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Metabolomics profiling in acute 
liver transplant rejection 
in a pediatric population
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Pediatric liver transplantation rejection affects 20% of children. Currently, liver biopsy, expensive and 
invasive, is the best method of diagnosis. Discovery and validation of clinical biomarkers from blood 
or other biospecimens would improve clinical care. For this study, stored plasma samples were utilized 
from two cross-sectional cohorts of liver transplant patients at Children’s Healthcare of Atlanta. High 
resolution metabolic profiling was completed using established methods. Children with (n = 18) or 
without (n = 25) acute cellular rejection were included in the analysis (n = 43 total). The mean age of 
these racially diverse cohorts ranged from 12.6 years in the rejection group and 13.6 years in the no 
rejection group. Linear regression provided 510 significantly differentiating metabolites between 
groups, and OPLS-DA showed 145 metabolites with VIP > 2. A total of 95 overlapping significant 
metabolites between OPLS-DA and linear regression analyses were detected. Pathway analysis 
(p < 0.05) showed bile acid biosynthesis and tryptophan metabolism as the top two differentiating 
pathways. Network analysis also identified tryptophan and clustered with liver enzymes and steroid 
use. We conclude metabolic profiling of plasma from children with acute liver transplant rejection 
demonstrates > 500 significant metabolites. This result suggests that development of a non-invasive 
biomarker-based test is possible for rejection screening.
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AST  Aspartate aminotransferase
FXR  Farnesoid X receptor

According to the United Network for Organ Sharing (UNOS), there were 8906 liver transplants in 2020 across 
the United States (US), which marks a 0.1% increased from  20191. To date, there are 18,596 new addition to the 
waiting list for liver transplant among candidates under the age of 18 years, with the majority of 6827 candidates 
being among children under 1 year  old2. On the other hand, there has been 18,310 liver transplantations done in 
children under the age of 18 years, with the majority of 6879 operations being between the ages of 1 and 5 years 
 old2. Graft failure was observed in 6.5% of the cases after 6 months and 6.5% of the cases 1-year post-transplant 
for transplants performed in  20183.

One major concern of liver transplant, as with any other organ transplantation, is the possibility of allograft 
rejection. Specifically, in the pediatric population, there is a 60% chance of acute cellular rejection (ACR) over 
the first 5  years4–6. Rejection is defined as the immunological attack by the host on the graft encompassing both 
acute and long-term inflammatory  changes7. ACR is known to occur anytime, but most frequently within the 
first-year post-transplant8. ACR is diagnosed by finding at least two of the three features: portal inflammation, 
bile duct injury, and venous endotheliolitis on  histopathology7,9.

Liver biopsy remains the gold standard technique to detect  rejection7,8. Liver biopsy is an invasive technique 
and requires a surgical procedure to extract a sample of the organ. ACR is defined by the following histologic 
features including (1) predominantly mononuclear portal inflammation (2) sub-endothelial inflammation, and 
(3) lymphocytic  cholangitis8. ACR causes significant morbidity and is one of the leading causes of liver graft loss 
in  children10. Thus, better understanding of the mechanisms underlying ACR and non-invasive biomarkers are 
needed. Therefore, we aimed to examine metabolic pathways to characterize pediatric liver transplant rejection 
using ultra-high-resolution metabolomics (HRM).

Metabolomics is the study of small molecule metabolites in biofluids and tissues to identify biomarkers 
associated with altered metabolic pathways, which allows better understanding of downstream effects of genes 
and  proteins5,11. Metabolites are modulated by proteins and other enzymatic functions, hence increasing their 
sensitivity to biological stressors, and thus their ability to reflect the disease-induced alterations, as well as the 
functional phenotype of the  organism5,11. Despite the poor understanding of how metabolic changes influence 
ACR, metabolomics has allowed the discovery of several endogenous pathophysiological metabolites in the liver 
involved in the rejection of the organ post-transplantation11–15.

Results
Study participants. A total of 43 children, equally distributed among males and females, were included. 
Demographics and characteristics are summarized in Table 1. Children were divided in two groups, those with 
ACR (n = 18) and no ACR (n = 25). The average age was 13.2 years, with the ACR group being fairly age matched 
with the no ACR group, 12.6 and 13.6 years, respectively (non-significant). The ethnic and racial variability of 
the participants included white (57.1%), black (28.6%) and Hispanic (11.9%) which was also representative of 
our transplant population cohort. The most frequent diagnosis across no ACR group was biliary atresia (32.0%), 
whereas the most common diagnosis among those with ACR was AIH (29.4%). The ACR group was on average 
1027 days post-transplant when recruited, while the no-ACR group was on average 2936 days post-transplant 
(p-value = 0.0004). Half of the children were taking steroid treatment, of which 88.2% were among those with 
ACR but only 24% among no ACR participants (p-value < 0.0001). The main biochemical characteristics dif-
ferentiating the two groups included gamma glutamyltransferase (GGT) with a mean difference between the 
groups of 311.2 (p-value = 0.0015), albumin with a mean difference of 0.38 (p-value = 0.03), and days from trans-
plant with a mean difference of 1909.9 days (p-value = 0.0004).

Metabolic signatures in plasma. The Manhattan plots in Fig. 1A,B show differences between detected 
metabolites in ACR and no ACR groups, the red dots represent down-regulated metabolites in the ACR group 
and the blue dots upregulated metabolites. Panel A, with the mass-to-charge ratio on the x-axis, clearly shows 
a significant difference in the spread between the majority of the significant (q < 0.1) red and blue dots. As for 
panel B, with the retention time on the x-axis, the significant red dots tend to have a low retention time (40–80 s), 
while the significant blue dots have a higher retention time (~ 200 s). The two panels imply that large molecules, 
such as vitamins, amino acids and bile acids, tend to be increased in the rejection group. Furthermore, the two-
way hierarchal cluster analysis, presented in Fig. 1C, showed a distinction between the two groups, the ACR 
group shown in red and the no ACR group in green.

To investigate the metabolic difference between ACR and no ACR, we compared the two groups using two 
different methods. First, by linear regression and controlling for the days from transplant before the biopsy and 
then using the OPLS-DA. Linear regression detected 510 significantly differentiating metabolites between ACR 
and no ACR. The OPLS-DA showed 145 metabolites with a VIP > 2. The supervised distinction between ACR and 
no ACR groups is shown in Fig. 2, where the blue circles are the ACR group, and the orange triangles represent 
the no ACR group. The results of the fivefold cross-validation produced a mean accuracy of 0.9667 (standard 
deviation = 0.0745). The outcome resulted in 95 overlapping significant metabolites between OPLS-DA and linear 
regression analyses. We did find significant associations between the certain phenotypes such as steroid use, GGT, 
and time since transplant and PLS component scores which may have influenced the differential results between 
rejection and no rejection as shown in Table S1. The significant pathways obtained from the linear regression 
analysis included tryptophan metabolism, vitamin B5-CoA biosynthesis, carnitine shuttle, bile acid biosynthe-
sis, vitamin E metabolism, fructose and mannose metabolism, and CoA metabolism. The annotated significant 
metabolites for vitamin B5-CoA biosynthesis, carnitine shuttle, vitamin E metabolism, fructose and mannose 
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metabolism, and CoA metabolism can be found in Table 2. The top two differentiating pathways (p < 0.05) 
were bile acid biosynthesis and tryptophan metabolism. Based on the linear regression analysis, we detected 30 
metabolites, of which 9 were significant in the bile acid biosynthesis pathway. The tryptophan metabolism path-
way showed 46 metabolites, of which 11 were significant. The pathway analysis results are summarized in Fig. 3.

The xMWAS network analysis using significant metabolites from linear regression analysis produced four 
distinct communities. Focusing on the most significant pathways obtained earlier, clusters 2 and 4 are of interest. 
Cluster 2 included tryptophan (m/z 205.0972; Schymanski Level 1; decreased in ACR) and glycocholate (m/z 
466.3163; Schymanski Level 1; increased in ACR), which correlated with all liver enzymes and steroid use. Fur-
ther, cluster 4 included glucosamine (m/z 180.0867; Schymanski Level 1; increased in ACR) and methyl-indole-
3-acetate (m/z 190.0863; decreased in ACR), which correlated with body mass index and ACR status. Figure 4 
shows the four different clusters obtained. Further, Table 3 shows the top 12 significant metabolites that were 
overlapping between the linear regression and the OPLS-DA, with their respective confidence, m/z, retention 
time, compound name, class, and the corresponding adduct.

Discussion
We aimed to examine metabolic pathways to characterize pediatric liver transplant rejection using ultra-high-
resolution metabolomics. From our analyses, we were able to determine distinct metabolites and metabolic 
pathways that may differentiate between those in rejection and those who were not.

Our analyses detected 11 significant metabolites involved in tryptophan metabolism through pathway analysis 
(Table 2), which is in line with other studies. Previous research involving tryptophan metabolism as a significant 
metabolite hypothesized that rejection-specific pathways are linked to immune T cells modulation and the role 
of nutrients in their  functioning16,17. This could be important as the link between T cells and other nutrients 
is a two-way street, where the activation of T cells requires the metabolism of other molecules, mainly amino 
acids such as leucine, and the flux of glucose, lactate, lipids, proteins, nucleic acids and carbohydrates requires 
activated T  cells18,19. Furthermore, the role of immune T cells is also linked to the metabolism of the amino acid 
tryptophan, which is one of the two prominent pathways we distinguished. In fact, the degradation of tryptophan 
to N-formyl kynurenine, converted later to niacin (vitamin B3), is involved in the activation of the Th1-type 
cytokine interferon-γ (IFN-γ), which could have implications on the graft itself or on the immune response 
exerted by the body on the activation of the immune T  cells20,21. This could be related to the fact that kynure-
nines can highly inhibit the proliferation of T-cells using the indoleamine 2, 3, dioxgenase (IDO)  mechanism21. 
On the other hand, the role infiltration of Tregs is essential to minimalize the side effects that could arise in the 
newly transplanted organ by inducing a short-term benign  inflammation17. Furthermore, it was observed that 
kynurenine levels were altered in ACR compared to those without ACR by an increased activity of the kynure-
nine/tryptophan  pathways22. Kynurenine is known to be an intermediate and rate limiting step in tryptophan 
metabolism, in addition to its implication in cellular stress mechanisms and inflammatory responses. This step 
is catalyzed by IDO and tryptophan 2–3 deoxygenase, with the latter being liver-specific22.

Table 1.  Participant demographics by rejection status. SD, standard deviation; AIH, autoimmune hepatitis; 
ALF, acute liver failure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma 
glutamyltransferase. *p-value < 0.05; **p-value < 0.001; ***p-value < 0.0001.

Characteristic mean (SD)
N (%) Rejection (n = 18) No rejection (n = 25) Total (n = 43) p-value

Female 9 (53%) 12 (48%) 21 (50%) 0.753

Age (years) 12.6 (7.0) 13.6 (4.2) 13.2 (5.5) 0.614

Race/ethnicity 0.218

Black 7 (41%) 5 (20%) 12 (29%)

White 8 (47%) 16 (64%) 24 (57%)

Hispanic 1 (6%) 4 (16%) 5 (12%)

Diagnosis

Biliary atresia 2 (12%) 8 (32%) 10 (24%)

AIH 5 (29%) 0 (0%) 5 (12%)

ALF 2 (12%) 8 (32%) 10 (24%)

Urea cycle defect 3 (18%) 0 (0%) 3 (7%)

Hepatoblastoma 2 (12%) 0 (0%) 2 (5%)

ALT (units/L) 300 (346) 113 (278) 189 (317) 0.074

AST (units/L) 224 (194) 92.6 (226) 146 (221) 0.051

GGT 419.2 (321.5) 108 (193.1) 236.9 (291.75) 0.0015**

Hemoglobin 12.17 (1.85) 13.07 (1.81) 12.73 (1.88) 0.13

Total bilirubin 2.43 (3.28) 0.8 (0.54) 1.43 (2.19) 0.06

Albumin 3.52 (0.74) 3.91 (0.35) 3.77 (0.55) 0.03*

Days from transplant 1030 (1350) 2940 (1820) 2160 (1890) 0.0004**

Steroid use 15 (88%) 6 (24%) 21 (50%)  < 0.0001***
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As for the other significantly differentiating metabolite, our analyses detected 9 significant metabolites 
involved in bile acid synthesis (Table 2). These included increased levels of bile acids such as taurine and glycine-
conjugates, which can act as signaling molecules or ligands of the farnesoid X receptor (FXR) that controls the 
expression of genes involved in lipids, lipoproteins and glucose metabolism, justifying its role as a liver function-
ality  biomarker11. Bile acid synthesis serves as a significant contributor in understanding the hepatic biochemical 
pathways associated with liver transplantation  rejection5,11,12,16. In fact, an accumulation of bile acids and any 
of its metabolites may affect the recovery of bile flow in graft  patients11. This could be linked to an alteration 
of a number of genes related to bile acid synthesis and transport such as BAAT, CYP7A1, BSEP and to nuclear 
factors acting in their regulation (HNFa, FXR, SREBF1). Bile acids have been reported to activate the JNK1/2 

Figure 1.  Data visualization: (A) and (B) are Manhattan Plots derived from the linear regression. The red 
dots are lower within the rejection group, while the blue dots are higher. On the y-axis –log 10p, (A) represents 
Type I Manhattan plot with x-axis showing the m/z; whereas (B) represents type II Manhattan plot with x-axis 
showing the retention time (s). A significant m/z was determined for 292 metabolites at q = 0.1. (C) is atwo-way 
Hierarchical Cluster Analysis derived from the linear regression using the m/z of all the significant features. 
Red = Rejection, Green = No rejection. The y-axis represents the m/z, while the x-axis represents the samples.
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pathway mainly in the hepatocytes by direct and indirect mechanisms, which was linked to the downregulation 
of CYP7A1 and bile acid  synthesis23. Furthermore, to activate JNK 1/2, there is an apparent need to produce 
ceramide by activating acidic sphingomyelinase, which is also activated by TNF-a in some hepatocyte loca-
tions. Bile acids have been linked to the activation of the G-protein coupled receptor TGR5, which is involved 
in hepatoprotection as well as energy production. The latter is linked to the activation of the AKT and ERK 1/2 
signaling pathways in  hepatocytes23. This is possible because the enzymes needed for the synthesis of bile acids 
are found in various locations in the hepatocytes such as the smooth endoplasmic reticulum, mitochondria, 
peroxisomes and cytoplasm. However, it remains unclear how the intermediates can move from one location to 
the other. Other studies have shown that the main bile acid presented is conjugated with taurine (TCA), leading 
to increased cytotoxicity from bile acid post-transplant30. These results corroborated with NMR studies showing 
a low recipient/donor tauro-conjugated bile aid ratio in the first week post-transplant, which is associated with 
a higher risk of  rejection11,23. Furthermore, it has been shown that bile acid, in ACR, has the capacity to reduce 
the activity of certain genes, such as CYP7A1, involved in bile acid  synthesis24.

Lastly, the xMWAS clusters analysis we conducted provided a framework for integrative analysis and dif-
ferentiating network analysis. Figure 4 shows identification and visualization of the association between various 
metabolites mentioned earlier and possible phenotypes that could lead to ACR (steroid use, ALT, AST, days 
from transplant, etc.). Cluster number 2 is the most important as it connects the top two significant metabolites 
in our analysis with other variables, most significantly the rejection of the transplantation. The concentration 
of the metabolites in this cluster validates the results we obtained through linear regression and OPLS-DA, that 
tryptophan metabolism and bile acid biosynthesis are the top two significant metabolites in ACR in a pediatric 
population. Furthermore, it demonstrates an association with first, liver enzymes, which are often used as an 
initial proxy of liver disease and second, steroid use, which in our study was significantly higher in those with 
liver rejection. These clinically expected associations provide support for the novel finding of the clustering of 
tryptophan metabolism and bile acid biosynthesis alterations with rejection.

Finally, the conducted analysis showed a clear clustering and separation of ACR and no ACR groups. The 
hierarchal cluster in Fig. 1, reflects the existence of several groups of metabolites involved in ACR, which are 
different from those of the no ACR group. Further, Fig. 4 shows a segregation of variables into four clusters with 
various phenotypes. Future investigations should approach this population from a patient perspective to segment 
into possible phenotypic subtypes that may lead to prediction of risk or severity of rejection. We can conclude that 

Figure 2.  OPLS-DA plot using the m/z results of the significant metabolites with VIP > 2. Blue = Rejection, 
Orange = No rejection. Component 1 on the x-axis represents 33% of the significant features; while Component 
2 on the y-axis represents 67% of the samples.
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Table 2.  Significant metabolites identified in the other five significant pathways leading to liver 
transplantation rejection.

Metabolite m/z Retention time Identification level

Vitamin B5—CoA biosynthesis from pantothenate

l-Cysteine 122.027 187.5 2

Unknown 323.082 84.7 –

Unknown 180.055 109.7 –

Carnitine shuttle

Gamma-linolenyl-carnitine 422.326 43.3 3

Palmitoyl carnitine 400.341 42.0 3

Steroylcarnitine 428.372 41.8 2

Unknown 468.388 42.7 –

Heptadecanoyl carnitine 414.357 42.2 2

Pentadecenoyl coenzyme A 992.344 69.3 2

Fructose and mannose biosynthesis

l-Galactose 181.072 228.2 2

l-Iditol 184.085 74.6 3

Fructose 1-phosphate 261.039 258.5 2

Vitamin E metabolism

Oleoylcarnitine 427.360 42.4 3

13-hydroxy-alpha-tocopherol 429.372 41.7 3

13-hydroxy-alpha-tocopherol 447.383 41.3 3

4alpha-Carboxy-5alpha-cholesta-8-en-3beta-ol 431.351 41.4 2

Barringtogenol C 491.373 41.0 3

CoA catabolism

Unknown 339.076 84.2 –

Unknown 178.040 111.8 –

Figure 3.  Pathway Analysis using significant metabolites observed in the linear regression (raw p < 0.5).
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metabolic profiling has the power to detect changes that go unnoticed with morphological or clinical markers. 
Thus, suggesting a power to predict liver graft function pre-implantation. The use of this approach could help in 
making decisions about accepting or rejecting organs and maximizing graft survival.

To the best of our knowledge, this study was one of the first to evaluate the metabolic pathways related to liver 
transplantation rejection in a pediatric population, as it was challenging to find pediatric metabolomics studies 
in the literature. Through this, we will start a series of studies directed towards the importance of metabolomics 
in the determination of transplantation rejection or success and reducing the need for invasive techniques such 
as biopsies. However, one of the limitations was the inability to compare our findings to other available studies 
in the pediatric population, and we had to refer to studies in the adult population. Furthermore, we had a rela-
tively small sample size (n = 43), nevertheless, we were able to examine the significantly differentiating pathways 
involved in liver transplantation rejection using a stringent q value. Finally, there were several univariate differ-
ences between the two groups in this pilot convenient sample. In the future, we will recruit a clean sample and 
match on steroid use, time since transplant and liver injury severity.

Figure 4.  Multidata network threshold showing the four distinct clusters; red edges: positive correlation, blue 
edges: negative correlation; square nodes: metabolites, circle nodes: phenotypes.

Table 3.  Top 12 significant metabolites overlapping between days from transplant analysis and OPLS-DA.

Confidence m/z Time Compound name Class Adduct

3 141.53247 189 l-Cystine Carboxylic acid M + ACN + 2H

3 142.53045 184.3 Inositol cyclic phosphate Organic phosphoric acid M + ACN + 2H

3 162.04574 185.3 l-Cystine Carboxylic acid M + 2ACN + 2H

3 518.32187 54.3 LysoPC(18:3(6Z9Z12Z)) Glycerophospholipid M + H

3 524.37101 53.5 LysoPC(18:0) Glycerophospholipid M + H

3 525.37435 53.5 LysoPC(0:018:0) Glycerophospholipid M + H_[+ 1]

3 526.37749 53.6 LysoPC(18:0) Glycerophospholipid M + H_[+ 2]

3

547.35789 53.4 Hovenidulcigenin B

Prenol lipids M + H

206.98202 57 Unknown

536.29162 57.6 Unknown

562.32644 57.7 Unknown

563.32978 57.7 Unknown
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Methods
Sample collection. For this study, patients were drawn from two simultaneously recruiting studies in order 
to capture both stable liver transplant patients and those presenting for a liver biopsy for possible rejection. Both 
studies were approved by the Emory University Institutional Review Board and in line with all research guide-
lines. Inclusion criteria were (1) post liver transplant, (2) plasma sample available and (3) either rejection or no 
rejection by medical record review at the time of the plasma sample collection. We included 43 plasma samples 
from two studies. Study 1 was the Evaluation of cardiovascular risk markers in pediatric transplant recipients study 
(PI Vos; IRB#00076255). Patients, ages 10–21 years old, who had undergone a liver transplant at least 12 months 
prior and who did not have ACR within the last 3 months were included in this study. Study 2 was the Serum 
markers and magnetic resonance imaging (MRI) in the evaluation of liver disease study (PI Vos, IRB#00002117 
and 00094514). All participants were assented, and informed consent was obtained from parents/guardians to 
participate. This study enrolled any child scheduled for liver biopsy, without fever (in prior 2 weeks) and no 
chronic renal disease or insufficiency. ACR was determined by pathology and no ACR was determined by medi-
cal chart review for any rise in liver enzymes resulting in a clinical rejection diagnosis or liver biopsy within 
1 month prior to or after the research visit. Venous blood draws were completed between 08/2014–02/2018 at 
time of liver biopsy using ethylenediaminetetracetic acid (EDTA) blood tubes for collection of plasma. Demo-
graphic questionnaires were also collected at this time. EDTA tubes were inverted several times and immediately 
put on ice. Plasma was centrifuged for 10–20 min at 1200–1300 rcf, aliquoted and immediately frozen at − 80 °C.

HRM methods. HRM was completed using established  methods25,26. Plasma samples were prepared and 
analyzed in batches of 20; each batch included duplicate analysis of pooled human plasma (QStd-3) for quality 
control purposes and reference standardization. Prior to analysis, plasma aliquots were removed from storage 
at − 80 °C and thawed on ice. Each cryotube is then vortexed briefly to ensure homogeneity, and 50 μL trans-
ferred to a clean microfuge tube. Immediately after, plasma was treated with 100 μL of ice-cold LC–MS grade 
acetonitrile (Sigma Aldrich) containing 2.5 μL of internal standard solution with eight stable isotopic chemicals 
selected to cover a range of chemical properties. Following addition of acetonitrile, plasma is then equilibrated 
for 30 min on ice, upon which precipitated proteins are removed by centrifuge (16.1×g at 4 °C for 10 min). The 
resulting supernatant (100 μL) is removed, added to a low volume autosampler vial and maintained at 4 °C until 
analysis (< 22 h).

Samples were analyzed in triplicate using 10 μL injections and separate HILIC and  C18 chromatography 
columns with detection by high-resolution mass spectrometry (Q-Exactive HF Orbitrap, Thermo Scientific, 
San Jose, CA). During HILIC chromatography, the electrospray ionization (ESI) source is operated in positive 
ion mode while the reverse phase column is flushing with wash solution. Flow rate is maintained at 0.35 mL/
min until 1.5 min, increased to 0.4 mL/min at 4 min and held for 1 min. Solvent A is 100% LC–MS grade water, 
solvent B is 100% LC–MS grade acetonitrile and solvent C is 2% formic acid (v/v) in LC–MS grade water. Initial 
mobile phase conditions are 22.5% A, 75% B, 2.5% C hold for 1.5 min, with linear gradient to 77.5% A, 20% B, 
2.5% C at 4 min, hold for 1 min, resulting in a total analytical run time of 5 min. During the flushing phase, the 
HILIC column is equilibrated with a wash solution of 77.5% A, 20% B, 2.5% C.

The  C18 column is operated parallel to the HILIC column. During operation of the  C18 method, the ESI source 
is operated in negative ion mode while the HILIC column is flushing with wash solution. Flow rate is maintained 
at 0.4 mL/min until 1.5 min, increased to 0.5 mL/min at 2 min and held for 3 min. Solvent A is 100% LC–MS 
grade water, solvent B is 100% LC–MS grade acetonitrile and solvent C is 10 mM ammonium acetate in LC–MS 
grade water. Initial mobile phase conditions are 60% A, 35% B, 5% C hold for 0.5 min, with linear gradient to 0% 
A, 95% B, 5% C at 1.5 min, hold for 3.5 min, resulting in a total analytical run time of 5 min. During the flushing 
phase (HILIC analytical separation), the  C18 column is equilibrated with a wash solution of 0% A, 95% B, 5% C 
until 2.5 min, followed by an equilibration solution of 60% A, 35% B, 5% C for 2.5 min.

The high-resolution mass spectrometer was operated in full scan mode at 120,000 resolution and mass-to-
charge ratio (m/z) range 85–1275. Probe temperature, capillary temperature, sweep gas and S-Lens RF levels 
were maintained at 250 °C, 300 °C, 1 arbitrary units (AU), and 45 AU, respectively, for both polarities. Positive 
tune settings for sheath gas, auxiliary gas, sweep gas and spray voltage setting were 45 AU, 25 AU and 3.5 kV, 
respectively; negative settings were 45 AU, 5 AU and -4.0 kV. Raw data files were extracted and aligned using 
 apLCMS27 with modifications by  xMSanalyzer28. Uniquely detected ions consisted of accurate mass m/z, reten-
tion time and ion abundance, referred to as m/z features.

Statistical analysis. Descriptive statistics were used to evaluate demographics using Student’s t test and chi 
square where appropriate. Metabolites were first filtered based on coefficient of variation (CV) and Pearson cor-
relation between technical replicates. Only features that have a median CV less than 50% and the samples with 
Pearson correlation greater than 0.7 are used for further analysis. The technical replicates are averaged following 
the quality assessment and only features with at least 80% signal in either the rejection group or no rejection 
group were retained. Metabolite data were then log2 transformed and quantile normalized to reduce the effect 
of technical errors on downstream statistical analysis and interpretation. Hypothesis testing included one-way 
repeated measures analysis of variance (ANOVA) using LIMMA via the xmsPANDA R package version 1.0.7.46. 
The p-values were adjusted for multiple comparisons using Benjamin Hochberg false discovery rate (FDR) pro-
cedure. A fivefold cross-validation was used in the OPLS-DA analysis and the mean cross-validation accuracy 
and corresponding standard deviation were reported. Generalized linear regression was used to compare groups 
and control for days between biopsy and transplant. In order to explore the direct comparison between ACR 
and no ACR, we used orthogonal partial least squares discriminant analysis (OPLS-DA) and used a Variable 
Importance in Projection (VIP) > 2 for further annotation. Type 1 (−  log10 p vs m/z) and Type 2 (−  log10 p vs 
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retention time) Manhattan plots were used to visualize the pattern of differential expression across all features 
with respect to molecular mass and chemical properties, respectively. We conducted univariate linear regression 
analyses using PLS component scores as the outcome and phenotypes of interest as the independent variables to 
determine whether the OPLS-DA analysis was successfully identifying those with rejection and without rejec-
tion without influence by other factors.

High resolution metabolomics (95 overlapping significant metabolites), clinical data and patient demograph-
ics were integrated using xMWAS package in  R29. Clinical and demographic data included age, height, weight, 
BMI, biological sex, race, rejection status, liver disease diagnosis, liver enzymes, albumin, total bilirubin, hemo-
globin, platelet count, days since transplantation, and steroid use. Integrative network analysis was performed 
using sparse partial least squares regression analysis, a multivariate approach for data integration that included 
associations with |r| > 0.4 and p-value < 0.05. The multilevel community detection method in xMWAS was used 
for identifying communities of tightly connected clinical and demographic data and significant metabolites that 
differentiated rejection.

Metabolite annotation. Metabolic features were annotated using xMSannotator in which the confidence 
scores for annotation are derived from a multi-stage clustering  algorithm30. Further identification of the selected 
metabolites were confirmed by criteria of Schymanski et al.31 either by Level 1 identification, which involves 
comparing mass spectrum and co-elution relative to authentic standards within a 30-s retention time window, 
or by Level 2 identification, which involves comparison to METLIN spectral database (http:// metlin. scrip ps. edu/ 
index. php). Lower confidence annotations designated as Level 3–5 identification by Schymanski et al.31 were 
made using HMDB (Human Metabolome Database, http:// www. hmdb. ca/)32 and KEGG (Kyoto Encyclopedia 
of Genes and Genomes, http:// www. genome. jp/ kegg/)33. Additional manual search was done using METLIN 
at 5 ppm  tolerance34. Only metabolites corresponding to Level 1 identification are reported in this manuscript.

Mummichog v2.0 was used to perform pathway enrichment analysis using m/z features that were significant 
at p < 0.0535. Mummichog was designed to perform pathway and network analysis for untargeted metabolomics. 
The software compares the enrichment pattern of the significant metabolite subsets with null distribution on 
known metabolic reactions and pathways, thereby allowing prioritization of pathways for further  evaluation36. 
Previously published studies have shown that FDR correction results in type 2 statistical error while protecting 
for type I statistical  error25. Pathway enrichment analysis using features significant at raw p-value, provides a 2 
step approach which protects against both type I and type II  errors36.

Data availability
Data is provided in the supplementary material.
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