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Abstract: A fiber optic whispering gallery mode (WGM) resonator was proposed and realized
by integrating an inline polymer waveguide with a microsphere mounted on it. The polymer
waveguide with a diameter of 1 µm was printed with femtosecond laser-assisted multiphoton
polymerization in a section of a grooved hollow-core fiber, which was sandwiched between two
single-mode fibers. Two WGW resonators assembled with microspheres of different sizes were
prepared. The transmission spectra of those stimulated WGMs were investigated both in simulation
and experimentally. The temperature response of the resonators was particularly studied, and a
linear sensitivity of −593 pm/◦C was achieved from 20 ◦C to 100 ◦C.

Keywords: whispering gallery mode; fiber; resonators; temperature sensor

1. Introduction

Whispering gallery mode (WGM) resonators have been widely applied in various
fields, such as silicon photonic devices, biosensing, and optical frequency combs [1–4]. For
a typical WGM resonator, a micro-/nano-ring is usually manufactured by a focused ion
beam etching technique, which has the advantage of obtaining an ultra-high Q factor [5,6].
For example, a high Q factor (Q > 20,000) microresonator was fabricated to image nanopho-
tonic modes by employing focused ion beam etching technology [7]. In addition, a ring
resonator (Q > 30,000) for realizing a high-performance microdisk laser was successfully
prepared with the same method [8]. However, the development of additive manufacturing
technology, especially the femtosecond laser (fs-laser)-assisted multiphoton polymeriza-
tion technique, has aroused an increasing interest to explore new ways to prepare WGM
resonators in a more flexible manner [9,10].

In 2017, Hou et al. fabricated a polymer microsphere by multiphoton polymerization
to create an optical laser with single-mode output [11]. Subsequently, in 2019, Kelemen et al.
fabricated a polymer ring resonator connecting two optical fibers to detect reflective index
changes of ambient biomass [12]. In this paper, we propose an all fiber-integrated WGM
resonator, exhibiting an ultracompact configuration of 150 µm long and a high Q factor of
Qmax = 103. For the proposed WGM resonator, fs-laser-assisted multiphoton polymerization
was employed to fabricate an inline polymer waveguide to guide the light beam. A barium
titanate microsphere was mounted on the polymer waveguide to stimulate WGMs when the
coupling mode conditions were met. Two WGW resonators assembled with microspheres of
different diameters of 20 µm and 50 µm were fabricated to study the spectral characteristics
and temperature response. For comparison, a finite difference time domain (FDTD) method
was used to calculate the mode profile and the corresponding transmission spectrum. The
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ultracompact configuration has potential applications in detection with limited space or in
an optical fiber-integrated system.

Due to the significant thermo-optical effect of barium titanate material [13,14], the
temperature sensitivity of the proposed WGM resonator has been tested to −593 pm/◦C,
which is about 60 times that of traditional fiber optic temperature sensors, such as fiber
Bragg grating-based devices [15,16]. Furthermore, various microsphere materials, such as
antibody assemble sphere, SiC sphere, and optical Kerr effect sphere, present a potential
capacity to realize multifunctional WGM resonators [2,3,17].

2. Materials and Methods

Figure 1 shows the schematic diagram of the proposed polymer fiber-integrated WGM
resonator. A polymer waveguide with a series of grating structures was embedded in
a section of a grooved silica hollow-core fiber (HCF), which was spliced between two
single-mode fibers (SMFs). The polymerized grating structure was designed to enhance the
overall structural stability and keep the polymer waveguide in suspension to increase the
optical evanescent field in the air. Additionally, a pair of physical slots in the x-direction
was constructed to lock the microsphere within the fiber. WGMs were stimulated after
mounting a smooth microsphere on the polymer waveguide. Therefore, the light beam
with a specific wavelength transmitted through the suspended polymer waveguide was
partially coupled into the microsphere when the phase-matching condition was reached.
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Figure 1. Schematic diagram of the polymer fiber-integrated whispering gallery mode (WGM) resonator.

The fabrication procedure is illustrated in Figure 2 and is similar to our previous
work [18]. First, a section of HCF with a length of 150 µm was accurately cut out and
spliced between two SMFs by an optical fiber fusion splicer (FUJIKURA 80 S) with an op-
timized parameter (splicing current of −10 bit for 400 ms). Commercially available HCF
and SMF were adapted in this study, for which the internal/external and core/cladding
were 15/125 µm and 5.8/125 µm in diameter, respectively. A fs-laser with a center wave-
length of 800 nm and a repetition rate of 1 kHz was then employed to drill a throughout
groove in the z-direction and a pair of slots in the x-direction within the HCF, as presented
in Figure 2a. After laser ablation, an ultrasonic cleaner was used to wash out the debris
remaining in the HCF.

After the grooved HCF was fully filled with liquid photoresist, the sample was
mounted on a 3D air-bearing stage for fs-laser-assisted polymerization. For the fs-laser
system, the center wavelength, repetition rate, and pulse duration were 1026 nm, 220 kHz,
and 250 fs, respectively. The polymer waveguide and grating structures were printed using
a 63× oil objective lens with NA = 1.4. During the printing process, the scanning speed
and laser intensity were controlled to 200 µm/s and 5.82 × 1012 W/cm2, respectively. After
being immersed in a mixture of acetone and isopropanol (volume ratio: 1:3) for 20 min, the
uncured liquid photoresist was washed away, while the desired structure was preserved in
the HCF, as shown in Figure 2b.
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Figure 2. Fabrication procedure for the proposed WGM resonator. (a) A fs-laser was employed to
realize subtractive manufacturing (ablation) after a section of hollow-core fiber (HCF) spliced between
two single-mode fibers (SMFs). (b) A polymer waveguide was printed by additive manufacturing
(polymerization) assisted with a fs-laser to connect the two SMFs. The grating segment was similarly
printed. (c) A microsphere was mounted upon the polymer waveguide to generate WGM resonance.

After the ethanol was completely volatilized, a commercially available barium titanate
microsphere was carefully mounted on the polymer waveguide through a tungsten probe,
as shown in Figure 2c.

3. Results and Discussion

Two microspheres with different diameters were prepared to study the WGM reso-
nance. The transmission spectrum of the proposed WGM resonator was experimentally
explored with an optical spectrum analyzer (OSA, YOKOGAWA, AQ6370C, Tokyo, Japan)
and a broadband light source ranging from 1250 nm to 1650 nm.

When a visible light with a wavelength of 650 nm was tentatively illuminated on
the WGM resonator, as indicated in the inset of Figure 3a, the input light was evidently
observed to be guided through the polymer waveguide, and the coupled light caused by
the resonance effect appeared near the microsphere. Additionally, significant scattering
loss also occurred at the interface between the polymer waveguide and the SMF.
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As seen in Figure 3 in the detected output signal, the red line and the blue line represent
the transmission spectra of the polymer waveguide with and without a microsphere
mounted on, respectively. An insertion loss of about 10 dB occurs, which may be caused
by the deformation of the polymer waveguide. For samples equipped with microspheres
with diameters of 20 ± 2 µm and 50 ± 2 µm, the free spectral range (FSR) was measured
as 20.1 nm and 8.3 nm, respectively. The FSR before and after the measured values were
20.0 nm, 20.1 nm, and 20.7 nm, and 7.8 nm, 8.3 nm, and 7.0 nm, and their standard
errors were 0.4 nm and 0.6 nm, respectively, so the FSR measured was 20.1 ± 0.4 nm and
8.3 ± 0.6 nm, respectively. Various factors (e.g., machining error, laser energy fluctuation)
may affect the insertion loss even for the same fabrication procedure.

A finite difference time–domain software (Mode solution) was employed to calculate
the transmission spectrum of the fiber-integrated WGM resonator. The finite difference
time–domain method (FDTD) directly discretizes the time–domain wave equation without
any form of derived equation, so its application scope will not be limited by the mathe-
matical model. Its difference scheme contains the parameters of the medium, and it can
simulate all kinds of complex structures by being given only the corresponding parameters
to each grid. This is an outstanding advantage of the FDTD method [19]. Figure 4a,b shows
the calculated results of two WGM resonators with microsphere diameters of 20 µm and
50 µm (reflective index of 1.86 at 1550 nm), as well as the corresponding mode profiles. The
calculated FSRs are 19.8 nm and 7.7 nm, respectively, which are in good agreement with
the above experimental results. The FSR can be expressed as [20]:

FSR =
λ2

2πnr
(1)

where λ is the coupled wavelength, and n and r are the refractive index and radius of the
microsphere, respectively.
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The temperature response of the proposed WGM resonator was tested with a sample
equipped with a microsphere with a diameter of 20 µm. During the test, the sample was
enclosed in a controllable furnace, and a specific resonance wavelength of 1510.5 nm was
used to monitor changes in ambient temperature. The temperature was gradually increased
from 25 ◦C to 100 ◦C in steps of 5 ◦C, maintaining each step for 20 min. As depicted in
Figure 5a, a blue shift of the resonance wavelength was observed. The linear fit of its
temperature response was plotted in Figure 5b, giving rise to a sensitivity of −593 pm/◦C
with a standard error of 6 pm. Note that the sensitivity achieved is approximately 60 times
that of traditional fiber optic temperature sensors, such as fiber Bragg gratings.
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According to the well-known principle of temperature sensing, the relationship be-
tween the wavelength shift (∆λ0) at the wavelength λ0 and the temperature change ∆T can
be given by [21]:

∆λ0

∆T
= (α+ ξ)λ0, (2)

where α and ξ are the thermo-expansion coefficient and the thermo-optic coefficient,
respectively. In general, the thermal photonic effect dominates the wavelength shift because
crystal materials scarcely have a volumetric change as temperature deviation. As for the
BaTiO3 particle, the electric permittivity has a dramatic change in the size difference from
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nanometer to micrometer [14,22–25]. The thermal expansion coefficient of barium titanate
is about 10-6/◦C [26,27], which is two orders of magnitude smaller than the thermo-optic
coefficient, so the size change caused by temperature is negligible.

4. Conclusions

In sum, a polymer fiber-integrated WGM resonator was embodied with the help
of fs-laser-assisted polymerization and micromanipulation technology, possessing an ul-
tracompact configuration with a length of 150 µm and a high Q factor of Qmax = 103.
Q = λ/∆λ, where λ and ∆λ denote the resonant wavelength and the full width at half-
maximum (FWHM) of the wavelength, respectively [12]. The measured results including
FSR, mode profile, and temperature sensitivity are in good agreement with the experi-
mental results. The temperature sensitivity achieved by the proposed WGW resonator is
−593 pm/◦C, which is much higher than that of the traditional optical fiber temperature
sensor. Reflective index deviation and the volumetric expansion of the polymer waveg-
uide and the microsphere caused by temperature evolution are both able to modulate the
coupling condition, which would change the resonant wavelength. Thus, how to precisely
distinguish the temperature effect on the polymer waveguide and the microsphere might
be best examined with a multiphysics software simulation model. By using different
microspheres, such devices can be used in various fields, especially in biosensing and cell
detection. In addition, the configuration of fiber-integrated WGM resonators is a potential
and meaningful research topic [28–30].
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