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ABSTRACT

The system matrix (SM) being a main part of statistical image reconstruction algorithms establishes relationship
between the object and projection space. The aim was to determine it in a short duration time, towards obtaining
the best quality of contrast images. In this study, a new analytical method based on Cavalieri's principle as
subdividing common regions has been proposed in which the precision of the amounts of estimated areas was
improved by increasing the number of divisions (NOD), and consequently the total SM's time was increased. An
important issue is the tradeoff between the NODs and computational time. For this purpose, a Monte Carlo
simulated Jaszczak phantom study was performed by the Monte Carlo N-Particle transport code version 5
(MCNP5) in which the tomographic images of resolution and contrast phantoms were reconstructed by maximum
likelihood expectation maximization (MLEM) algorithm, and the influence of NODs variations was investigated.
The results show that the lowest and best quality have been obtained at the NODs of 0 and 8, respectively and in
the optimum case, the SM's total time at NOD of 8 was 925 s, which was much lower than those of the con-
ventional Monte Carlo simulations and experimental test.

1. Introduction

Image reconstruction algorithms play a key role to obtain the
anatomical and functional maps towards better recognition in the med-
ical fields. The shorter the time of algorithm, the better temporal reso-
lution of images will be. This is an important aim in nuclear medical
imaging because making internal functionality of the organs more
apparent, and projections are converted to transaxial images by these
algorithms, which are categorized in analytical and iterative methods [1,
2,3,4,5,6,7,8,9, 10, 11]. The maximum likelihood expectation
maximization (MLEM) algorithm is used to reconstruct tomographic
images by iteratively maximizing a likelihood function. The slow
convergence rate and high computational cost are major shortcomings of
the MLEM [12, 13]. The thresholding technique is a solution to speed up
the convergence rate of MLEM algorithms [14, 15, 16].

The system matrix (SM) indicating relationship between the ob-
ject and projection space is a main part of statistical image recon-
struction algorithms. It is calculated by three methods as; (i)
analytical method in which the common regions (CR) considering as
interacting probability of emitted gamma photons with detector
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elements are calculated by geometrical relations [17, 18, 19, 20, 21];
(ii) Monte Carlo (MC) simulations by modeling a digital phantom and
estimating projections, which the ratio of counts in i-th element of
detector for the originated photons from j-th pixel of object matrix is
considered as a;; element of the SM [22, 23, 24]; and (iii) experi-
mental method where the SM is obtained by measuring projections
around the phantoms [25, 26].

In this study, a new analytical method based on Cavalieri's prin-
ciple namely as subdividing common regions (SCR) algorithm have
been proposed to estimate the optimized timely SM. In the proposed
method, due to intersection between detector element path and pixel
border, the common region (CR) was divided into even-smaller parts
and the total CR area was calculated using trapezoidal integration rule.
Finally, the influence of number of divisions (NOD) on the precision of
the amount of CR area and the quality of tomographic images using a
Monte Carlo simulated Jaszczak phantom by the Monte Carlo N-Par-
ticle version 5 (MCNP5) code was investigated and an optimum NOD
was introduced.
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2. Materials and methods
2.1. Theory

The SM has been calculated by the probability of recording emitted
gamma photons from a voxel of object by a detector element at a distinct
detector angle towards the generation of projections. In other words, the
interacting probability of the photons from the ij-pixel of object matrix
with k-element of detector depends on the position of the element related
to the corresponding pixel. In emission computed tomography, the cor-
relation between the photons from the object matrix (f) and generated
projection on the detector plane (g) is as follows:

g=Axf. 6})

where A is the SM. An 4x4 object matrix and a 4-element detector array
are shown in Figure 1. The CR between pixel borders and detector
element virtual paths have been made by covering the detector element
(g2) upon F6 pixel, indicating as ag e of the SM. The CRs go on values
between 0 and 1. In other words, while the path of k-th detector element
does not interact with ij-th image pixel, then the probability of interacting
is 0. In contrast, while the detector element completely covers the pixel, it
will be 1. For the situations that the detector element covers a portion of
pixel area, it has the values between 0 and 1. The precision on the amount
of CR has a direct effect on the quality of the reconstructed images in
MLEM.

Eq. (1) may be rewritten for one projection at a distinct detector angle
in Figure 1 as follows:
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Figure 1. Covering the image matrix (F6) by the detector element (g2), as
yellow cross section area.
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The CRs based on the Cavalieri's principle were divided as smaller
parts, and the entire area of CR was determined through summation of
the area of these parts by trapezoidal integration rule. Figure 2 exhibits
the implementation of SCR method to calculate the CR on the pixel.

Passing the hypothetical path of detector element (g) through pixel
border creates a polygonal CR as a'b'c abe. In the first step, the linear
segments of aa’ and cc' were placed beside each other with the distance of
g to estimate the area. The polygonal of aca'c in Figure 3(a) has a lower
area in compared to that of the desired CR. In the second step, a line from
the middle of CR causes to divide into two new equivalent parts to have a
better estimation. By placing linear segments of aa and oo with the
distance of the £ , and similarly oo and cc’ with distance of the § a new
polygonal of aoc a'o'c was made, which its area determined by trape-
zoidal integration is closer to the desired CR, as shown in Figure 3(b). In
the third step, the CR was divided into four parts and new polygon was
constructed by five linear segments, as shown in Figure 3(c). The distance
between aa and next line segment is the £. The area of obtained polyg-
onal in this step equals to that of the desired CR in Figure 2. Thus, the
estimated area approaches to the desired value in four divisions. How-
ever, the area of CR was estimated here correctly by four divisions, but
for other situations more divisions might be required. The precision of
estimations was improved by increasing divisions.

The length of passing line segments through the CR are changed by
the variation of the detector angle. By defining the centre of image matrix
as the origin of a polar coordinate system at detector angle of zero (6 =
0°), the passing lines from the detector with k elements through the
image pixels can be characterized as:
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Figure 2. Implementation of the SCR to calculate the area of CR on the pixel.
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Figure 3. The illustration of modeling CR (a) without SCR method, (b) twofold and (c) fourfold subdivision, using Cavalieri's principle.

Y =8k 3

where the gx equals to the width from the origin. By increasing the de-
tector angle on the range from 0 to 45, the passing lines through image
may be formulated as follows:

1
y=(tan O)x + o8 Hgk “4)

Assuming the Fjj as unitary pixel in an n x n image matrix, as shown
in Figure 4, the passing (red) lines through the pixel have three situations
that one may obtain; (a) the length of (1) segment placed in the up-left
side of pixel (Al) as:

Al= [ﬁ(gilic§:0+l>i(jigil)} c0139 ®

(b) the length of (2) segment in the left-right side of pixel as:

(ST

:
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Figure 4. Passage of line segments through a pixel (three red situations, 1-2-3).

1
cos 6

Al= (6)

and, (c) the length of (3) segment in the right-down side of pixel as:

Al= {(j_@_tarllﬁ‘(g_i_cf:B)} 00156 )

In general, the passing line segments through pixel sides are catego-
rized in one of the above mentioned scenarios and there is no other
situation.

The geometric symmetry principle was used to calculate the length of
line segments in the other degrees. By mirroring procedure, all data from
45" to 90" were obtained using the angles from 0 to 45 related to the
axis of 45°. This procedure was continued and all data of the SM in 360°
was calculated to reduce the computational time. Our analytical algo-
rithm was implemented for 1/8 of the SM and the rest of the SM data
were completed by repeating and mirroring technique.

By increasing the NODs in a detector element, the precision of esti-
mated CR area is increased due to intersection between pixel areas and
detector element in a distinct angle, and as the NODs approaches infinity,
the difference between the estimated and desired areas goes to zero.
Since increasing the NODs increases the computational time, thus the
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Figure 5. Intersection between the detector elements and the pixels of Fy 5, F4 4,
Fs, and Fg g in the object matrix to evaluate the precision of the estimated area
for different NODs.
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Figure 6. (a) Jaszczak phantom (ECT/DLX/p); (b) spatial resolution; and (c)
contrast of images.

optimization of NOD was necessary to minimize the duration of the SM
calculation time.

To evaluate the precision of estimated CR area for different NODs, the
pixels of Fy 5, F4 4, F5 5 and Fg g in the size of 8 x8 were selected, as shown
in Figure 5. The 8-element detector was placed at angles of 2°, 99°, 192°
and 285° related to center of image matrix and the CR area was calcu-
lated using SCR method. This area was estimated without any divisions in
the first step, but for the next steps the detector elements were subdivided
into even similar parts incrementally. In each detector angle, the selected
pixels were matched with different detector elements, and the CR area
was estimated for different divisions.

2.2. Monte Carlo simulation-spatial resolution and contrast using Jaszczak
phantom

The Jaszczak phantoms are used in nuclear medicine imaging studies
to evaluate spatial resolution and contrast of tomographic images. The
Jaszczak phantom model (ECT/DLX/p) was selected to investigate the
effects of NODs on the quality of images, as shown in Figure 6(a). The MC
simulations were performed by the MCNP5 code [27]. The phantom was
divided into two parts including spatial resolution and contrast of im-
ages. The first part was a bar phantom to evaluate spatial resolution in
tomographic images and contains of 6 cylindrical bar groups with di-
ameters of 4.8, 6.4, 7.9, 9.5, 11.1 and 12.7 mm, as shown in Figure 6(b).
In the simulations, these bars were filled with a homogenous 140-keV
radioactive Technetium solution with the 100-MBq/cc activity concen-
trations and the volume around the bars was filled by water. The second
part was contrast phantom and contained 6 spheres with diameters of
9.5, 12.7, 15.9, 19.1, 25.4 and 31.8 mm, as shown in Figure 6(c). The
spheres with diameters of 9.5, 12.7, 15.9 and 19.1 mm were filled by a
homogenous radioactive Technetium (Tc-99m) solution with the energy
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and activity concentration of 140-keV and 800-MBg/cc respectively as
hot lesions, and the 25.4 and 31.8-mm spheres without any activity
concentrations were modeled as cold lesions. Since the activity concen-
trations of surrounding volume the spheres were 100 MBq/cc, the real
contrast for hot and cold spheres to background became 8/1 and 0/1,
respectively.

In addition, an standard LEHR lead collimator with hexagonal hole
size, hole length and septa thickness of 1.5, 35 and 0.25mm, respectively
was modeled and simulated. The Nal detector was divided into separate
rows with 128 cubic cells and dimensions of 1.75 x 1.75 x 9.525 mm to
calculate the simulated projections.

To reconstruct the tomographic images of phantom, the 120 pro-
jections were obtained in a 360° rotation around the phantom in 3°-steps.
The distance of collimator to the center of phantom and distance between
collimator to detector were 150 and 5 mm, respectively. To calculate
each projection, 2x10*® photons were run and signal intensity in de-
tector cells were calculated by F8 tally in which the interacting photons
in a cell is considered as pulse height distribution. The statistical error of
simulations was fewer than 5%.

2.3. MLEM image reconstruction algorithm and image analysis

Expectation maximization algorithm is an approach to iterative
computation of maximum likelihood estimates when the observations
can be viewed as incomplete data. In this study, the MLEM algorithm was
developed by the MATLAB software to reconstruct tomographic images
of resolution and contrast phantoms in which its process is given as fol-
lows [28]:

=

f. 1 .
Z(k+1) i 2 : 8i
f, = n — o di (8)
! Zi:laij i—1 E Jilaij'fj(k) !

where f;kH
iteration, the first estimation as a uniform disc, the projection value in the
i-th element of detector and the SM, respectively. The data of projections
(g) was arranged in a 128x128 matrix and the SMs were calculated for
various NODs of 2, 4, 8, 16, 32 and 1024. Tomographic images of reso-
lution and contrast phantoms were reconstructed for 100 iterations in the
MLEM.

To assess the tomographic image quality of contrast phantom, the

contrast recovery coefficient (CRC%) may be defined as follows [29]:

), f;o) , & and a; are the latest estimated image from k-th

[T
CRC% = % x 100 9
Over the lesions (hot and cold) and background as shown in
Figure 9(e), the average intensity on each pixel was calculated as p; and
b respectively. C is the real contrast, which was 8 and 0 for hot and cold
lesions, respectively. The noise coefficient (NC%) in images was evalu-
ated by calculating standard deviation of pixel values in ROI at the
central region of contrast image (o) as follows [29]:
Op
NC% =— x 100 (10)
My
The contrast to noise ratio (CNR) as a criterion for evaluating image
quality was calculated for all lesions as follows [29]:

CNR =

Ne (1)

3. Results and discussion
Figure 7 shows the values of estimated CR area of Fy 5, F4 4, F5 5 and

Fe g pixels at detector angles of 2°, 99°, 192° and 285° at various NODs. It
is found that these values depend on the detector position at various
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Figure 7. Estimated area of the CR in pixels of Fy5, F44, F52 and Feg for
different NODs at detector angles of (a) 2°, (b) 99°, (c) 192° and (d) 285°.
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Figure 8. Reconstructed tomographic images of spatial resolution phantom for
NODs of (a) 0, (b) 2, (¢) 4, (d) 8, (e) 16 and (f) 1024.
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Figure 9. Reconstructed images of contrast phantom for NODs of (a) 0, (b) 2,
(c) 4, (d) 8, (e) 16 and (f) 1024. Mean pixel intensity values for hot and cold
lesions and for the background in black and white dashed squares on the images,
respectively were calculated.

angles with respect to the CR changes in Figure 7. For instance, the pixel
of Fs 5 at detector angles of 2°, 99°, 192° and 285° was intersected with
detector elements of g4, gs, g7 and go, respectively. Estimated areas in low
divisions had intense fluctuations. They converged to their desired values
by increasing divisions. For the NODs less than 10, the estimated areas in
four pixels were changed for different divisions. The estimated areas tend
to their desired values by increasing NOD more than 10, and the curves
became smoother. In other words, the fluctuations were almost removed,
and the difference with desired values tend to become zero.

The reconstructed tomographic images of resolution phantom for the
SMs with the NODs of 0, 2, 4, 8, 16 and 1024 had the same quality and
the number of division did not affect the quality of images, as shown in
Figure 8.

Figure 9 exhibits the tomographic images of contrast phantom ob-
tained for the SMs with the NODs of 0, 2, 4, 8, 16 and 1024. The quality of
tomographic images for different NODs was assessed quantitatively
through the contrast phantom images. The maximum image distortion
was observed in contrast image obtained for NOD of 0, as shown in
Figure 9(a). Additionally, the maximum noise and the minimum CNR
was found in this image. Since the CNR is a criterion to evaluate the
quality of images, the obtained image for O divisions had the lowest
quality.

The NC% was determined by calculating the average and standard
deviation of pixel values of ROI (white dashed square in Figure 9(e)) over
the central part of contrast phantom images. Figure 10 shows the changes
of NC% for NODs of 0, 2, 4, 8, 16 and 1024. Variations of NC% indicates
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Figure 10. The NC% values of hot and cold spheres at various NODs.
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Figure 11. The CRC% values of hot and cold spheres at various NODs.
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Figure 12. The CNR values of hot and cold spheres at various NODs.

that more noise in images was found at the NOD of 0, while by increasing
NODs the noise was reduced, and the noise values in the images are the
same for NODs more than the 8 value.

The contrast recovery coefficient of all lesions for various NODs were
acquired by calculating the average of pixel values in ROI over the hot
and cold lesions (black dashed squares). Figure 11 shows the changes of

Table 1. Computational times at various NODs. The SM with the NOD of 8 and
total computational time of 925 s was selected as the optimum case.

NOD 0 2 4 8 32 1024
calculation time (sec) 575 604 684 925 4534 62028
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CRC% of hot lesions with diameters of 9.5, 12.7, 15.9 and 19.1mm and
cold lesions with diameters of 25.4 and 31.8 mm for different NODs. The
CRC% values are independent from the number of NODs, although low
changes may be seen in hot lesions at the NOD of 0.

The CNR values of hot and cold lesions for different NODs are shown
in Figure 12. The quality of tomographic images at the NOD of 0 has the
lowest quality, but it is improved by increasing the NODs, and the quality
of images for NODs more than the 8 value is the same. Regard to the NC
and CNR values, it was found that by increasing NODs from 0 to 2 the
quality of contrast images were significantly improved. Furthermore, the
images indicate similar quality for more than the 8 divisions. Also, the
images with 8 and 1024 divisions had the same quality.

One of the most important problems associated at calculating the SM
is the required time for obtaining all arrays. A personal computer with 4
cores of 2.5 GHz Intel CPUs was used for calculation of times of the SMs at
the NODs of 0, 2, 4, 8, 32 and 1024, as shown in Table 1. In our analytical
algorithm, the total time for 1024 divisions was around 17 h in compared
to the required time for producing the SM by MC simulations that might
take more than 70 days [30]. The generation of the SM in a short time is
the main advantage of our method relative to the other ones. An
important issue in the generation of the SM is the tradeoff between NODs
or precision of calculations and the computational time. These times
summarized in Table 1 indicate that by increasing NODs, the calculation
time is increased incrementally. Therefore, it is necessary to find an op-
timum number for divisions to improve this trade off. Optimizing the
NOD results in achieving images with appropriate quality with minimum
computational time and acceptable precision. With respect to the preci-
sion of estimated CR areas and the quality of produced images for
different divisions, producing the SM with NOD of 8 and the total time of
925 s was selected as the optimum case.

The real applications of this method in the medical world are while
the images have been acquired from the single photon emission
computed tomography (SPECT) system as well as the positron emission
tomography (PET) and computed tomography (CT) ones in which the
implementation of the iterative reconstruction algorithm is time-
consuming due to the computing system matrix being a very important
part in obtaining reconstructed images should be done. In general, the
SM needs to be recomputed while there are any geometrical changes of
detection systems in medical devices. In this study, the theoretical con-
cepts of computational algorithms were first explained and then SM was
calculated and by using of calculated projections of Jaszczak phantom
obtained by MCNP simulations, transaxial images for different NODs
were reconstructed. The presented algorithm is able to improve the time
limitation of the iterative algorithm as well as may be used for image
reconstruction of industrial CT scans. Despite of medical CT scans which
usually have the same geometrical specifications, the industrial CTs are
constructed with various geometrical specifications because the indus-
trial facilities need to use CTs with different dimensions along with
different detector sizes and types [31, 32]. The presented method may
help designers, who have to survey and investigate the effects of different
geometrical specifications on the quality of the images and achieve the
optimized design in a short time. The method may be also implemented
for small animal SPECT imaging where the images are acquired by
different multipinhole collimators [33]. Its corresponding system matrix
for each collimator type may be computed and the images are recon-
structed exclusively in a short time.

4. Conclusion

In this study, a novel analytical method was proposed to estimate the
SM in a short duration time based on Cavalieri's principle towards the
best quality of images. By increasing the number of divisions, the pre-
cision of estimated CR area was improved, and consequently the total
SM's time was increased. The results show that the lowest and best
quality have been obtained at the NODs of 0 and 8, respectively and in
the optimum case, the SM's total time at NOD of 8 was 925 s, which was
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much lower than those of the conventional Monte Carlo simulations and
experimental test. Thus, the proposed method can expedite the deploying
iterative reconstruction in clinical uses along with the best image quality.
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