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The augment of regulatory T cells 
undermines the efficacy of anti‑PD‑L1 treatment 
in cervical cancer
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Abstract 

Background:  Immune checkpoint inhibitors have aroused great expectation of tumor eradication. However, the 
effect of anti-PD-L1 treatment for cervical cancer is unsatisfactory and the underlying antagonist to anti-PD-L1 effi-
cacy is remained to be studied. Here, we investigated the anti-tumor effect of anti-PD-L1 treatment in cervical tumor 
model and identified the antagonist to the therapeutic efficacy of anti-PD-L1 treatment.

Results:  We found that PD-L1 exhibited a moderate expression in both cervical tumor cell lines and clinical samples 
compared to other tumor types and the para-tumor tissue respectively. Interestingly, our results showed that the anti-
PD-L1 treated mice were dichotomously divided into responsive and unresponsive group after five cycles of anti-PD-
L1 treatment although all the mice had the same genome background. In addition, the unresponsive tumors showed 
less tumor necrosis area and higher immunosuppression activity induced by regulatory T cells (Tregs) population than 
the responsive ones. Furthermore, we found that anti-PD-L1 treatment autonomously upregulated Tregs proliferation 
and frequency in multiple immune organs, and, most importantly, Tregs depletion significantly depressed the tumor 
growth rate and tumor weight compared with either anti-PD-L1 or anti-CD25 treatment alone. Finally, we observed 
that the upregulating effector CD8+ T cell is associated with the better therapeutic effect of anti-PD-L1 therapy post 
Tregs depletion.

Conclusions:  Anti-PD-L1 treatment upregulates Tregs frequency and proliferation in tumor model, and the depletion 
of Tregs may be a useful adjuvant strategy for anti-PD-L1 therapy of cervical cancer.
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Introduction
Cervical cancer, as the second most malignant gynecolog-
ical tumor with high incidence and high mortality among 
women, severely threats women’s health all around the 
world [1, 2]. One of the most important reasons for the 
increasing trend of cervical cancer is the higher fre-
quency exposure to human papillomavirus (HPV) caused 
by the bad sexual habits, such as early beginning of sexual 

activities and multiple partners [3]. Currently, the main 
therapy for cervical cancer includes radiotherapy, chemo-
therapy, surgery and targeted therapy [4]. However, both 
radiotherapy and chemotherapy caused serious side-
effects, such as hair loss, nausea, anorexia and diarrhea, 
which undermines the quality of patient life. Besides, the 
common total radical hysterectomy and bilateral pelvic 
lymphadenectomy surgery may by futile for patients with 
metastasis or at advance stage [5]. Although EGFR and 
COX-2 mediated targeted therapy have been used for the 
treatment of cervical cancer, the survival rate and prog-
nosis of cervical patients were not significantly improved 
[6, 7].
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The initiation and progression of cervical cancer are 
associated with the immunosuppression on CD4+ and 
CD8+ T cells caused by HPV infection. Recently, immune 
checkpoint inhibitors, such as PD-1, PD-L1 and CTLA-
4, have been intensely studied in many solid tumors, 
and many clinical trials have shown the long-lasting 
improved prognosis of patients, especially in melanoma 
and lung cancer [8–10]. As for cervical cancer, anti-
CTLA-4 showed little clinical efficacy in patients with 
recurrence or metastasis [11]. Previous studies showed 
that tumoral PD-L1 expression was observed in 72% 
cervical and vulvar squamous carcinomas (SCC) and 
95%  cervical intraepithelial neoplasias (CINs) [9, 12]. 
Meanwhile, Meng et al. reported that 61% (59/97) of the 
patients exhibited PD-1 expression in the tumor stroma 
of cervical cancer [13]. Pembrolizumab (anti-PD-1) also 
had been approved by FDA for advanced cervical cancer, 
and the clinical studies have demonstrated that pem-
brolizumab demonstrated antitumor activity and exhib-
ited a safety profile in patients with programmed death 
ligand 1-positive advanced cervical cancer [14, 15]. Even 
so, the overall response rate was only 14.3–17%, and 75% 
patients experienced treatment related adverse events, 
such as rash and pyrexia [14, 16]. Therefore, the thera-
peutic efficiency of anti-PD-L1 treatment is urgent to be 
improved in advanced cervical cancer.

Regulatory T cells (Tregs), defined by 
CD3+CD4+CD25−FOXP3+, played an important role 
in immune escape and thus undermined the therapeu-
tic efficacy of immunotherapy in various tumor types. 
Previous studies showed that TNFR2+ Tregs increased 
in tumors of cervical cancer patients, and Foxp3+ tumor 
infiltrating immune cells in the central tumor area might 
be a biomarker for risk stratification in cervical cancer 
patients [17–19]. In contrast, Simone Punt et al. reported 
that a high total number of Tregs were significantly cor-
related with improved disease-specific and disease-free 
survival  in cervical adenocarcinoma [20]. However, the 
effect of anti-PD-L1 on Tregs levels and functions is not 
clear in cervical cancer. Here, we explore the effect of 
PD-L1 treatment in syngeneic cervical tumor model and 
investigated the potential role of Tregs in undermining 
the effect of anti-PD-L1 therapy in cervical cancer.

Methods
Cells and regents
U14 and Hela cell lines were purchased from ATCC, 
and were cultured in DMEM supplemented with 10% 
FBS + 1% penicillin/streptomycin antibiotics.

Patient samples and mouse model
Six clinical samples of cervical cancer patients were 
collected from the department of gynaecology and 

obstetrics, Jinshan district, Tinglin hospital. Writ-
ten informed consent forms were obtained from all the 
patients. The study was approved by the Ethics Commit-
tee of the Institute of the department of gynaecology and 
obstetrics, Jinshan district, Tinglin hospital.

The 6–8  weeks age C57BL/6J mouse used for tumor 
model was bought from Nanjing Model Animal Center 
in China. All procedures about mice were approved 
by the Animal Ethics Committee of shanghai Jiaotong 
University.

Protein extraction and western blot
For U14 and Hela cell lines, the collected cells were 
washed by cold PBS for two times. 2 × 106 cells were 
treated by RAPA buffer on ice for 30 min. Then, the lysate 
was centrifuged for 15 min at 12,000g at 4 °C. Then, the 
protein concentration was measured by BCA method. 
The loading sample was made at the concentration of 
1 μg/μl and were loaded for 10 μl in SDS-PAGE gel and 
conducted protein transfer with NC membrane. The 
targets bands were cut and blocked by 5% skim milk for 
1 h at room temperature. Then, the bands were washed 
by TBST for 3 times, and were incubated by PD-L1 
antibody(ab213524, 1:1000) overnight at 4 °C. The bands 
were washed by TBST for 3 times, and were incubated by 
the second antibody for 1 h at room temperature. Finally, 
the blotting signal was recorded under machine.

In vivo tumor progression and immunotherapy models
All the immune competent C57BL/6J SPF mice were pur-
chased from Nanjing model animal center and feed in the 
facility of Shanghai Jiaotong University. numbered and 
randomly assigned into different groups. 3 × 106 loga-
rithmic growth phase U14 cells were transplanted subcu-
taneously into the flanks of 7-week-old C57BL/6 female 
mice. For the mouse model in Fig. 2, both PBS and anti 
PD-L1 treatment groups include six mice; for the mouse 
model in Fig.  4, sixteen mice were equally assigned to 
PBS, anti-PD-L1, anti-CD25 and anti-PD-L1 plus anti-
CD25 groups, and all these group were treated with cor-
responding regents every two days. The tumor size was 
measured seven days post tumor challenge with a cali-
per every 2–3  days, and tumor volume was calculated 
by width2 × length × 0.5. Mice were sacrificed according 
to the animal welfare requirement at the endpoint (The 
maximum tumor less than 15  mm in diameter). The 
death of mouse during treatment was used as the exclu-
sion criteria.

RNA extraction and RT‑PCR
The cells were harvested and washed for two time with 
cold PBS. 1 ml Trizol reagent was added in 2 × 106 cells 
and sufficiently suspended. The total RNA was extract 
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according established protocol. In quantitative PCR 
(q-PCR), the reverse transcription of 1.5 μg total RNA 
were conducted by using SuperScript III First-Strand 
Synthesis System. The harvested cDNA was diluted 
for five times by ddH2O. The SYBR Green PCR Mas-
ter Mix (Applied Biosystems) was used for qPCR, and 
three repeats were assigned in a Real-Time PCR Sys-
tem (Applied Biosystems). All used primers for qPCR 
are listed as follow: mouse-PD-L1: forward-5′- GCT​
CCA​AAG​GAC​TTG​TAC​GTG-3′; reverse-3′-TGA​
TCT​GAA​GGG​CAG​CAT​TTC-5′; human-PD-L1: 
forward-5′- GCT​GCA​CTA​ATT​GTC​TAT​TGGGA-
3′; reverse-3′-AAT​TCG​CTT​GTA​GTC​GGC​ACC-5′; 
mouse-GAPDH: forward-5′-GAA​GGT​CGG​TGT​GAA​
CGG​AT-3′; reverse-3′-TGA​TGG​GCT​TCC​CGT​TGA​
TG-5′; human-GAPDH: forward-5′-CGG​ATT​TGG​
TCG​TAT​TGG​G-3′; reverse-3′-CTC​GCT​CCT​GGA​
AGA​TGG​-5′; mouse-Ki67: forward-5′-ATC​ATT​GAC​
CGC​TCC​TTT​AGGT-3′; reverse-3′-GCT​CGC​CTT​
GAT​GGT​TCC​T-5′. mouse-CD206: forward-5′-CTC​
TGT​TCA​GCT​ATT​GGA​CGC-3′; reverse-3′-CGG​
AAT​TTC​TGG​GAT​TCA​GCTTC-5′; mouse-Ly6G: 
forward-5′-GAC​TTC​CTG​CAA​CAC​AAC​TACC-3′; 
reverse-3′-ACA​GCA​TTA​CCA​GTG​ATC​TCAGT-5′; 
mouse-Arginase1: forward-5′-TGT​CCC​TAA​TGA​CAG​
CTC​CTT-3; reverse-3′-GGA​GCT​GTC​ATT​AGG​GAC​
ATCA-5′; mouse-FOXP3: forward-5′-CCC​ATC​CCC​
AGG​AGT​CTT​G-3′; reverse-3′-ACC​ATG​ACT​AGG​
GGC​ACT​GTA-5′; mouse-Ly6c: forward-5′-GCA​GTG​
CTA​CGA​GTG​CTA​TGG-3′, reverse-3′-ACT​GAC​GGG​
TCT​TTA​GTT​TCCTT-5′.

Immunohistochemistry
Tumor and spleen tissue samples were carefully resected 
and immediately fixed in 4% paraformaldehyde overnight 
at room temperature. The fixed tissues were embedded 
in standard paraffin wax to product 5-μm sections for 
HE and immunohistochemistry assay. In brief, the tis-
sue sections were deparaffinized in xylene for 3 times 
(10  min/time) and rehydrated via an ethanol gradient 
(100%, 95%, 80%, 75%, 50%). After antigen retrieval with 
pH 6.0 citrate buffer, sections were incubated in a 0.3% 
H2O2 solution to remove peroxidase at room tempera-
ture for 10 min. Then, the sections were washed by PBS 
for 3times (10  min/time) and blocked by normal goat 
serum or 5% BSA for 1 h at 37 °C. The sections were then 
incubated with rat anti-mouse Foxp3 monoclonal anti-
body (ab215206, 1:200) or anti- PD-L1 (ab213524, 1:200) 
at 4 °C overnight. On the second day, the tissue sections 
were treated with instant SABC kit according to provided 
protocol. Finally, the sections were stained with hematox-
ylin and sealed for observation under microscope.

In vivo antibody treatment
3 × 106 U14 cells were subcutaneously injected as 
described above. Seven days post tumor cell injection, 
anti-PD-L1 antibody [In vivo mab anti-mouse PD-L1 
(B7-H1), BioX Cell, BE0101] and anti-CD25 (IL-2Rα, 
In vivo plus anti-mouse CD25, BioX Cell, BP0012) were 
intraperitoneally injected (200  μg per dose per mouse) 
as indicated schedule. Mice were euthanized and tumors 
were harvested after five times’ antibody injections. The 
resected tumors were photographed and measured.

Cell and tissue FACS analysis
The peripheral blood, tumor, draining lymph node and 
spleen were isolated from mice. Then, the single cell sus-
pension for these sample were prepared. The single cells 
suspension was stained with the following antibodies: 
anti-mouse CD25-BV605, CD3-FITC and CD4-pacific 
blue were stained for 30  min at 4  °C, and the samples 
were treated with fixation/permeabilization solution 
for 40 min in dark. Then, the fixed cells were stained by 
FOXP3-PE and anti-Ki67 for 30 min at 4 °C. Finally, the 
samples were washed for two times by cold PBS. For the 
sorting of Tregs, the staining panel is the same as men-
tioned above. The isolated cells were resuspended with 
1  ml Trizol regent and the total RNA was extract for 
RT-PCR.

Statistical analysis
All experiments were repeated three times for statistical 
analyses. Mice were randomly allocated to experimental 
and control groups before treatment. Normally distrib-
uted data were analyzed by unpaired two-tailed Student’s 
t-test for single comparisons. Two-way ANOVA test was 
used between groups. A P-value of < 0.05 was considered 
statistically significant.

Results
PD‑L1 exhibited high expression in cervical tumor cell lines 
and tumor tissue
The expression of PD-1 and PD-L1 are the important pre-
dicative biomarker for anti-PD-1/L1 therapeutic efficacy. 
Therefore, we first investigated the expression of PD-L1 
expression in human and mouse cervical cell lines. Our 
results showed that Hela and U14 cell lines had moder-
ate PD-L1 expression in mRNA (Fig. 1A, C) and protein 
level (Fig. 1B, D, Additional file 1) compared with other 
tumor types, indicating the potential therapeutic effect 
of anti-PD-L1 therapy in cervical cancer. To investigate 
the expression of PD-1 and PD-L1 expression in cervi-
cal patient samples, we conducted immunohistochem-
istry for PD-1/L1 in the tumor tissue and corresponding 
para-tumor tissue of cervical patients. We found that 
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the expression PD-L1 significantly increase in tumor tis-
sue compared to the corresponding para-tumor tissue of 
patients (Fig. 1E, F). In addition, we analyzed the mRNA 
level of PD-1 and PD-L1 in human cervical squamous cell 
carcinoma by GEPIA database and Oncomine database. 
We observed that PD-1 (Fig.  1G) and PD-L1 (Fig.  1H) 
showed higher expression in cancer patients than the 
health controls, and cervical cancer had a relative high 
PD-L1 expression compared with other common cancer 
types (Fig. 1I). Taken together, the PD-L1 therapy may be 
a promising option for the treatment of cervical tumor.

The anti‑tumor effect of anti‑PD‑L1 therapy 
was undermined by the enhanced immunosuppression 
in tumor
To investigate the effect of anti-PD-L1 on tumorigen-
esis of cervical cancer, we constructed the syngeneic 
tumor model in immune competent C57BL/6 mouse. 
Anti-PD-L1 or PBS was administrated according the 
treatment schedule (Fig.  2A). We found that U14 cell 
line had 100% tumor formation rate in C57BL/6 mice. 

Anti-PD-L1 treatment significantly depressed the 
growth of xenografted tumor in most of mice (Fig. 2B). 
In contrast, 30% mice were not response to anti-PD-
L1 treatment. Then, we conducted HE dye to further 
investigated the tumor microenvironment situation 
in responding and non-responding tumors. We found 
that the tumors responding to anti-PD-L1 treatment 
showed the higher levels of tumor necrosis than that 
of unresponsive ones (Fig. 2C). Numerous studies have 
shown that the immunosuppression activity in tumor 
microenvironment severely undermined the therapeu-
tic effect of PD-L1 treatment in many types of tumor. 
Therefore, we extracted mRNA from responsive and 
unresponsive tumors and detected the immunosup-
pressive activity by several vital molecules, including 
Foxp3, CD206, Arginase, Ly6c and Ly6G. Our results 
showed that the unresponsive tumors showed higher 
immunosuppressive activity than the responsive one 
(Fig.  2D). Collectively, the excessive upregulation of 
Tregs level after anti-PD-L1 treatment may undermine 
the therapeutic efficiency.
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Fig. 1  PD-L1 exhibited high expression in tumor cell lines and tumor tissue. A The mRNA level of PD-L1 in Hela cells and other three human tumor 
cell lines. B The protein level of PD-L1 in Hela cells and other three human tumor cell lines. The uncropped blots provided in Additional file 2: Fig. 
S1A. C The mRNA level of PD-L1 in U14 cells and other three mouse tumor cell lines. D The protein level of PD-L1 in U14 cells and other three 
mouse tumor cell lines. The uncropped blots provided in Additional file 2: Fig. S1B. E The detection of expression of PD-L1 by IHC in human cervical 
tumor tissue. The pictures were magnified for 400 times. Scale bar: 50 μm. F The counting of positive cells in figure (E). G, H. The mRNA level of PD-1 
(F) and PD-L1 (G) in cervical squamous cell carcinoma patients. The original data of the two graphs was analysed by the GEPIA database for cervical 
squamous cell carcinoma. I PD-L1 expression in different types of cancer. The original information of this graph comes from the Oncomine database
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The upregulating Tregs in tumors was associated 
with the compromised therapeutic efficiency of PD‑L1 
treatment
As shown in the Fig. 2D, the unresponsive tumor showed 
very high level of Foxp3 compared to the responsive 
tumor and other immunosuppressive markers. Therefore, 
we hypothesized that the upregulated Tregs level might 
account for the compromised anti-tumor effect in unre-
sponsive ones. The IHC results showed that Tregs had a 
relatively high level in unresponsive tumors (Fig. 3A) and 
corresponding spleens (Fig. 3B) compared to responsive 
tumors. To further identified our finding, we conducted 
the flow cytometry to detect the frequency of Tregs in 
tumors. Consistently, we indeed observed the highest 
Tregs frequency in unresponsive tumor (Fig.  3C). Of 
note, we also found that anti-PD-L1 promoted the fre-
quency of Tregs in both responsive and unresponsive 
tumors at different degree (Fig. 3C).

Tregs depletion strengthened the anti‑tumor effect 
of anti‑PD‑L1 treatment in cervical tumor model
Although anti-PD-L1 could effectively depressed the 
growth rate of tumor in the mouse model, only 20% 

reduction of tumor weight was achieved. Therefore, 
we hypothesized that Tregs depletion could enhance 
anti-PD-L1 efficacy. Therefore, we used PBS, anti-
PD-L1, anti-CD25 or anti-PD-L1 plus anti-CD25 to 
treated cervical tumor mouse model (Additional file 2: 
Fig. S1A). Then, we performed C-flow cytometry of 
Tregs population in the various immune organs after 
several five times immunotherapy (Additional file  2: 
Fig. S1B). Our results showed that anti-PD-L1 sig-
nificantly increased the percentage of Tregs in periph-
eral blood (Fig. 4A), spleen (Fig. 4B), tumors (Fig. 4C) 
and lymph node (Fig.  4D). Importantly, anti-PD-L1 
plus anti-CD25 treatment significantly inhibited the 
growth of syngeneic tumor compared to PBS or anti-
PD-L1 or anti-CD25 alone (Fig.  4E). The tumors were 
harvest at the endpoint, and the tumor weight in anti-
PD-L1 plus anti-CD25 treatment group was signifi-
cantly smaller than the control group or anti-PD-L1 
or anti-CD25 group alone (Fig. 4F, G). Taken together, 
Tregs depletion could strengthen the therapeutic effect 
of anti-PD-L1 treatment by decreasing upregulating 
immunosuppression after immunotherapy.
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Fig. 2  The anti-tumor effect of anti-PD-L1 treatment was undermined by the enhanced immunosuppression in tumor. A The anti-PD-L1 treatment 
schedule in syngeneic tumor mouse model. 3 × 106 U14 cervical cells was subcutaneously injected on the flank of 7-weeks C57BL/6 mouse. 
Anti-PD-L1 (200 μg/time/mouse) was intraperitoneally injected in mouse seven days post tumor challenge, and five injection were performed. B 
The representative picture of tumors after five times anti-PD-L1 therapy. The tumor was numbered with Arabic numerals. C The HE dying for the 
tumors in figure (B), and the red arrow represents the necrosis area. The pictures were magnified for 400 times. Scale bar: 50 μm. D The mRNA level 
of immunosuppressive molecular, including CD206, Ly6C, Ly6G, Foxp3, and Arginase in control (no PD-L1 treatment), tumor ⑤ and tumor ⑥
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The increased Tregs proliferation depressed the level 
of effector CD8+ T cells after PD‑L1 treatment
To figure out the reason for the increase of Tregs, we 
analyzed the signature of Tregs after anti-PD-L1 treat-
ment. We found that anti-PD-L1 treatment significantly 
upregulated the percentage of Ki67+ Tregs, indicating 
the increasing Tregs proliferation (Fig. 5A). Additionally, 
we also sorted Tregs for PBS and PD-L1 treated group 
to detect the mRNA level of Ki67 transcription. Consist-
ently, Ki67 showed the higher mRNA level in anti-PD-L1 
group compared with the PBS group (Fig. 5B). Therefore, 
the increased Tregs after anti-PD-L1 therapy may associ-
ated with increasing proliferation of Tregs.

Considering of the important role of effector CD8+ T 
cells (defined by CD3+CD8+CD62L−CD44+) in anti-
tumor response. We respectively analyzed the frequency 
of effector T cells after PBS, or anti-PD-L1 or anti-CD25 
or anti-PD-L1 plus anti-CD25 treatment. Our results that 
anti-PD-L1 plus anti-CD25 treatment group had a signif-
icantly higher level of effector CD8+ T cells than PBS and 
PD-L1 group (Fig. 5C, D). In the draining lymph node, we 
also observed the more distinct increase of effector CD8+ 
T cells in the combination group compared to any of the 
other three groups (Fig. 5E). In conclusion, the increased 

effector CD8+ T cells may be associated with the better 
therapeutic effect after Tregs depletion in cervical tumor 
model.

Discussion
Currently, immunotherapy had aroused the widely con-
cern of researchers focusing on various tumor types [21]. 
Although several clinical trials had verified the effect of 
anti-PD-L1 on advanced tumors, most of patients had 
great difficulty in maintaining the long-lasting response 
to immune checkpoint mediated immunotherapy, let 
alone the eradicating of tumor cells [8, 11]. However, the 
underlying mechanism for the low anti-tumor efficacy 
of immunotherapy in cervical cancer was not very clear. 
Here, we found that anti-PD-L1 dichotomously affected 
tumor growth in the syngeneic mouse model, and the 
different response to anti-PD-L1 treatment is associated 
with the autonomously increased Tregs proliferation and 
frequency in multiple immune organs and tumors. We 
also found that Tregs depletion significantly enhanced 
the tumor depression effect of anti-PD-L1 treatment 
in vivo. Therefore, our research provided a novel insight 
for the limited anti-tumor efficacy of anti-PD-L1 treat-
ment in cervical cancer.
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Fig. 4  Tregs depletion strengthened the anti-tumor effect of anti-PD-L1 treatment in cervical tumor model. A–D The change of Tregs level in 
peripheral blood (A), spleen (B), tumor (C) and DLN (D) in the syngeneic tumor model. The above samples were collected at the endpoint. N = 4. 
Two-tailed unpaired T-test was performed. E The tumor growth curve under different treatment. The tumor was measured with a caliper, and the 
tumor volumes were calculated with the formula: ½ *length *width*width. Two-tailed unpaired T-test was performed. F The tumor pictures after 
different treatment. N = 4. G The tumor weight in different groups. n = 4. The tumors were weight with a analytical balance. Two-tailed unpaired 
T-test was performed. ns: no significant difference, *p < 0.05, **p < 0.01compared to the control groups. A p value less than 0.05 was considered to 
be statistically significant
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Fig. 5  The increased Tregs proliferation depressed the level of effector CD8+ T cells after PD-L1 treatment. A The change of Ki67+ Tregs in the 
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The increased Tregs may be one of the important 
mechanisms of cervical tumors to resist immunotherapy 
efficacy. Although we failed to explore the underlying 
mechanism for Tregs increasing post PD-L1 treatment, 
we indeed observed the correlation between IL6 expres-
sion and Tregs upregulation. Under tumor conditions, 
various cytokines, such as GM-CSF, IL6, TNF-α, and 
other chemokines [22, 23]. Previous studies showed 
that IL6 and Tumor necrosis factor α (TNFα) could 
promote Tregs proliferation in tumor sites. The recent 
study reported that anti-PD-L1 treatment or the Rhein 
plus PD-L1 therapy groups upregulated the IL6 level  in 
the established 4T1 breast cancer xenografts [24]. Con-
sistently, we also observed the slightly increase of IL6 
in the tumor tissue after anti-PD-L1 therapy (data not 
show). TNF is a potent pro-inflammatory cytokine, which 
played a vital role in the balance of tumor microenviron-
ment. Benoît L Salomon et al. reported that TNF is able 
to increase expansion, stability, and possibly function of 
Tregs via TNFR2 [23]. In addition, Lack of interleukin-6 
in the tumor microenvironment augments type-1 immu-
nity and increases the efficacy of anti-PD-L1 therapy in 
CT26 cells mouse model [25]. Collectively, we supposed 
that the increased Tregs probably caused by increased 
IL6 expression after PD-L1 treatment, which, however, 
remained to be further confirmed in the future consider-
ing of the limited number of mice response to anti-PD-L1 
treatment in our project.

Although we observed the enhanced anti-tumor effect 
after Tregs depletion during anti-PD-L1 treatment in 
mouse model, we also should be careful for the quickly 
use of this strategy in clinical cervical cancer patients. 
A few studies reported that Tregs depleted mice suf-
fered serious autoimmune disease [26]. Furthermore, 
anti-PD-L1 also may lead to huge immune storm in the 
host. Therefore, much more attention should be paid 
on the treatment related adverse event in cervical can-
cer patients during Tregs depletion combined anti-PD-
L1 treatment in cervical cancer patients in the future. 
Admittedly, the animal number in the was a little bit 
small in this project and more animals might be added 
in every group to make our conclusion even solid in the 
future.

In conclusion, we found that anti-PD-L1 treatment 
upregulated Tregs levels in cervical cancer mouse model, 
and Tregs depletion maybe a promising adjuvant treat-
ment of anti-PD-L1therapy for cervical cancer treatment.
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