating that sex ratio 
biases would not counter inbreeding. The deviation from equal in-
vestment in the sexes suggests other traits potentially drive female 
bias and impact fitness.

The drivers and fitness consequences of the female-biased sex 
allocation remain unclear, although certain adaptive cases are un-
likely due to termite biology. Local mate competition, resource com-
petition, or resource enhancement can promote sex allocation bias 
to improve mating success or resource procurement of offspring or 
kin (Hamilton, 1967; Clark,  1978; Taylor, 1981). Mate competition 
between related males can cause female bias in order to enhance 
male reproductive success through multiple mating (Hamilton, 1967; 
Taylor, 1981). However, monogamy, as exhibited by most termites, 
nullifies any benefit of multiple mating and reduces mate compe-
tition, making the optimal sex allocation equally favor males and 
females (West et  al.,  2000). Additionally, alates of higher termites 
rarely remain in their natal nest or interact during nest-founding, 
reducing the potential for resource enhancement via cooperation 
among kin (but see Eggleton, 2010; Roisin, 2000), and Cubitermes' 

F I G U R E  2   (a) Sex ratio denoted by proportion of male and female alates for each colony from both locations. Asterisks indicate 
significant deviation from 0.50 (*p < .05, **p < .01, ***p < .001). (b) Female alates exhibit a higher dry weight than their male counterparts. 
Each dot represents the average of a colony and the violin shape illustrates the distribution of individual weights. Lines connect males and 
females from the same colony
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food source (soil) (Uys, 2002), is a ubiquitous resource, likely mini-
mizing resource competition.

Two other traits predicted to affect investment, within-colony 
mating (Kobayashi et  al.,  2013; Roisin & Lenz,  2002) and environ-
mental conditions (Trivers & Willard, 1973), could potentially cause 
the sex allocation bias to benefit the termites. Within-colony mating 
with son or daughter reproductive replacements can beneficially 
bias sex allocation to favor the parent with greater genetic contri-
bution (Kobayashi et al., 2013; Roisin, 2000; Roisin & Lenz, 2002). 
However, it is unlikely that within-colony mating promotes the fe-
male bias in C. tenuiceps. Reproductive replacements normally occur 
in a smaller fraction of termite colonies than observed in this study 
(Hellemans, Fournier, et  al.,  2019; Kobayashi et  al.,  2013; Vargo 
et  al.,  2012), and replacements are thought to be uncommon in 
Cubitermes (Myles, 1999; Noirot, 1956). Alternatively, sex allocation 
may be biased if fitness of the sexes varies with environmental qual-
ity, such that the sex that reaps higher fitness benefits from a better 
environment should receive greater allocation in good conditions 
(Kümmerli & Keller,  2011; Trivers & Willard,  1973). Thus, termites 
could theoretically invest more in females if they had greater fitness 
under favorable environmental conditions, reinforcing the produc-
tion of this energetically costly sex. However, conditional sex allo-
cation related to environmental quality remains to be demonstrated 
in termites. Overall, the lack of evidence for within-colony mating or 
advantageous environmental conditions prevents any firm conclu-
sions of adaptive sex allocation.

The female-biased sex allocation may be maladaptive and poten-
tially relates to the ubiquitous prevalence of Wolbachia. The inflated 
number of females during the nuptial flight may reduce the mating 
success and increase the reproductive value of the rarer male sex 
(Fisher,  1930). Thus, biased allocation toward females potentially 
reduces fitness, and the frequency-dependent nature of selection 
should cause colonies to invest more in males, unless a parasitic 
sex distorter is driving the female bias (Fisher, 1930; West, 2009). 
Wolbachia is well-known female-biased sex allocation distorter in ar-
thropods (Werren et al., 2008). This bacterial symbiont is vertically 
transmitted through females, and the symbiont can maximize trans-
mission through reproductive parasitism (Miller & Schneider, 2012; 
Werren et  al.,  2008) in the form of feminization of males, male-
killing, and/or parthenogenesis induction (Charlat et  al.,  2003; 
Correa & Ballard,  2016). All alates surveyed were infected with 
Wolbachia, similar to the high incidence in alates of Cubitermes sp. 
affinis subarquatus (Roy et al., 2015), and other termites across de-
rived (higher termites) and basal (lower termites) clades also host 
Wolbachia (Bandi et  al.,  1997; Bordenstein & Rosengaus,  2005; 
Hellemans, Kaczmarek, et  al.,  2019; Lo & Evans,  2007; Roy & 
Harry, 2007; Salunke et al., 2010). However, the exact nature of the 
symbiosis in termites remains largely unknown (but see Hellemans, 
Kaczmarek, et  al.,  2019), and a parasitic association cannot be as-
sumed without causal proof. For example, variable sex allocation, 
which is driven by parthenogenesis and within-colony inbreeding, 
and Wolbachia co-occur in some other termites without being caus-
ally linked (Hellemans, Fournier, et al., 2019; Matsuura et al., 2004; 

Yashiro & Lo, 2019). If Wolbachia caused the observed female-biased 
sex allocation, this may generate fitness costs due to reduced mating 
success during the nuptial flight and diminished reproductive suc-
cess due to male-killing of offspring (Charlat et al., 2003). Thus, the 
symbiotic nature of Wolbachia in Cubitermes is deserving of further 
research, particularly if it acts as a reproductive parasite and conse-
quentially reduces host fitness.
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