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Abstract

The bovine cumulus-oocyte complex (COC) is capable of converting cortisone, an inert 
glucocorticoid to active cortisol. This mechanism is mediated by 11β-hydroxysteroid 
oxidoreductase type 1 (HSD11B1), whose expression dramatically increases in the mature 
COC. In this study, we investigate the time course expression of HSD11B1 and the enzyme 
activity in the bovine COC undergoing maturation and fertilization in relation to key events 
taking place in the COC. Bovine COCs were subjected to in vitro maturation (IVM) and 
fertilization (IVF). The activities of HSD11B1 and HSD11B2, which mediates the opposite 
reaction, were measured using a radiometric conversion assay. In parallel studies, cumulus 
expansion, P4 production and the expression of genes associated with ovulation were 
measured. The reductive activity of HSD11B1 increased in the latter half of IVM and 
remained high during IVF, whereas the oxidative activity of HSD11B2 remained unchanged 
over both periods. Consequently, the net glucocorticoid metabolism in the bovine COC 
shifted from inactivation to activation around the time of ovulation and fertilization. The 
increase in HSD11B1 expression lagged behind that of P4 increase and cumulus expansion 
but ahead of the expressions of genes responsible for PGE2 synthesis. The reductive 
activity of HSD11B1 was well correlated with the cumulus expansion rate. This outcome 
indicates that the ability of the cumulus to activate glucocorticoids is related to its ability 
to synthesize hyaluronan. These results also indicate that the activation of HSD11B1 is an 
integral part of the sequential events taking place at the ovulation and fertilization in the 
bovine COC.

Introduction

The preovulatory LH surge triggers dynamic changes in 
the ovulatory follicle leading to a follicular rupture and 
subsequent luteinization. This ovulatory process takes 
some 24 h in cattle, during which the ovulating oocyte 
and surrounding cumulus oophorus also experience 
a series of morphological and biochemical changes 
(1). In the oocyte, both nuclear and cytoplasmic 
maturation progress, resulting in the appearance of a 
fertilizable and developmentally competent MII stage 
oocyte (1, 2, 3). In the cumulus, the production and 
accumulation of hyaluronan and associated factors in 
the extracellular space results in cumulus expansion (4).  

Gonadotropins also stimulate the production of 
progesterone (P4) and prostaglandin E2 (PGE2) in cumulus 
cells (5, 6, 7, 8). These hormones have been shown to play 
various roles in regulating the expression of many factors 
associated with oocyte maturation, fertilization and 
subsequent embryo development and cumulus expansion 
(8, 9, 10, 11, 12).

Recently, we have demonstrated that the bovine oocyte 
cumulus complex (COC) undergoing IVM expresses two 
types of glucocorticoid metabolizing enzymes, namely 
11β-hydroxysteroid oxidoreductase type1 (HSD11B1) 
and type2 (HSD11B2) (13). The former is a reductase 
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that predominantly catalyzes inactive cortisone to active 
cortisol, while the latter is an oxidase that catalyzes the 
opposite reaction (14). The expression of these HSD11Bs 
appeared to be differentially regulated; cumulus cells only 
express HSD11B1, and its expression and activity increase 
in mature COCs, whereas oocytes only express HSD11B2, 
and its expression and activity remain unchanged 
irrespective of oocyte maturity (13). These results indicate 
that the local glucocorticoid environment in the bovine 
COC is eloquently regulated during oocyte maturation.

The physiological significance of the HSD11B-led 
glucocorticoid metabolism in the oocyte maturation 
has not yet been clarified. However, it is likely that the 
periovulatory activation of glucocorticoid is an integral 
part of complex events taking place in the bovine COC 
undergoing ovulation and fertilization. It is necessary 
to grasp the detailed expression pattern of HSD11B in 
relation to other factors involved in these events, to 
clarify its physiological role.

Therefore, in this study, we examined changes in the 
activity of HSD11B in the bovine cumulus-oocyte complex 
during maturation and subsequent fertilization and 
analyzed the expression pattern of HSD11B1 in relation 
to the expression of genes responsible for the production 
of P4 and PGE2, and for cumulus expansion.

Materials and methods

This study was approved by the Animal Experiment 
Committee of the Obihiro University of Agriculture and 
Veterinary Medicine (No. 28-127). All chemicals were 
supplied by Wako Pure Chemical Industries (Osaka, Japan) 
unless otherwise stated.

The recovery of the cumulus-oocyte complex

Bovine ovaries were harvested in a local slaughterhouse 
and brought to the laboratory in Dulbecco’s phosphate-
buffered saline (DPBS; Sigma-Aldrich). The cumulus-
oocyte complexes (COCs) were aspirated from follicles of 
2–5 mm diameter using a syringe fitted with an 18-gauge 
needle. Only COCs with an evenly granulated cytoplasm 
and more than three layers of compact cumulus cells were 
used for the study.

IVM and fertilization

In vitro maturation (IVM) was conducted as mentioned 
elsewhere (13). Briefly, one or five COCs were cultured 

in either HLA Terasaki 60 multiwall plates (Greiner Bio 
One GmbH, Frickenhausen, Germany) or Nunc round-
bottom 96 microwell plates (Thermo Fisher Scientific) 
containing 10–20 μL or 100 μL of HEPES modified 
medium 199 (Sigma-Aldrich) supplemented with 10% 
(v/v) fetal calf serum (Fetal Clone III; Thermo Fisher 
Scientific), 100 μg/mL Kanamycine (Sigma-Aldrich), 
100 μg/mL glutamine (Sigma-Aldrich), 1 μg/mL estradiol 
(Sigma-Aldrich) and 0.02 IU/mL FSH (Antrin R10; 
Kyoritsu Seiyaku, Tokyo, Japan) at 38.5°C for up to 24 h 
in 5% CO2.

In vitro fertilization (IVF) was performed following 
the method reported by Hamano and Kuwayama (15). 
Briefly, frozen semen from a Holstein bull was thawed 
and washed twice by centrifugation for 5 min at 800 g 
with sperm washing medium. The washed spermatozoa 
were subsequently suspended in modified Brackett and 
Oliphant’s medium (16) supplemented with 1.25 U/mL 
heparin (Mochida Pharmaceuticals, Tokyo, Japan) and 
5 mM theophylline (Sigma-Aldrich) and adjusted to a 
final concentration of 3 × 106 cells/mL. Expanded COCs 
were washed in the IVF medium, transferred to wells of 
the HLA Terasaki 60 multiwall plate containing the IVF 
medium (1 oocyte/20 μL) or round-bottom 96 microwell 
plate (5 oocytes/50 μL) and incubated with or without 
spermatozoa for 5 h at 38.5°C in a humidified atmosphere 
of 2% CO2 in air. Spermatozoa were also incubated alone 
to determine the activities of HSD11B.

The measurement of HSD11B activities in COC

The reductive and oxidative activities of HSD11B in 
COC were measured using the radiometric conversion 
assay reported previously (17). COCs were cultured as 
mentioned above with 100 pmol/mL of radiolabeled 
cortisol ([1,2,6,7-3H(N)]-hydrocortisone 73.4 Ci/mmol; 
PerkinElmer Japan) or cortisone ([1,2-3H]-cortisone  
60 Ci/mmol; American Radiolabeled Chemicals Inc., 
Tokyo, Japan). After culturing, the medium was recovered 
and the steroids were extracted once with 1 mL diethyl 
ether for 5 min. The organic phase was removed and 
evaporated at 60°C under gentle stream of nitrogen until 
dry. The residue was dissolved in 10 µL ethyl acetate 
containing 1 mM each of cold cortisol and cortisone and 
subjected to thin layer chromatography (TLC) using a 
solvent system chloroform:ethanol, 92:8 (vol/vol) (17). 
After the TLC, the separated steroids were localized under 
UV (254 nm), and each area was cut out to determine 
the specific radioactivity. The activities of HSD11Bs were 
calculated from the percentage of counts detected as 
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the product to total counts (substrate and product) after 
correction for the corresponding blank counts.

Progesterone assay

The concentration of progesterone (P4) in the culture 
medium was determined using a commercial kit 
(Progesterone EIA kit; Cayman Chemical Co.) following 
the protocol supplied by the company. The intra- and 
inter-assay coefficients of variation were less than 10%.

Cumulus size measurement

COCs were individually cultured as mentioned above, 
and digital images of COCs were acquired before and after 
IVM. The size of the COCs was determined using ImageJ 
(National Institutes of Health). The cumulus expansion 
rate was calculated by dividing the size of the COC after 
IVM with the size before IVM.

RNA extraction, reverse transcription (RT) and 
real-time quantitative PCR

Total RNA was extracted from COCs using TRIzol Reagent 
(Life Technologies). The RT of extracted RNA and removal 
of any contaminating genomic DNA was performed with 
a QuantiTect Reverse Transcription kit (QIAGEN GmbH) 
following the procedure provided by the manufacturer. 
The abundance of mRNAs was quantified via real-time 
PCR using FastStart Essential DNA Green Master (Roche 
Diagnostics GmbH) and Light Cycler Nano (Roche). 
Specific primers for target genes were designed using the 
National Centre for Biotechnological Information (NCBI) 
primer designing tool, Primer-BLAST (18) based on the 
reported bovine sequences (Table  1). The amplification 
program consisted of an initial activation at 95°C for 
10 min followed by 45 cycles of the amplification steps: 
denaturation at 94°C for 10 s, annealing at 60°C for 10 s 
and extension at 72°C for 15 s. For quantifications of 
the target genes, standard curves were generated using 

Table 1 Primers used for quantitative real-time PCR.

Gene (bp) Primer Sequence (5′–3′) GenBank no. Positiona

HSD11B1 F AAGCAGACCAACGGGAGCATT NM001123032.1 532–552
(111) R GGAGAAGAACCCATCCAGAGCA 642–621
H6PDH F AGCCTGTGTGTGCCCAGTTC BC120346.1 766–785
(62) R CCCAGGGTTTACTGCCAGCC 916–897
STAR F CAGCAGAAGGGTGTCATCAGAG NM174189.3 767–788
(149) R AGGACCTGGTTGATGATGGTCT 915–894
CYP11A1 F CCCTGAAAGTGACTTGGTTCTTCA NM176644.2 1209–1232
(118) R GTCAAACTTGTCCGGACTGGAG 1326–1305
HSD3B1 F CCTTGTACACTTGTGCCCTGAG NM174343.3 640–661
(118) R AACTTGCAGTGATTGGTCAGGA 757–736
GFPT2 F CCGGACAAGGAAGGAGATTTTT NM001076883.1 95–116
(134) R TTGACGAGCTGGATATGCCTTT 229–208
HAS2 F TTTCGGATGTGTCCAGTGC NM174079.3 1362–1380
(142) R TCGGTTCGTTAGATGCCTGT 1503–1484
PLA2G4A F CAAGGACCCAAAGGCACTGAAC NM001075864.1 1464–1485
(136) R CGGCACGTCCTTCTCTGGTATT 1599–1578
PTGS2 F TCTACCCGCCTCATGTTCCT NM174445.2 888–907
(108) R TGTGTTCCCGTAGCCAAATG 995–976
PTGES1 F CCGATGGCCCTTTGAGATTG NM174443.2 538–557
(111) R CAAGGGACACACGGGGAAAC 648–629
RPL4 F ACTCCGAGCACCACGCAAGA NM001014894.1 945–964
(116) R TGGTGTTCCTGCGCATGGTCT 1060–1040
RPL15 F GCGGCAGCCATCAGGGTGAG NM001077866.1 17–36
(90) R AGGAAGCGCATCACGTCCGA 106–87
TBP F GCCTTGTGCTTACCCACCAACAGTTC NM001075742.1 1133–1158
(200) R TGTCTTCCTGAAACCCTTCAGAATAGGG 1332–1305

aNucleotide position in the reported sequence.
CYP11A1, cytochrome P450, family 11, subfamily A, polypeptide 1; GFPT2, glutamine-fructose-6-phosphate transaminase 2; H6PDH, hexose-6-phosphate 
dehydrogenase; HAS2, hyaluronan synthase 2; HSD11B1, 11β-hydroxysteroid oxidoreductase type 1; HSD3B, hydroxy-delta-5-steroid dehydrogenase, 3 
beta- and steroid delta-isomerase 1; PLA2G4A, phospholipase A2 group IVA; PTGES1, prostaglandin E2 microsomal synthase 1; PTGS2, prostaglandin-
endoperoxide synthase 2; RPL15, ribosomal protein L15; RPL4, ribosomal protein L4; STAR, steroidogenic acute regulatory protein; TBP, TATA-box-binding 
protein. 
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sets of serially diluted cDNA samples. The results were 
normalized to geometric means of three stably expressed 
reference genes, ribosomal protein L4 (RPL4), ribosomal 
protein L15 (RPL15), and TATA-binding protein (TBP), 
following the procedure reported by Vandesompele et al. 
(19). The intra- and inter-assay coefficients of variation 
were less than 15% for all measurements.

Statistical analysis

All statistical analyses were performed using the computing 
environment R (20) installed with R Commander and Easy 
R (21). Data were transformed to base-10 logarithms when 
not normally distributed. Comparisons between two data 
samples were performed using an unpaired two-tailed 
t-test. Comparisons among multiple data samples were 
performed using either Tukey’s multiple comparison test 
(comparisons between two consecutive time points: for 
example, P4 levels and COC size) or Dunnett’s multiple 
comparison test (comparisons between gene expressions 
at 0 h and at each of the following time point). The effects 
of HSD11B isozymes and the presence of spermatozoa 
on the enzyme activities were analyzed using a two-way 
ANOVA, and differences among the groups were analyzed 
using Tukey’s test. Data were presented as an arithmetic 
mean ± s.e.m. The correlation between HSD11B activities 
and the size of COC or the degree of cumulus expansion, 
and the correlation between HSD11B1 activities during 
IVM and IVF periods were analyzed using Pearson’s 
correlation coefficient. Differences between groups were 
considered statistically significant when the P value was 
less than 0.05.

Results

The effect of spermatozoa on the activities of 
HSD11B in the bovine cumulus-oocyte complex

Bovine COCs were subjected to IVM (5 COCs/100 µL/well)  
for 21 h and then incubated with (IVF+) or without 
(IVF−) spermatozoa for 5 h in the BO medium  
(5 COCs/50 µL/well) containing labeled cortisone or 
cortisol to determine the reductive or oxidative activities 
of the HSD11B. Cumulus expansion was observed after 
21 h of IVM. Five-hour incubation with spermatozoa 
dispersed the expanded cumulus (Fig. 1A). The reductive 
activity of HSD11B was twice as high as the oxidative 
activity both in the IVF+ and IVF− groups (P < 0.05). The 
HSD11B activities tended to decrease in the presence of 

spermatozoa (P < 0.1). No HSD11B activity was detected in 
the spermatozoa (Fig. 1B).

The activities of HSD11B reductase and oxidase  
in the bovine cumulus-oocyte complex during  
IVM and IVF

Bovine COCs were subjected to IVM (1 COC/20 µl/well) 
for 21 h with labeled cortisone or cortisol. After IVM, each 
COC was washed in PBS to remove carryover steroids 
and further incubated with (IVF+) or without (IVF−) 
spermatozoa for 5 h with the respectively labeled steroids 
(1 COC/20 µL/well). During IVM, the oxidative activity of 
HSD11B was nearly twice as high as the reductive activity 
(Fig. 2A, P < 0.01). During IVF, the reductive activity was 
two to three times higher than the oxidative activity 
(Fig.  2B, P < 0.05). The time unit activity of HSD11B 
reductase was 3–5 times higher during IVF compared to 

A

B

Figure 1
The reductive and oxidative activities of HSD11B in the bovine COC 
matured in vitro and cultured with and without spermatozoa. Bovine 
COCs (five COCs/well) were subjected to IVM for 21 h and then cultured in 
BO-containing radiolabeled cortisone/cortisol for 5 h with (IVF+) or 
without (IVF−) spermatozoa. (A) The morphology of COC before (IVM: 0 h) 
and after (IVM: 21 h) IVM, and after IVF (IVF: 5 h). (B) The reductive 
(cortisone to cortisol; black bars) and the oxidative (cortisol to cortisone; 
open bars) activities of HSD11B in the COC and spermatozoa during the 
5 h IVF period. Mean ± s.e.m. (n = 4).
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IVM, while the activity of HSD11B oxidase was unchanged 
throughout IVM and IVF (Fig. 2C).

The relationships between cumulus size and 
HSD11B activities in the bovine cumulus-oocyte 
complex during IVM

There were significant correlations between the reductive 
activity of HSD11B over 21 h of the IVM period and 
the size of the cumulus at 21 h, as well as the cumulus 
expansion rate (Table  2, P < 0.005). No correlation was 
observed between the reductive activity and the size 
of cumulus at 0 h. There was no correlation between 
the oxidase activity and cumulus size, nor the cumulus 
expansion rate (Table 2).

Progesterone production, cumulus expansion and 
gene expression in the bovine cumulus-oocyte 
complex during IVM

Bovine COCs (1 COC/10 µL/well) were subjected to IVM 
for up to 24 h and COCs and spent medium were collected 
at 0, 4, 8, 12, 16, 20 and 24 h for the determination of 
gene expressions and P4 production. The size of the COCs 
and the expansion rate were calculated and recorded at 0 h 
and each collection. The production of P4 was discernible 
at 4 h and accelerated between 8 and 16 h, and then 
slowed down afterwards (Fig.  3A). Cumulus expansion 
was discernible at 8 h and the size of the cumulus steadily 
increased up to 20 h (Fig. 3B). Patterns of gene expression 
varied among genes (Fig. 4). The expression of HSD11B1 
gradually and steadily increased during IVM (Fig.  4A). 
Similar patterns were observed for GFPT2, PLA2G4A and 
PTGS2 (Fig.  5F, H and I). The expressions of CYP11A1 
and HAS2 increased over 4 h and then remained at high 
levels for the rest of the IVM period (Fig. 5D and G). The 
expression of H6PDH and PTGES1 significantly decreased 
at 4 and 8 h and then increased toward the end of IVM 
(Fig. 5B and J), whereas HSD3B1 decreased at 8 and 12 h 
and then returned to the initial level afterward (Fig. 5E). 
The expression of STAR was largely unchanged throughout 
IVM except at 4 h, where a relatively small but statistically 
significant increase was observed (Fig. 5C, p < 0.05).

Gene expression in the bovine cumulus-oocyte 
complex matured in vitro and cultured with or 
without spermatozoa

Bovine COCs (5 COCs/100 µL/well) were subjected to IVM 
for 21 h then incubated with (IVF+) or without (IVF−) 

A

B

C

Figure 2
The reductive and oxidative activities of HSD11B in the bovine COC during 
the 21 h of IVM and following the 5-h culture with and without 
spermatozoa. The bovine COCs (1 COC/well) were subjected to IVM for 
21 h and then cultured for 5 h with (IVF+) or without (IVF−) spermatozoa. 
The reductive (cortisone to cortisol; black bars) and the oxidative (cortisol 
to cortisone; open bars) activities of HSD11B were measured for IVM (A) 
and IVF (B) periods. The time-adjusted activities of HSD11B during IVM 
and IVF periods are also shown (C). Mean ± s.e.m. (A: n = 16, B and C: n = 8).
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spermatozoa for 5 h to determine the gene expression. 
Gene expression was significantly higher (GFPT2, P < 0.05) 
or tended to be higher (STAR, P < 0.1) in the IVF+ group 
compared to the IVF− group (Fig. 5).

Discussion

The results of this study demonstrated that the conversion 
of cortisone, an inert glucocorticoid, to active cortisol 
increases toward the end of IVM and stays high during 
IVF in the bovine COC. The opposite reaction also took 
place during IVM and IVF, but its activity was unchanged 
throughout these procedures. Consequently, the net 
metabolism of glucocorticoid in the bovine COC shifted 
from inactivation to activation around the expected time 
of ovulation and fertilization.

Two glucocorticoid-metabolizing enzymes, HSD11B1 
and HSD11B2, are responsible for these conversions. 
HSD11B1 is a bi-directional 11HSD, which mainly acts 
as a reductase to convert cortisone to cortisol, whereas 
11HSD2 acts as a dehydrogenase to catalyze the opposite 
reaction (14).

In the bovine COC, the expressions of these 
HSD11Bs are well compartmentalized, and HSD11B1 is 
predominantly expressed in the cumulus cell. In contrast, 
HSD11B2 is only expressed in the oocyte (13).

The expression of HSD11B1 in the bovine COC was 
very low at the initiation of IVM. It began to increase 
at 4 h, and then accelerated during the later half of the 
IVM. At IVM completion, the level of expression had 
increased by three orders of magnitude, making HSD11B1 
the most acutely regulated gene among those examined. 
The gene expression of H6PDH, the enzyme responsible 
for generating the cofactor NADPH, which is necessary for 
HSD11B1 reductive activity (14), also increased during the 
later half of the IVM. Consequently, the reductive activity 
of HSD11B1 sharply increased toward the end of IVM 
and stayed high during IVF. In this study, a widespread 
disintegration of cumulus oophorus was apparent by 5 h 

after the introduction of spermatozoa. Bovine cumulus 
cells are rapidly lost from zygotes and early embryos 
after the fertilization (22). Although the expressions of 
HSD11B1 and H6PDH, as well as other genes associated 
with P4 and prostaglandin production, did not decrease, 
it is likely that the activity of these enzymes was rapidly 
lost as cumulus disintegration progressed (22).

This study demonstrates that bovine spermatozoa 
exert neither HSD11B1 nor HSD11B2 activity under 
the IVF conditions used. Various testes, epididymis 
and male accessory gland tissues express HSD11Bs and 
glucocorticoid receptors (GRs) in pigs (23) and rodents (24, 
25, 26). However, to our knowledge, neither the presence 
of HSD11Bs nor the functional GR in the spermatozoon 
has been demonstrated in any species.

Oviducts may convert glucocorticoids around the 
time of ovulation and fertilization. Bovine oviductal 
tissues collected at days 2–4 of the estrous cycle expressed 
HSD11B1 and HSD11B2 (27). However, expression levels 
were very low, and it is doubtful that there is any significant 

Table 2 Correlations between the size/expansion rate of the 
cumulus and the HSD11B activities in the bovine cumulus-
oocyte complex (COC) during IVM.

Variables
Adjusted R-squared (P value)

Reductive activity Oxidative activity

Cumulus size 0 h (A) −0.067 (P = 0.805) −0.042 (P = 0.879)
Cumulus size 21 h (B) 0.766 (P < 0.001) −0.114 (P = 0.674)
Cumulus expansion 

rate (B/A)
0.729 (P < 0.005) −0.101 (P = 0.710)

A

B

Figure 3
The progesterone production (A) and cumulus expansion (B) of the bovine 
COC during the 24-h IVM period. The bovine COCs (1 COC/well) were 
subjected to IVM for up to 24 h, and the amount of P4 in the medium and 
size of the COC were measured at each time point. Mean ± s.e.m. (n = 5).
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Figure 4
Changes in the expression of genes responsible 
for glucocorticoid activation (HSD11B1; A, H6PDH; 
B), progesterone biosynthesis (STAR; C, CYP11A1; 
D, HSD3B1; E), cumulus expansion (GFPT2; F, 
HAS2; G) and PGE2 biosynthesis (PLA2G4A; H, 
PTGS2; I, PTGES1; J) in the bovine COC during the 
24-h IVM period. The levels of gene expression 
were normalized to the geometric means of three 
stably expressed reference genes: TBP, RPL4 and 
RPL15. Mean ± s.e.m. (n = 5). Significant differences 
from the expression levels at 0 h. *P < 0.05, 
**P < 0.01.
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HSD11B activity in the oviducts. In humans, it was shown 
that the oviduct exerts the oxidative activity of HSD11B2 
but not the reductive activity of HSD11B1 (28).

These results indicate that bovine cumulus cells provide 
a temporal and local glucocorticoid umbrella around the 
oocyte at the time of ovulation and fertilization.

The HSD11B2 activity in the oocyte was fairly stable 
during IVM and IVF, despite ongoing dynamic events, such 
as nuclear and cytoplasmic maturation and fertilization. As 
there is little gene transcription taking place during oocyte 
maturation and fertilization, this is likely to be maintained 
by existing HSD11B2 or the newly translated enzyme from 
stored mRNA by post-transcriptional regulation (29). The 
HSD11B2-led inactivation of cortisol is likely to play an 
important role in protecting oocytes from the adverse 
effects of glucocorticoids during the maturation process. 
Pharmaceutical levels of glucocorticoids suppress oocyte 
maturation in mice (30, 31, 32), sheep (33) and pigs (32, 
34). However, in the presence of 18β-glycyrrhetinic acid 
(GA), a specific inhibitor of HSD11B2, lower levels of 
cortisol suppressed the oocyte maturation in mice and 
pigs (32). On the other hand, high levels of cortisol did 
not affect oocyte maturation in horses (35). These authors 
demonstrated that equine COC expresses HSD11B2, but 
not HSD11B1. These results may explain why equine 
COCs could withstand the negative effects of cortisol. 
Although the protective role of HSD11B2 in the bovine 
oocyte has not been clarified yet, the stable oxidative 
activity throughout maturation and fertilization implies 
that it is protected from circulating cortisol and locally 
generated cortisol during ovulation and fertilization.

The time course experiment in this study shows that 
the expression of enzymes involved in P4, PGE2, and 
hyaluronan production is differentially regulated during 
IVM. The expression of these enzymes is developmentally 
regulated in various species, including cattle (6, 7, 36, 
37, 38, 39). The expression of CYP11A1 and HAS2, the 
rate-limiting enzymes for P4 and hyaluronan synthesis, 
respectively, increased to nearly maximum levels after 4 h 
of IVM. The production of P4 and the size of the cumulus 
also significantly increased after 4 h, indicating that the 
functional enzymes were already at work. The expression 
of HSD11B1 lagged behind those of these enzymes. 
Although a slight but statistically significant increase in 
gene expression was observed at 4 h, it is unlikely that a 
significant amount of cortisol was produced by this time. 
In a previous study, we were unable to detect any reductive 
activity of HSD11B1 in the bovine COC during the 
initial 5 h of IVM (13). The gene expressions of enzymes 
involved in PGE2 production, i.e., cPLA2G4A, PTGS2 and 
PTGES1, began to increase after 16–20 h of IVM, lagging 
HSD11B1 expression. These results are in accordance with 
those reported in bovine preovulatory follicles, where 
the expression of PTGS2 begins to increase 18 h after 
hCG treatment (40). However, this expression increases 
much later than in the results obtained for bovine COCs 
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Figure 5
The expression of genes responsible for glucocorticoid activation 
(HSD11B1: A, H6PDH: B), progesterone biosynthesis (STAR: C, CYP11A1:  
D, HSD3B1: E), cumulus expansion (GFPT2: F, HAS2: G) and PGE2 
biosynthesis (PLA2G4A: H, PTGS2: I, PTGES1: J) in the bovine COC matured 
in vitro and incubated with and without spermatozoa for 5 h. The gene 
expression levels were normalized to the geometric means of three stably 
expressed reference genes: TBP, RPL4 and RPL15. Mean ± s.e.m. (n = 4). 
*P < 0.05.
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subjected to IVM, where increases in expression begin 
after 6 h (5, 6). This discrepancy in PTGS2 expression 
timings between this study and previous studies may be 
due to the difference in the number of COCs per culture. 
In the previous studies, up to 50 COCs were cultured 
in 500 µL of medium, whereas in this study, COCs were 
cultured individually in 10 µL of medium. Although the 
culture density is the same among these experiments, the 
presence of multiple COCs close to one another under 
static culture conditions may hasten the buildup of 
paracrine factors around the COCs and alter the pattern 
of gene expression.

The rise of P4 before an increase in HSD11B1 
expression indicates the possible involvement of P4 in 
the periovulatory rise of HSD11B1 activity. P4 plays a 
pivotal role in the regulation of preovulatory follicular 
events, such as cumulus expansion and prostaglandin 
production (41). PGE2 may also affect HSD11B1 activity 
as well as the production of P4 during the later stages, 
as reported in cultured human granulosa-lutein cells (42, 
43). Conversely, cortisol may regulate PGE2 production. 
Glucocorticoid suppresses ovarian PLA2 activity (44) and 
PGE2 production (45) in rats. Further study is required to 
elucidate these possibilities in the bovine COC.

In this study, a highly significant positive correlation 
between the reductive activity of HSD11B and the cumulus 
expansion rate was found. As there was no correlation 
between the enzyme activity and the size of the cumulus 
at the initiation of IVM, enzyme activity appears to be 
linked to the ability of the cumulus to expand, rather 
than the number of cells it contains.

In conclusion, the HSD11B1-led local production of 
cortisol increases toward the end of IVM and remains 
high during IVF in the bovine COC. This event occurs 
following the rise of P4 and the initiation of cumulus 
expansion and precedes the expression of genes involved 
in PGE2 synthesis. The results indicate that the activation 
of glucocorticoid is an integral part of the complex 
sequential events taking place in the bovine COC 
undergoing maturation and fertilization.
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