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B-cell lymphoma 2 (Bcl-2) family proteins are established regula-
tors of cell survival, but their involvement in the normal function
of primary cells has only recently begun to receive attention. In this
study, we demonstrate that chemical and genetic loss-of-function
of antiapoptotic Bcl-2 and Bcl-xL significantly augments glucose-
dependent metabolic and Ca2+ signals in primary pancreatic b-cells.
Antagonism of Bcl-2/Bcl-xL by two distinct small-molecule com-
pounds rapidly hyperpolarized b-cell mitochondria, increased
cytosolic Ca2+, and stimulated insulin release via the ATP-dependent
pathway in b-cell under substimulatory glucose conditions. Experi-
ments with single and double Bax–Bak knockout b-cells established
that this occurred independently of these proapoptotic binding part-
ners. Pancreatic b-cells from Bcl-22/2 mice responded to glucose
with significantly increased NAD(P)H levels and cytosolic Ca2+ sig-
nals, as well as significantly augmented insulin secretion. Inducible
deletion of Bcl-xL in adult mouse b-cells also increased glucose-
stimulated NAD(P)H and Ca2+ responses and resulted in an im-
provement of in vivo glucose tolerance in the conditional Bcl-xL
knockout animals. Our work suggests that prosurvival Bcl proteins
normally dampen the b-cell response to glucose and thus reveals
these core apoptosis proteins as integrators of cell death and phys-
iology in pancreatic b-cells. Diabetes 62:170–182, 2013

T
ype 2 diabetes involves combined defects in
b-cell function and mass. Therapeutic efforts to
combat diabetes could benefit from a better un-
derstanding of proteins that control both b-cell

physiology and apoptosis. Cell survival is tightly regulated
by signaling pathways that converge on pro- and anti-
apoptotic proteins from the B-cell lymphoma 2 (Bcl-2)
family. Prominent antiapoptotic members include Bcl-2,
Bcl-xL, and Mcl-1, whereas key apoptosis-inducing mem-
bers include Bax, Bak, and the structurally distinct mem-
bers Bad, Bid, and Bim (1,2). Elegant work from Danial
et al. (3) demonstrated that Bad has a physiological role in
b-cells, aside from its role in b-cell apoptosis. Specifically,
Bad phosphorylated at serine 155 promotes glucose-
stimulated insulin secretion via interactions with glucokinase
(3). It is not known whether any other Bcl family members

play roles in b-cell physiology. The best understood of the
prosurvival proteins, Bcl-2 and Bcl-xL, have been implicated
in the control of b-cell survival under stress (4,5), but little is
known about the roles of these proteins in healthy b-cells.
Studies in other cell types have suggested that Bcl-2 and Bcl-
xL regulate Ca2+ homeostasis (6) and mitochondrial physiol-
ogy (7,8). Given the unique roles for mitochondria and Ca2+ in
b-cell glucose signaling, we hypothesized that prosurvival Bcl
proteins may be important in normal b-cell function.

To date, most studies of antiapoptotic Bcl proteins in
b-cells have relied on forced overexpression (9–11). In this
study, we examined the roles of endogenous prosurvival
Bcl proteins in pancreatic b-cells using complementary
loss-of-function approaches, small molecule Bcl-2/Bcl-xL
antagonists, as well as Bcl-2 and Bcl-xL knockout mice.
Our results demonstrate the combined importance of Bcl-2
and Bcl-xL for mitochondrial integrity and b-cell survival
and reveal distinct roles for the endogenous proteins in
metabolic signaling, Ca2+ homeostasis, and insulin secre-
tion. Our findings place these important members of the
core apoptotic machinery at the interface of b-cell survival
and physiology.

RESEARCH DESIGN AND METHODS

Reagents.Compound-6 (also known as Bcl-2 inhibitor) and YC137 (also known
as Bcl-2 inhibitor II) from Calbiochem (La Jolla, CA) were prepared in dimethyl
sulfoxide. Fura-2/AM, Rhodamine123, and MitoTracker were from Life Tech-
nologies/Invitrogen (Burlington, Ontario, Canada). Propidium iodide (PI), ni-
fedipine, diazoxide, sodium azide, and tetramethylrhodamine ethyl ester
perchlorate (TMRE) were from Sigma-Aldrich (St. Louis, MO).
Imaging and flow cytometry. Dispersed islet cells and intact islets were
imaged following 24–48 h culture on glass coverslips. Changes in cytosolic Ca2+,
mitochondrial membrane potential (DCm), and NAD(P)H autofluorescence
were imaged as described (12,13). Mitochondrial Ca2+, endoplasmic reticulum
(ER) Ca2+, and the activation of caspase-3 were monitored in single MIN6 cells
transfected with fluorescence resonance energy transfer (FRET)-based bio-
sensors. MIN6 cell DCm was estimated using TMRE and flow cytometry (14).
Late-stage cell death was imaged using PI (14).
Metabolism assays. To examine changes in the ATP/ADP ratio, MIN6 cells in
96-well plates were equilibrated for 30 min in Krebs Ringer Buffer (KRB)
containing (in mM unless otherwise noted): 119 NaCl, 4.7 KCl, 25 NaHCO3,
2.5 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, 5 mg/mL radioimmunoassay-grade bovine
albumin, and 3 mmol/L glucose, followed by treatment for 30 min as indicated.
ATP/ADP ratios were measured using the ApoSENSOR kit (BioVision,
Mountain View, CA) using a TECAN M1000 luminometer (Tecan Group Ltd.).

Glucose oxidation rates were determined in cultures of dispersed islet cells
by quantifying 14CO2 generated from metabolized 14C-labeled glucose as de-
scribed (15,16). Adherent islet cells in T-25 flasks were preincubated 1 h in
3 mmol/L glucose KRB. This was followed by 1 h incubation with KRB con-
taining 1 mCi/mL [U-14C]glucose and test concentrations of nonlabeled glucose
during which 14CO2 was collected in a hyamine trap. Injection of 9 N H2SO4

stopped the reaction and released 14CO2 captured in the media as [14C]bi-
carbonate. Flasks were gently agitated for 2 h at room temperature before
measuring captured radioactivity using a Beckman LS6500 Liquid Scintillation
Counter (Beckman Coulter). Glucose oxidation rates were normalized to total
protein quantified from identical aliquots of similarly treated cells.
Mouse models. Bax2/2 (Jax stock number 002994) and Bak2/2 (Jax stock
number 004183) mice and age- and background-matched wild-type controls
were from The Jackson Laboratory (Bar Harbor, ME). Littermate Bcl-22/2,
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Bcl-2+/2, and Bcl-2+/+ mice were obtained by breeding mice heterozygous for
the Bcl2tm1Sjk mutation (Jax stock number 002265; The Jackson Laboratory).
To generate Bcl-xflox/flox:Pdx1-CreER mice and Bcl-xflox/flox control littermates,
we mated Pdx1-CreER mice (17) with Bcl-xflox/flox mice (exons 1 and 2 flanked
by Lox P sites) (18). To create mice with double Bax and Bak deletion in their
b-cells, we bred Pdx1-CreER animals with Bak2/2:Baxflox/flox mice
(Baxtm2SjkBak1tm1Thsn/J; Jax stock number 006329; The Jackson Laboratory)
and obtained Bak2/2:Baxflox/flox:Pdx1-CreER and Bak2/2:Baxflox/flox littermates.
Ablation of Bcl-x and Bax was achieved by injecting Pdx1-CreER–positive
animals and littermate controls with 3 mg/40 g of tamoxifen (Sigma-Aldrich) on
5 consecutive days. Glucose tolerance and in vivo insulin secretion were as-
sessed following intraperitoneal injection with glucose as indicated. Insulin
tolerance was assessed after intraperitoneal injection of 0.75 units/kg insulin.
Animals were fasted for 6 h prior to study. Studies were approved by the
University of British Columbia Animal Care Committee.
Islet isolation, cell culture, and insulin secretion. Mouse islet isolation by
collagenase digestion/filtration and culture have been described (19). Human
islets were obtained from Dr. Garth Warnock (Vancouver General Hospital)
after consent and cultured as described (12). MIN6 cells were cultured in
Dulbecco’s modified Eagle’s medium (25 mmol/L glucose). Insulin release was
measured from dispersed mouse islet cells in 48-well plates (20). Cells were
equilibrated for 60 min in 3 mmol/L glucose KRB and then stimulated for
45 min with treatments as indicated (20). Insulin secretion from batches of
size-matched islets was examined by perifusion and radioimmunoassay as
previously described (12).
Immunoblotting and coimmunoprecipitation. For immunoprecipitation,
500 mg of total protein was incubated overnight (4°C) with anti-Bad (catalog
number 9292; Cell Signaling Technology; 1:200), followed by 3-h incubation (4°C)
with protein A-agarose (Santa Cruz Biotechnology). Complexes were washed
with PBS and protease inhibitors in Ultrafree-MC Filters (Millipore) and eluted
using 4% SDS in PBS with protease inhibitors. In some studies, nuclear
(PARIS; Ambion Inc.) and mitochondrial fractions (Mitochondrial/Cytosol Kit;
BioVision, Inc.) were obtained. Proteins were resolved by SDS-PAGE, trans-
ferred to polyvinylidene difluoride membranes, and probed overnight (4°C) for
Bcl-xL, Bcl-2, Bax, cytochrome c (catalog numbers 2762, 2870, 2772, and 4272;
Cell Signaling Technology); phospho-Bad Ser112, Ser136, and Ser155 (catalog
numbers 9291, 4366, and 9297; Cell Signaling Technology), Bad, Bak (#06–536;
Millipore), and Cre recombinase (Novagen).
Statistical analysis. Data are shown as mean 6 SEM. Differences between
two groups were compared by unpaired Student t test and multiple groups by
one-way ANOVA followed by Bonferroni multiple comparison test. Differ-
ences were considered significant if P , 0.05.

RESULTS

Kinetic characterization of apoptotic events during
prolonged Bcl-2/Bcl-xL antagonism. We used small-
molecule antagonists to probe moment-to-moment functions
of Bcl-2 and Bcl-xL in pancreatic b-cells. The structurally
distinct inhibitors, compound 6 (C6) and YC137, were orig-
inally identified by their ability to bind both Bcl-2 and Bcl-xL
and displace proapoptotic members such as Bak and Bid
(21,22). We first established that BH3-displacement could
also be observed in intact b-cells. Indeed, C6 caused a rapid
reduction in the amount of Bcl-xL that was bound to the
BH3-only protein Bad without affecting the total levels of
Bad or Bcl-xL protein within 1 h (Fig. 1A and B). This con-
firmed the expected mechanism of this antagonist on endo-
genous Bcl proteins in intact b-cells.

Displacement of BH3 domain proteins from Bcl-2 and
Bcl-xL by YC137 or C6 sensitizes tumor cells to apoptosis, an
effect that is more potent with increasing Bcl-2 expression
(21,22). Unlike many tumor cells, primary b-cells do not
hyperexpress Bcl-2 or Bcl-xL. We therefore tested if these
inhibitors affect b-cell survival. Prolonged Bcl antagonism
induced dose- and time-dependent cell death in human and
mouse islet cells, as well as MIN6 b-cells (Fig. 1C–E). This
involved mitochondrial apoptosis, as evidenced by re-
distribution of Bax from cytosol to mitochondria and release
of mitochondrial cytochrome c (Fig. 1F). PI incorporation
was preceded by the activation of caspase-3, imaged in real
time (Fig. 1G). Of note, the DCm of b-cells treated with C6

or YC137 underwent an initial hyperpolarization that sug-
gested mitochondrial activation within the first half hour,
well prior to any evidence of apoptosis. This was followed
hours later by collapse of DCm, demonstrating a late-stage
loss of mitochondrial integrity (Fig. 1H). These results de-
monstrate that even in the absence of other stresses, com-
bined and sustained antagonism of Bcl-2 and Bcl-xL initiates
mitochondrial apoptosis in b-cells. Importantly, apoptosis
was not detected earlier than 2 h, indicating that cellular
responses occurring less than an hour after Bcl-2/Bcl-xL
antagonism are separate from the central apoptotic events.
Antagonizing Bcl-2/Bcl-xL initiates KATP channel- and
depolarization-dependent Ca

2+
entry and insulin

secretion. Remarkably, Bcl-2/Bcl-xL antagonists rapidly
triggered marked Ca2+ fluctuations in mouse and human islet
cells that resembled Ca2+ responses to glucose (Fig. 2A–C).
Similar effects were observed in MIN6 b-cells (Fig. 2D). The
percentage of cells activated within 30 min of Bcl inhibition
was concentration-dependent (Fig. 2E). The Ca2+ signals
ceased upon washout of the inhibitor, strongly suggesting
a physiological basis rather than cell damage. C6 also in-
creased average cytosolic Ca2+ in intact islets, although the
rapid fluctuations were dampened (Fig. 2F). Together, these
findings provide the first direct evidence that prosurvival Bcl
proteins regulate moment-to-moment calcium homeostasis
in b-cells.

Next, we sought to determine the cellular site where Bcl-2
and/or Bcl-xL control Ca

2+ homeostasis. In other cell types,
Bcl-2 and Bcl-xL reside on the membranes of Ca2+ handling
organelles, including the mitochondria, ER, and the nuclear
envelope (23,24). The subcellular location of Bcl-2 and
Bcl-xL in b-cells has not been reported. We found that Bcl-2:
GFP displayed some colocalization with mitochondria, but
also had a clear nonmitochondrial distribution, likely reflect-
ing ER (Fig. 3A and D). In contrast, Bcl-xL:yellow fluorescent
protein (YFP) showed near-exclusive colocalization with
mitochondria, which at high magnification could often be
seen in an apparent association with the mitochondrial
membrane (Fig. 3B and D) and minimal association with
ER (Fig. 3C and D). A differential distribution of endoge-
nous Bcl-2 and Bcl-xL between mitochondrial and non-
mitochondrial compartments was also found by subcellular
fractionation (Fig. 3E). These findings suggest that b-cell
Bcl-2 and Bcl-xL may have overlapping, but distinct, roles.

Bcl-2 and Bcl-xL influence ER Ca2+ release in other cell
types (6,25,26). Imaging ER luminal Ca2+ directly (14,27),
we found that ER Ca2+ levels were not affected by C6
treatment for up to 50 min (Fig. 4A; similar results seen
with 20–80 mmol/L C6). As a positive control, inositol tri-
phosphate generation with carbachol consistently mobi-
lized ER Ca2+ (Fig. 4A). Although these results suggest that
acutely antagonizing Bcl-2 and Bcl-xL does not alter b-cell
ER Ca2+, it remains possible that Bcl-2 or Bcl-xL regulate
b-cell ER Ca2+ homeostasis by mechanisms that are un-
affected by these small-molecule antagonists.

Next, we sought to further elucidate the mechanism by
which Bcl inhibitors increase cytosolic Ca2+. Similar to
stimulatory glucose, Bcl inhibitors had no effect on cyto-
solic Ca2+ in the absence of extracellular Ca2+ (Fig. 4B).
Moreover, the L-type Ca2+ channel antagonist nifedipine
reversibly lowered cytosolic Ca2+ during Bcl inhibition
(Fig. 4C). Pretreatment of islet cells with nifedipine, the
KATP channel agonist diazoxide, or a low dose of the mi-
tochondrial uncoupler carbonyl cyanide m-chlorophenyl
hydrazone (CCCP) prevented Ca2+ entry (Fig. 4D). In-
cubating islet cells with Bcl antagonist in the presence of
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FIG. 1. Small-molecule inhibition of Bcl-2/Bcl-xL rapidly displaces Bad and eventually induces mitochondrial apoptosis. A: Top: Western blot illustrating
the loss of Bcl-xL coimmunoprecipitation with Bad in MIN6 b-cells treated with C6. Bottom: Densitometric quantification of the ratio of Bcl-xL to Bad
protein in Bad immunoprecipitates after various durations of C6 exposure. Data (mean 6 SEM) are normalized to control (n = 3–5; *P < 0.05 vs. time
0). B: Bcl-xL and Bad protein levels in MIN6 b-cells treated with 80 mmol/L C6 (n = 3; *P< 0.05 vs. time 0). C andD: PI incorporation in mouse islet cells
and MIN6 b-cells during incubation with C6 (n = 3). E: Relative cell death (PI

+
cells) in human islet cells treated with Bcl-2/Bcl-xL antagonists (n = 3

donor preparations). F: Western blots for Bax and cytochrome c (Cyto c) in mitochondrial and cytosolic fractions from MIN6 b-cells treated with 40
mmol/L C6 for 4 h (n = 3). G: Top: Caspase-3 activation (loss of MiCy-mKO FRET) imaged in four individual MIN6 b-cells during continued Bcl-2/Bcl-xL
inhibition. Bottom: C6 (20 mmol/L) activated caspase-3 at an average time of 2.9 6 0.3 h (n = 12 cells from two independent cultures). Staurosporine
(STS; 10 mmol/L) activated caspase-3 after 1.65 6 0.12 h (n = 10 cells from two independent cultures). H: Flow cytometric detection of mitochondrial
membrane potential in MIN6 b-cells treated with 20 mmol/L C6, 20 mmol/L YC137, and 30 mmol/L glucose (30G). Reduction of TMRE intensity indicates
a loss of DCm (n = 3 cultures). (A high-quality color representation of this figure is available in the online issue.)

Bcl-2 AND Bcl-xL IN b-CELL FUNCTION
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substimulatory glucose (3 mmol/L) induced a modest, but
significant, elevation in insulin release similar in magni-
tude to that triggered by 100 mmol/L of the KATP channel
blocker tolbutamide (Fig. 4E). These insulin-secretion re-
sponses were attenuated by diazoxide and were not addi-
tive with the response to tolbutamide (Fig. 4E), or with a
maximally stimulatory concentration of glucose (fold in-
crease: 3.99 6 1.12 in 20 mmol/L glucose vs. 3.44 6 1.06 in
20 mmol/L glucose plus 40 mmol/L C6; n = 7; P = 0.73).
Despite their ability to block the acute Ca2+ signals, ni-
fedipine and diazoxide did not alter the degree or the ki-
netics of islet cell death induced by C6 (Fig. 4F). Together,
these data demonstrate that antagonizing Bcl-2/Bcl-xL
acutely induces Ca2+ entry and insulin secretion from
b-cells by mechanisms similar to those involved in glucose
signaling (28) and that these physiological Ca2+ signals are

not mechanistically related to the late-stage apoptotic effects
of sustained Bcl-2/Bcl-xL coinhibition.
Bcl-2/Bcl-xL inhibition increases mitochondrial activity.
Our results to this point indicated that the events induced
by Bcl protein inhibition are similar to those that underlie
b-cell glucose signaling. Indeed, sodium azide blocked
C6-stimulated Ca2+ signals, establishing a requirement for
mitochondrial respiratory flux (Fig. 4G). Importantly, Ca2+

signaling upon Bcl antagonism was suppressed in the ab-
sence of glucose (Fig. 2E), suggesting that a minimum of
metabolic substrate is required to support the Ca2+ re-
sponses. These findings indicate that blocking Bcl-2/Bcl-xL
increases basal mitochondrial glucose metabolism rather
than acting independently of the sugar.

To further establish if Bcl antagonists promote mitochon-
drial activity, we directly imaged DCm and mitochondrial Ca2+

FIG. 2. Bcl-2/Bcl-xL inhibition triggers cytosolic Ca
2+

fluctuations. A and B: Cytosolic Ca2+ responses of groups of mouse islet cells exposed to Bcl-2/
Bcl-xL inhibitors C6 and YC137 in the presence of 3 mmol/L glucose. C and D: Representative cytosolic Ca

2+
responses to C6 in human islet cells

(n = 66 cells from three islet preparations) and MIN6 b-cells (n = 34 cells). E: Quantification of the percentage of baseline quiescent mouse islet
cells that responded within 30 min to various doses of C6 in the presence of either 3 or 0 mmol/L glucose (n = 3–6 for each condition; *P < 0.05 vs.
control in 3 mmol/L glucose, #P < 0.05 vs. 40 mmol/L C6 in 3 mmol/L glucose; n.s., not significant). F: Average cytosolic Ca

2+
responses of intact

pancreatic islets stimulated with 15 mmol/L glucose in the presence or absence of 80 mmol/L C6. Shaded hanging bars represent SEM (n = 12,
n = 10). (A high-quality color representation of this figure is available in the online issue.)
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(12,14,29). In agreement with our flow cytometry results,
Bcl antagonism hyperpolarized the mitochondria of single
primary mouse b-cells within minutes in a concentration-
dependent manner (Fig. 4H). The DCm changes were
comparable to the b-cell response to glucose, and the

presence of Bcl-2/Bcl-xL antagonist did not prevent addi-
tional glucose-induced hyperpolarization (Fig. 4I). Bcl-2/
Bcl-xL inhibition also evoked reversible mitochondrial
Ca2+ signals that resembled glucose stimulation (Fig. 4J),
providing further evidence for mitochondrial activation.

FIG. 3. Differential subcellular distribution of Bcl-2 and Bcl-xL in b-cells. A and B: Representative images of MIN6 cells expressing GFP-tagged
Bcl-2 and YFP-tagged Bcl-xL and loaded with 100 nmol/L MitoTracker Red. C: MIN6 cell coexpressing Bcl-xL:YFP and ER-targeted monomeric red
fluorescent protein (mRFP). D: Pearson correlation coefficient (coeff.) quantifying colocalization of Bcl-xL:YFP with mitochondrial dsRed (n = 6)
or ER mRFP (n = 5) and Bcl-2:GFP with ER mRFP (n = 5) in MIN6 b-cells (*P< 0.05, **P< 0.001).E: Western blots for endogenous Bcl-2 and Bcl-xL

in fractions of MIN6 b-cells (n = 3). Cytochrome c oxidase (Cox-IV) indicates the mitochondrial fraction. (A high-quality digital representation of
this figure is available in the online issue.)

Bcl-2 AND Bcl-xL IN b-CELL FUNCTION
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FIG. 4. Bcl-2/Bcl-xL antagonism stimulates b-cell mitochondrial metabolism, KATP-dependent Ca
2+

entry, and insulin secretion. A: Representative
recording of ER Ca

2+
changes in MIN6 b-cells exposed to C6 and carbachol (Cch) (n = 6 cells). Inset: MIN6 cell expressing the ER-targeted D1ER

Ca
2+

sensor. B: Lack of C6-induced Ca
2+

influx in the absence of extracellular Ca
2+
. The basally active cell illustrates the rapid loss of Ca

2+
entry
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Of note, Bcl antagonism caused an increase in the cellular
ratio of ATP to ADP similar to that evoked by 20 mmol/L
glucose (Fig. 4K). Our results demonstrate that acute in-
hibition of Bcl-2/Bcl-xL promotes mitochondrial activity in
b-cells, resulting in the same events activated by stimula-
tory glucose. These findings implicate Bcl-2 and/or Bcl-xL in
the regulation of b-cell mitochondrial physiology and suggest
that one of their day-to-day roles is to suppress basal glucose
metabolism.
Genetic ablation of Bcl-2 enhances b-cell glucose
responses. To validate our experiments with small mol-
ecule inhibitors, we examined the importance of Bcl-2 and
Bcl-xL in b-cell function in vitro using a genetic loss-of-
function approach. First, we used islets from Bcl-22/2

mice. These global knockout mice are approximately half
the size of their wild-type or heterozygous littermates, in-
sulin-hypersensitive, develop polycystic kidney disease,
and die at various ages between 2 and 19 weeks (30) (D.S.L.
and J.D.J., unpublished observations), precluding in-
terpretable in vivo analysis of b-cell function. Nevertheless,
we were able to isolate islets for in vitro analysis from
a limited number of Bcl-22/2 mice prior to any signs of ill-
ness and compare them to islets from phenotypically nor-
mal heterozygous and wild-type littermates (31). Real-time
PCR confirmed the loss of Bcl-2 expression in Bcl-22/2 and
Bcl-2+/2 islets relative to Bcl-2+/+ controls, with no compen-
satory increase in Bcl-xL (Fig. 5A). Bcl-22/2 and Bcl-2+/2

b-cells showed enhanced sensitivity to a stepwise glucose
ramp stimulus relative to cells from wild-type littermates
(Fig. 5B and C). Intact islets from Bcl-22/2 mice also
showed increased Ca2+ and metabolic NAD(P)H responses
to 6 mmol/L glucose (Fig. 5E and F). In perifusion experi-
ments, we observed significantly increased insulin secretion
from Bcl-22/2 islets in response to 10 and 15 mmol/L glu-
cose, compared with Bcl-2+/+ islets (Fig. 5G). Loss of Bcl-2
had no effect on the responses to depolarization with KCl,
further indicating a change at the level of b-cell metabolism
(Fig. 5D and H). Generally, the effects on intact islets were
less pronounced than those in dispersed cells, suggesting
that cell–cell coupling may dampen the amplified responses
of individual Bcl-22/2 b-cells. The intermediate augmenta-
tion of glucose-induced Ca2+ responses in Bcl-2 heterozy-
gous b-cells (Fig. 5B and C) indicates that the effects were
dependent on gene dosage and independent of pathological
conditions that limit the number of healthy Bcl-22/2 mice
available for study. Throughout our studies, we did not
notice any obvious differences in the viability of Bcl-22/2

islets or b-cells in culture.
Genetic ablation of Bcl-xL enhances b-cell glucose
responses. Global deletion of Bcl-xL is embryonically le-
thal (32), so to assess the specific role of Bcl-xL, we gen-
erated tissue-specific, tamoxifen-inducible Bcl-xL knockout
(BclxbKO) mice. Bcl-xL was knocked out in b-cells of adult

animals as early as 2 to 3 days after tamoxifen administra-
tion with no compensatory change in Bcl-2 expression (Fig.
6A). Bcl-xL deletion was not observed in hypothalamus (Fig.
6B). Using BclxbKO islet cells, we confirmed a significant
molecular contribution of Bcl-xL to C6-induced Ca2+ signals
(Fig. 6C). Like Bcl-22/2 b-cells, BclxbKO b-cells showed
significantly larger glucose-induced Ca2+ and NAD(P)H
responses (Fig. 6D, E, and G), whereas Ca2+ responses to
KCl were normal (Fig. 6F). These findings support a meta-
bolic basis for the amplified Ca2+ responses, although we
did not detect changes at the level of glucose oxidation in
bulk cultures of dispersed BclxbKO islet cells (Fig. 6H). A
modest tendency toward increases in insulin secretion was
seen in BclxbKO islets perifused with 3, 6, and 10 mmol/L
glucose and in mice injected with glucose in vivo, but these
did not achieve statistical significance (Figs. 6I and 7A).
Interestingly, glucose tolerance was nonetheless moderately
improved in BclxbKO mice administered 2 g/kg glucose
relative to littermate controls (Fig. 7B). The potentiation of
b-cell Ca2+ signals at submaximal glucose prompted us to
examine the in vivo response to a more moderate glucose
challenge (0.5 g/kg), and indeed glucose tolerance was
also improved under these conditions (Fig. 7C and D). This
was not associated with improved insulin sensitivity (Fig.
7E). Together, our combined findings using chemical
inhibitors and islets from knockout mice point to novel
roles for both Bcl-2 and Bcl-xL in the fine-tuning of glucose
signaling in pancreatic b-cells.
Bcl-2 and Bcl-xL affect b-cell function independently
of Bax and Bak. Proapoptotic Bax and Bak have been
reported to interact with two regulators of mitochondrial
physiology: the voltage-dependent anion channel (VDAC)
and the adenine nucleotide translocase (ANT) (33–35), but
it is not clear if this occurs outside of apoptosis. Given
the established roles of Bax and Bak downstream of Bcl-2/
Bcl-xL, we asked if they participate in Bcl-2/Bcl-xL regu-
lation of metabolism. Bax2/2 or Bak2/2 b-cells responded
to Bcl-2/Bcl-xL inhibition similar to wild-type b-cells (Fig.
8A). To conclusively exclude the involvement of Bax and
Bak, we generated mice lacking both genes in their b-cells
(Fig. 8B and C). Islet cells from these Bax–Bak b double-
knockout (DKO) mice responded to Bcl-2/Bcl-xL antago-
nism similar to islet cells from control mice (Fig. 8D and
E). Together, these data establish that Bax and Bak do not
mediate the effects of Bcl-2 or Bcl-xL in b-cell function and
further distinguish the physiological effects of Bcl in-
hibition from Bax/Bak-dependent apoptotic events.

DISCUSSION

The current study was undertaken to examine the physiolog-
ical roles of endogenous prosurvival Bcl proteins in pancreatic
b-cells. Using small-molecule Bcl-2/Bcl-xL antagonists and

upon Ca
2+

removal. C: Nifedipine blocks ongoing C6-induced Ca
2+

influx (n = 14 cells). D: Quantification of nifedipine, diazoxide (Dz), and CCCP-
mediated suppression of cytosolic Ca

2+
responses in mouse islet cells exposed to C6 or YC137 (n = 3). E: Insulin secretion from dispersed islet-

cells treated with C6, diazoxide, and/or tolbutamide (Tolb) (n = 5). *P< 0.05 vs. 3 mmol/L glucose control. F: Percentage of PI-positive mouse islet
cells following culture with C6 with or without the presence of nifedipine or Dz (n = 3). G: Reversible inhibition of C6-induced Ca

2+
signaling in

mouse islet cells by sodium azide (NaN3). H and I: Relative changes in DCm of primary mouse b-cells exposed to stimulatory glucose and the Bcl-2
antagonist C6. In panel H, glucose was added prior to C6. The black line is representative of 38 cells exposed to 80 mmol/L, and the superimposed
red line is representative of 15 cells responding to a shorter stimulation with 20 mmol/L C6. Panel I illustrates the addition of glucose during the
C6-induced response (representative of 17 cells). Loss of rhodamine 123 fluorescence indicates mitochondrial hyperpolarization. J: MIN6 b-cell
expressing the mitochondrial FRET-based Ca

2+
sensor mt4D3cpv and examples of mitochondrial Ca

2+
fluctuations induced by glucose or Bcl-2/Bcl-xL

inhibition (n = 29 cells at 40 mmol/L C6; n = 34 cells at 80 mmol/L C6). K: Change in the cellular ATP-to-ADP ratio of MIN6 b-cells following 30
min culture in stimulatory 20 mmol/L glucose (20G) or in 3 mmol/L glucose with 60 mmol/L C6, relative to 3 mmol/L glucose alone. The depletion seen
with CCCP reflects the metabolic pool of ATP (n = 3 cultures; *P< 0.05, **P< 0.001 vs. 3 mmol/L glucose; n.s., not significant). Data are mean6 SEM.
Basal glucose is 3 mmol/L in all experiments. (A high-quality color representation of this figure is available in the online issue.)
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islets from KO mice, we provide the first loss-of-function
evidence that Bcl-2 and Bcl-xL acutely affect mitochondrial
function, Ca2+ homeostasis, and insulin secretion. A pre-
vious report described apoptosis sensitivity in mice in which

Bcl-xL was deleted in embryonic b-cells, but did not provide
information on glucose homeostasis or b-cell physiology (5).
The effects of the chemical inhibitors, which target both
Bcl-2 and Bcl-xL, were partially distinct and generally more

FIG. 5. Loss of Bcl-2 enhances b-cell glucose responses. A: Quantitative PCR (qPCR) quantification of Bcl-2 and Bcl-xL mRNA levels in islets from
Bcl-2

+/2
and Bcl-2

2/2
mice relative to Bcl-2

+/+
littermates (n = 3 mice of each genotype). All data are mean6 SEM. B: Average cytosolic Ca

2+
levels of

dispersed islet cells from littermate Bcl-2
+/+

, Bcl-2
+/2

, and Bcl-2
2/2

mice. Shaded hanging bars represent SEM.C: Incremental area under the curve of
Ca

2+
responses (n = 98 Bcl-2

+/+
cells, n = 144 Bcl-2

+/2
cells, and n = 147 Bcl-2

2/2
cells from three mice of each genotype; *P< 0.001 Bcl-2

2/2
vs. Bcl-2

+/+
,

**P < 0.01 Bcl-2
2/2

vs. Bcl-2
+/2

, and #P < 0.05 Bcl-2
+/2

vs. Bcl
+/+

). D: Integrated cytosolic Ca
2+

responses of Bcl-2
2/2

and Bcl-2
+/+ b-cells depolarized

with 30 mmol/L KCl (n = 87 Bcl-2
+/+

cells and 130 Bcl-2
2/2

cells from three mice of each genotype). n.s., not significant. E and F: Integrated Ca
2+

and
NAD(P)H autofluorescence increases of intact islets, normalized to Bcl-2

+/+
control (panel E: n = 16 Bcl-2

+/+
islets; n = 20 Bcl-2

+/2
islets; n = 21 Bcl-

2
2/2

islets; and panel F: n = 16 Bcl-2
+/+

islets; n = 17 Bcl-2
2/2

islets; three mice of each genotype; *P < 0.05, **P < 0.01 vs. Bcl-2
+/+

). G: Insulin
secretion profiles of perifused islets from 5–7-week-old Bcl-2

+/+
and Bcl-2

2/2
mice. H: Quantified area under the curve of insulin secretion profiles in

panel G (n = 5; *P < 0.05 vs. Bcl-2
+/+

). a.u., arbitrary units. (A high-quality color representation of this figure is available in the online issue.)
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robust than the genetic ablation of either protein indi-
vidually. It is likely that combined tissue-specific deletion of
Bcl-2 and Bcl-x will be required to mimic the effects of the
inhibitors on basal b-cell activity and viability. Our work dem-
onstrates new physiological roles for two proteins previously
presumed to function mainly in the control of apoptosis.

Sustained cytosolic Ca2+ rises and insulin release fol-
lowing glucose stimulation rely heavily on mitochondrial
ATP synthesis, KATP channel-dependent b-cell depolar-
ization, and voltage-gated Ca2+ influx (28). In this study, we
report that acute coinhibition of antiapoptotic Bcl-2 and
Bcl-xL stimulates an identical cascade of events culminating

FIG. 6. Inducible deletion of Bcl-xL enhances b-cell glucose signaling. A: Quantification of Bcl-xL and Bcl-2 mRNA levels by quantitative PCR
(qPCR) (n = 3) and Bcl-xL protein by Western blot (n = 6) in islets from tamoxifen-injected Bcl-x

flox/flox
:Pdx1-CreER (Bcl-x bKO) mice relative to

islets from tamoxifen-injected littermate Bcl-x
flox/flox

(Bcl-x WT) mice (data are mean 6 SEM; *P < 0.05). B: qPCR quantification of Bcl-xL mRNA
in hypothalamus from Bcl-xL WT and KO mice (n = 3). C: Percentage of Bcl-x WT and bKO islet cells responding to small-molecule Bcl inhibition
(n = 5 mice of each genotype; **P < 0.001 vs. Bcl-x WT). D: Average cytosolic Ca

2+
responses of Bcl-x bKO and WT b-cells stimulated with in-

creasing glucose concentrations (Conc.). Shaded hanging bars represent SEM. E: Incremental area under the curve of Ca
2+

responses. F: In-
tegrated Ca

2+
responses of Bcl-x KO and Bcl-x WT b-cells depolarized with 30 mmol/L KCl (n = 66 Bcl-x WT cells; n = 73 Bcl-x KO cells; three mice

per genotype; **P < 0.001). G: Integrated NAD(P)H increases of intact islets following glucose stimulation (n = 11 islets, two mice of each ge-
notype; *P < 0.05). H: Glucose oxidation rates in cultures of dispersed Bcl-xL WT and KO islet cells (n = 4). I: Insulin secretion from perifused Bcl-x
WT and KO islets (n = 5). a.u., arbitrary units. (A high-quality color representation of this figure is available in the online issue.)
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in insulin secretion. Moreover, genetic deletion of Bcl-2 or
Bcl-xL increased the in vitro b-cell responses to glucose and
improved in vivo glucose tolerance of the islet-specific Bcl-xL
KO mice. Our experiments suggest that this involves
amplification of b-cell glucose metabolism and thus that
Bcl-2 and Bcl-xL restrict b-cell metabolic activity. Our
findings conceptually agree with a previous study in which
mice overexpressing Bcl-xL 10-fold under the control of the
rat insulin promoter exhibited impaired b-cell oxidative
metabolism and glucose intolerance (9). Several groups

have overexpressed Bcl-2 in pancreatic islets as part of
efforts to block apoptosis, but we are only aware of a few
studies that examined the impact on b-cell function, and
these reported no impairment of insulin secretion (36,37).
This could be interpreted as evidence for a saturation ef-
fect whereby excess levels of Bcl-2 protein do not nega-
tively affect the stoichiometry of complexes associated
with the metabolic machinery. Alternatively, the lower
fraction of mitochondria-localized Bcl-2 relative to Bcl-xL
(Fig. 3) might require that correspondingly larger amounts

FIG. 7. Improved glucose tolerance in Bcl-x bKO mice. A: In vivo insulin secretion following intraperitoneal injection of 2 g/kg glucose in 10–12-
week-old Bcl-x WT and bKO littermate mice (n = 5). B and C: Intraperitoneal glucose tolerance tests of Bcl-x bKO and WT mice using 2 and 0.5 g/kg
glucose doses (n = 7 and n = 8, respectively; *P < 0.05). D: Area under the curve analysis of glucose profiles in panels B and C. E: Insulin tolerance
test of Bcl-x WT and bKO mice (n = 5). IPGTT, intraperitoneal glucose tolerance test; mM, mmol/L. (A high-quality color representation of this
figure is available in the online issue.)
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of Bcl-2 are expressed to achieve detectable metabolic
suppression.

We considered that antagonizing Bcl-2/Bcl-xL might free
Bax and/or Bak to indirectly activate mitochondria, pos-
sibly by affecting ANT or VDAC (33–35). We tested and
eliminated this possibility using Bax KO, Bak KO, and Bax/
Bak DKO islet cells. Work from the Danial group (3,38) is
consistent with an alternative indirect model whereby Bcl-2
and/or Bcl-xL might sequester Bad and limit its promotion of
glucokinase activity. Bcl-2 and Bcl-xL have not been de-
tected in the Bad/glucokinase complex, but reducing their
binding to Bad might release this brake on b-cell metabo-
lism from afar. In preliminary studies in MIN6 cells, Bcl
inhibition did not change Bad levels or phosphorylation

within 60 min, the timescale corresponding to the acute Ca2+

signals and metabolic effects. Preliminary studies in Bcl-xL
KO islets revealed 58% increase in serine 155 phosphoryla-
tion, with no significant effects on the phosphorylation of
Bad at serine 136 or serine 112. Thus, phosphorylation-
dependent functions of Bad do not appear acutely involved
in the effects of Bcl antagonism. However, a more chronic
contribution from the Bad/glucokinase axis following
chronic Bcl protein loss remains a possibility that might
promote the amplification of insulin secretion in stimulatory
glucose that is not apparent acutely following inhibition
with small molecules.

Our data also allow for a model whereby Bcl proteins
directly affect mitochondrial proteins in the b-cell,

FIG. 8. Effect of Bcl antagonism in Bax, Bak, and Bcl-xL–deficient islet cells. A: Percentage of islet cells responding to Bcl antagonism in prepa-
rations from Bax

2/2
(left), Bak2/2

(right), and their wild-type control mice (n = 3 mice). Data are mean 6 SEM. Basal glucose was 3 mmol/L in all
experiments. B: Western blot demonstrating global Bak deficiency and islet specific Bax knockout in tamoxifen-injected Bak

2/2
:Bax

flox/flox
:Pdx1-

CreER (Bax-Bak bDKO) mice relative to tamoxifen-injected Bak
2/2

:Bax
flox/flox

and C57BL6/J (C57) mice. C: Bax protein levels were reduced
by 85% in Bax-Bak bDKO islets (n = 6; **P < 0.001 vs. Bak

2/2
:Bax

flox/flox
). D: Comparable Bcl inhibitor-induced Ca

2+
responses in groups of

Bak
2/2

Bax
flox/flox

and Bax-Bak bDKO islet cells. E: Percentage of Bak-Bax bDKO and Bak
2/2

:Bax
flox/flox

islet-cells responding to Bcl inhibition
(n = 3 mice of each genotype). (A high-quality color representation of this figure is available in the online issue.)
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provided such interactions are changed by Bcl antagonists.
Studies of the antiapoptotic activities of Bcl-2 and Bcl-xL
have reported that they can interact with mitochondrial
ANT and VDAC via their BH4 domains (35). We have found
that a cell-permeant Bcl-xL BH4 domain peptide triggers
cytosolic and mitochondrial Ca2+ fluctuations in b-cells
(D.S.L. and J.D.J. unpublished observations). This could
result from direct mitochondrial actions of the BH4 do-
main and/or ER Ca2+ release (39). Of note, it was recently
reported that Bcl-xL can lower acetyl-CoA levels inde-
pendently of Bax and Bak (40). Another study suggested
that Bcl-xL suppresses O2 consumption, although pro-
moting ATP synthesis in neurons by interacting with the
mitochondrial F1F0 ATPase (8), indicating that Bcl-xL can
have opposing metabolic effects in a cell. Conceivably,
changes in the relative contributions of these effects may
shape the net metabolic impact of Bcl-xL in a given cell
type and might complicate the analysis of complex mech-
anisms such as insulin secretion that involve multiple
metabolic pathways.

Our finding that antiapoptotic Bcl-2 family proteins can
modulate b-cell function has intriguing implications for
our understanding of the pathophysiology of diabetes. The
signal transduction machinery of b-cells is optimized for
maximal delivery of glycolytic intermediates for oxidative
phosphorylation (41). However, b-cells are remarkably
sensitive to the deleterious effects of reactive oxygen
species (42). Metabolic suppression may provide a means
by which Bcl proteins protect pancreatic b-cells against
metabolic stress. One might also speculate that the re-
duction in Bcl-2 and Bcl-xL seen under prodiabetic con-
ditions (4,43–45) can affect b-cell function. In this regard,
it is noteworthy that insulin hypersecretion is an early
marker of human diabetes (46), and chronic hyper-
insulinemia a persistent feature of diabetic animal models,
including the Zucker Diabetic Fatty rat (47), which has 70%
less Bcl-2 protein (48). In extension of this, our results
suggest caution may be prudent in efforts to treat diabetes
by augmenting b-cell metabolic flux using agents such as
glucokinase activators (49).

In summary, we demonstrate novel roles of endogenous
antiapoptotic Bcl proteins in the physiology of pancreatic
b-cells. Specifically, our data suggest that endogenous
Bcl-2 and Bcl-xL suppress the b-cell response to glucose. Our
findings add to emerging evidence that places Bcl family
proteins at the intersection of b-cell function and survival.
The involvement of apoptosis-regulating proteins in the
normal function of primary cells promises to provide fer-
tile grounds for future insights into the pathophysiology of
diabetes and other diseases.
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