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A B S T R A C T

Biotin is an essential micronutrient that acts as a co-factor for biotin-dependent metabolic enzymes. In
bacteria, the supply of biotin can be achieved by de novo synthesis or import from exogenous sources.
Certain bacteria are able to obtain biotin through both mechanisms while others can only fulfill their
biotin requirement through de novo synthesis. Inability to fulfill their cellular demand for biotin can have
detrimental consequences on cell viability and virulence. Therefore understanding the transcriptional
mechanisms that regulate biotin biosynthesis and transport will extend our knowledge about bacterial
survival and metabolic adaptation during pathogenesis when the supply of biotin is limited. The most
extensively characterized protein that regulates biotin synthesis and uptake is BirA. In certain bacteria,
such as Escherichia coli and Staphylococcus aureus, BirA is a bi-functional protein that serves as a tran-
scriptional repressor to regulate biotin biosynthesis genes, as well as acting as a ligase to catalyze the
biotinylation of biotin-dependent enzymes. Recent studies have identified two other proteins that also
regulate biotin synthesis and transport, namely BioQ and BioR. This review summarizes the different tran-
scriptional repressors and their mechanism of action. Moreover, the ability to regulate the expression
of target genes through the activity of a vitamin, such as biotin, may have biotechnological applications
in synthetic biology.

© 2016 Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

1. Introduction

Biotin (vitamin H or B7) is an important micronutrient that func-
tions as a cofactor for biotin-dependent enzymes.1 These include
the biotin-dependent carboxylases, decarboxylases and
transcarboxylases, all of which are found in the microbial world. In
the prototypical bacteria Escherichia coli, there is a single biotin-
dependent enzyme, namely acetyl CoA carboxylase, that catalyzes
the first committed step in the fatty acid biosynthesis pathway.2,3

Other examples of biotin-dependent enzymes commonly found
in prokaryotes include pyruvate carboxylase responsible for
replenishing the TCA cycle with oxaloacetate,4 and propionyl CoA
carboxylase required for the metabolism of certain amino acids and

fatty acids.5 Micro-organisms, plants and some fungi are able to syn-
thesize biotin de novo as well as importing it from their environment
through the action of a biotin transport system. In contrast, humans
and other mammals are biotin auxotrophs and rely solely on uptake
from external sources, such as intestinal microflora or the diet.6 This
genetic difference in biotin metabolism between humans and mi-
crobes provides potential drug targets for new antibiotic discovery
(reviewed7). The biotin synthesis pathway is well characterized in
E. coli and Bacillus subtilis and has recently been reviewed.8 In many
bacteria the genes that encode the biotin biosynthetic enzymes are
often clustered into an operon known as the bio operon.9 Briefly,
the synthetic pathway commences with L-alanine and S-adenosyl-
L- methionine being introduced into pimeloyl-ACP by the activities
of 7-keto-8-aminopelargonic acid synthase (encoded by bioF) and
7,8-diaminopelargonic acid synthase (encoded by bioA), respec-
tively, to generate 7,8-diaminopelargonic acid. Dethiobiotin
synthetase (encoded by bioD) and biotin synthase (encoded by bioB)
then catalyze the closure of the ureido and thiophane hetero-
cycles, respectively, liberating biotin.

The de novo synthesis of biotin is metabolically costly, requir-
ing 20 equivalents of ATP for each molecule of biotin and the
activities of at least 4 metabolic enzymes.10 Therefore, transcrip-
tional regulation of the biotin biosynthetic enzymes needs to be
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tightly controlled. In the model bacteria E. coli, the balance of biotin
demand versus supply is maintained through the action of the biotin
retention protein A (BirA); a bi-functional protein that is not only
a transcriptional repressor but also serves as the biotin ligase that
catalyzes the attachment of biotin onto the biotin-dependent car-
boxylases. In other microorganisms, such as Corynebacterium
glutamicum and Agrobacterium tumefaciens, there is no BirA homolog
to regulate biotin synthesis and transport. Instead, alternative DNA-
binding proteins perform this function, namely BioQ and BioR
respectively. The mechanisms by which BirA, BioQ and BioR regu-
late biotin biosynthesis and transport will be discussed in this review.

2. BirA is a bi-functional protein

BirA serves as both a transcriptional repressor and the enzyme
responsible for protein biotinylation (outlined in Fig. 1). As both biotin
ligase and transcriptional repressor activities are intimately linked,
we provide an overview of both functions as background for the
reader to understand the sophistication of this elegant system.
Protein biotinylation is achieved through a conserved, two-step re-
action mechanism that is catalyzed by biotin protein ligase (BPL)
in all organisms. In the first partial reaction biotin and ATP are re-
quired to form biotinyl-5′-AMP that serves as both the reaction

intermediate for protein biotinylation and corepressor for tran-
scriptional regulation. The BirA: biotinyl-5′-AMP (holo) enzyme can
then adopt one of two different fates. When the cellular demand
for biotin is low holo BirA can dimerize and bind DNAwhere it func-
tions as the transcriptional repressor of the biotin biosynthesis
operon, thereby inhibiting the synthesis of more biotin. In con-
trast, in the presence of substrate requiring biotinylation the holo
BirA functions as a biotin ligase. Here BPL recognizes and binds to
a biotin carboxyl carrier protein (BCCP) present in the receiving
enzyme that contains the lysine residue targeted for biotinylation.11

Protein biotinylation is an example of a post-translational modifi-
cation that is performed with exquisite specificity. For example, the
E. coli biotin ligase (BirA) modifies just one of the >4000 different
proteins in the bacterial cell.12 Moreover, the biotin cofactor is co-
valently attached onto the side chain of one single, specific target
lysine residue present in the active site of biotin-dependent enzymes.
BPLs from a wide variety of species are able to modify BCCP from
unrelated organisms,13–15 highlighting how highly conserved both
the catalytic mechanism and the protein:protein interactions
between enzyme and substrate have remained throughout evolu-
tion. The possible mechanisms through which BirA can switch
between its two functions are described later in this review.

All BPLs contain a conserved 2-domain catalytic core responsi-
ble for biotinyl-5′-AMP synthesis and protein biotinylation.16 The
greatest divergence between the BPLs is in their N-terminal regions
(see Fig. 2A). Class I BPLs are composed only of the conserved cata-
lytic module that is required for protein biotinylation. Hence, these
are mono functional enzymes. X-ray crystal structures of Class I BPLs
have been reported forMycobacterium tuberculosis19 and Pyrococcus
horikoshii.21 In contrast, the Class II BPLs are truly bi-functional having
both biotin ligase and transcriptional repressor activities due to an
N-terminal DNA binding domain. BirA from E. coli is the most ex-
tensively studied representative of a Class II BPL, having been the
subject of structural, genetic and biophysical studies (reviewed22,23).

Fig. 1. Bifunctional BirA from Escherichia coli. The schematic shows the two alter-
native functions for the protein. The bioO sequence from the biotin biosynthetic operon
is shown below, with the BirA binding sites in bold text and the −10 and −35 se-
quences boxed.

Fig. 2. Biotin Protein Ligase. (A) The relative sizes of the three structural classes of
BPLs are shown. The conserved catalytic region is depicted in blue, the DNA binding
domain of Class II enzymes in red and the proof reading domain in human BPL is
boxed black.17,18 The structures of BPLs fromM. tuberculosis [PDB 3RUX19] and E. coli
[PDB 2EWN20] are highlighted. (B) Schematic overview showing the single protein
model of protein biotinylation and transcriptional regulation in Class II BPLs.
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Several recent reports of the homolog from S. aureus (SaBirA) have
appeared in the literature and provide some interesting points of
difference to the prototypical EcBirA that will be elaborated further
below. Genetic knockout studies performed on both E. coli and
S. aureus, among other bacteria, have demonstrated that BirA is an
essential gene product.19,24–26 Therefore, biotin ligases serve as prom-
ising targets for new antibacterials.27–29 Interestingly, a recent study
reported that Francisella novicida expresses both a Class I and Class
II BPL.30 In this bacterium the Class I enzyme functions as the biotin
ligase whereas the Class II homolog is a transcriptional regulator
essential for virulence in mouse infection models. However, this is
exceptional as most bacteria only possess one BPL equivalent. The
Class III BPLs, such as those found in mammals and certain eukary-
otes, contain an extended N-terminal region making them at least
twice the size of the Class II BPLs (Fig. 2A). This extension bears no
sequence or functional similarity to the Class II DNA binding domain.
Recent mutagenic, genetic and biophysical studies have demon-
strated that the N-terminal extension contains a ‘proof reading’
activity to ensure that only the appropriate enzymes are selected
for protein biotinylation.17,18

3. Structural biology delineates the bifunctional activities of
class II BPLs

The X-ray crystal structures of bifunctional Class II BPLs from
E. coli and S. aureus reveal that the proteins are composed of three
discrete domains. The N-terminal domain is a winged helix-turn-
helix motif required for DNA binding. The central and C-terminal
domains form the catalytic core of the enzyme that share high se-
quence homology with BPLs across all three kingdoms of life. The
central domain of BirA is composed of α-helices and β-strands
whereas the C-terminal domain is composed of antiparallel
β-sheets.31 Although the function of the C-terminal domain has not
been elucidated, it is believed that this region of the enzyme con-
tributes to the binding of the BCCP substrate.32 The catalytic site of
the enzyme is located in the central domain, where biotinyl-5′-
AMP synthesis and biotinyl-transfer occur.33 Structural biology has
provided further insights into the BPL catalyzed reaction. The
adenylation of biotin proceeds in a sequential mannerwhereby biotin
binds first to the enzyme followed by ATP, and its subsequent hy-
drolysis produces biotinyl-5′-AMP.20 Comparisons of the crystal
structures of EcBirA in its unliganded (ie apo) and holo forms show
that important conformational changes accompany ligand binding.
Here the biotin-binding loop (amino acids 110–128) undergoes a
disordered-to-ordered transition that closes over the biotin-
binding pocket. This conformational change positions the side chain
of a key tryptophan residue (Trp123) in the active site necessary
for π–π stacking interactions with the adenylate moiety of ATP.20

Amino acids within this loop are also required for protein dimeriza-
tion and, consequently, DNA binding.

Surprisingly, the N-terminal helix-turn-helix domain of EcBirA
is required for both catalytic function and DNA binding. Removal
of the first 64 amino acids (Δ1–64) resulted in a truncated enzyme
that had reduced affinity for biotin and biotinyl-5′-AMP.34 Hence,
long-range interactions through the protein are believed to help sta-
bilize the conformational changes associated with ligand binding.
This observation was supported by recent studies by Chakravartty
and Cronan that showed an E. coli ‘delta wing’ (Δ48–61) mutant
strain resulted in the accumulation of ADP due to the hydrolysis of
ATP.35 These cells exhibited slow growth under low biotin condi-
tions. When the DNA binding domain from an unrelated protein,
OmpR, was fused onto the N-terminus of EcBirA the chimeric protein
restored growth of the E. coli delta wing strain in minimal media
containing low biotin concentrations. The accumulation of ADP was
also no longer observed. The authors propose that the wing in the
helix-turn-helix structure is needed to stabilize the biotin-binding

loop.35 Interestingly, in a recent study on the BirA from B. subtilis,
deletion of the N-terminal region did not compromise enzyme ac-
tivity in vitro36 suggesting that the role of the N-terminus in assisting
catalysis is not conserved among all Class II BPLs. Indeed the re-
combinant expression of truncated B. subtilis BirA was able to
complement a strain of E. coli expressing the N-terminally deleted
EcBirA (Δ1–64).36

The N-terminal DNA-binding domains of both E. coli and S. aureus
BirAs recognize specific palindromic sequences present in the op-
erator site, bioO, upstream of the biotin biosynthesis operon.
Bioinformatics analysis predicted that SaBirA is also responsible for
regulating expression of the biotin transporter bioY and fatty acid
biosynthetic enzymes yhfT and yhfS in S. aureus (summarized in
Fig. 2B).9 The difference in target gene regulation between E. coli and
S. aureus suggests that SaBirA is solely responsible for maintaining
biotin levels within the bacteria by regulating expression of both
biotin synthesis and transport proteins, as well as contributing to
fatty acid synthesis through the transcriptional regulation of yhfT
and yhfS and activation of acetyl CoA carboxylase. This is in con-
trast to E. coliwhere the BirA recognition sequence is only present
in the promoter of the biotin biosynthesis operon. Consequently,
we propose that BirA regulated gene expression is potentially more
responsive to environmental stimuli in S. aureus than the bacterial
model E. coli.

4. BirA dimerization is intimately linked to DNA binding

Homodimerization of EcBirA is a prerequisite for DNA binding.
The binding of BirA to bioO is a co-operative event involving two
BPL subunits and two bioO operator half-sites (Fig. 1).37,38 The more
stable the homodimer, the greater the affinity for DNA.39,40 Muta-
tion of amino acids that reside in the dimer interface of BirA results
in loss of DNA binding activity.41 Sedimentation equilibrium studies
have revealed the dimerization constant (KD) of apo BirA is greater
than 1mM39 and, thus, apo BirA is not likely to dimerize at the phys-
iological concentrations present inside the bacterial cell which have
been estimated at <10 molecules per cell.42 Similarly, biotin-
bound BirA exhibits weak dimerization with a KD of 0.9 mM.39 In
contrast, biotinyl-5′-AMP enhances dimerization free energy by
−4.0 kcal/mol yielding a KD of 1 – 10 μM,39,43,44 suggesting that the
co-repressor acts as an allosteric activator to dimer assembly and
DNA binding.33

The crystal structures of both EcBirA and SaBirA show the dimers
assemble in a side-by-side anti-parallel arrangement such that the
two N-terminal HTHmotifs are aligned for DNA binding.45,46 An X-ray
structure of any Class II BPL in complex with DNA has not yet been
reported. However, molecular modeling studies propose that the
N-terminal domain from one subunit of EcBirA binds to the major
groove of the double helix while the other subunit binds to theminor
groove.47 Mutation of amino acids Ser-32, Arg-33 and Ala-34 in the
DNA-binding α-helices abolishes DNA binding and results in loss
of repression activity.48 In E. coli, two face-to-face promoters drive
expression of the bio operon. The recognition sequence for EcBirA
(bioO) is an inverted repeat that is located in between the two pro-
moters, at the −35 and −10 sites of the operator sequence (Fig. 1).
Circular permutation analysis suggests that the double stranded DNA
might be bent when in complex with EcBirA.47 On the other hand,
small angle X-ray scattering analysis performed on the SaBirA:SabioO
complex proposed that the DNA does not bend for this species.46

Hence, the footprint observed on the DNA is likely smaller for SaBirA
than EcBirA.

5. Co-repressor induces BPL dimerization

Upon binding of the biotinyl-5′-AMP co-repressor, five loops
located within the central domain of EcBirA undergo a
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disorder-to-order transition, with three of these loops (amino acids
110–128, 140–146 and 193–199) located in the dimerization
interface.41 When dimerization occurs, an extended intermolecu-
lar β-sheet is formed involving residues 189–195 in the central
domain.49 Following the structural changes induced by biotin, the
biotin-binding loop encases the co-repressor and is stabilized through
a network of hydrophobic interactions50 as well as direct hydro-
gen bonding interactions involving R118.49 Binding of the co-
repressor leads to the ordering of the ATP-binding loop (residues
212–223) and better packing of the biotin-binding loop, which sup-
ports bonding interactions that stabilizes the dimer.20 Therefore, the
biotin-binding loop must fold before dimerization.49 Direct inter-
actions between the two monomers involve amino acids found in
the loops, namely R118, R119 and D197.49

A recent study involving randommutagenesis to generate super-
repressor mutants in E. coli identified an amino acid substitution
with stronger DNA-binding to bioO than wildtype, namely G154 to
aspartate.40 Interestingly, this amino acid is neither located in the
helix-turn-helix motif nor the dimerization interface. This sug-
gests that other residues within the central domain but located
outside of the dimer interface can participate in long-range inter-
actions that stabilize the dimer, resulting in tighter binding to DNA.
No structural data for this mutant has yet been reported to fully un-
derstand these long-range bonding interactions. Likewise, a recent
study focused on G142 that is present in the dimer interface but
that does not directly contribute to dimerization.51 Substitution of
G142 with alanine altered the structure of the 140–146 loop, and
this in turn prevented the 193–199 loop from undergoing the
disordered-to-ordered transition through long-range interactions.
Together these studies highlight the importance of long-range al-
losteric interactions on dimerization and DNA binding.

In SaBirA, ligand binding induces similar conformational changes
in the loops that are located at the dimerization interface. Like EcBirA,
the biotin-binding loop in this interface (residues 118–129) under-
goes a disorder-to-order transition to facilitate the interaction
between the two-dimer subunits.46 The dimerization interfaces of
biotinyl-5′-AMP bound EcBirA and SaBirA are illustrated in Fig. 3.
The subunits are connected by an analogous intermolecular β-sheet
interaction as observed for EcBirA, but the dimer is stabilized by
additional intersubunit contacts.46 Of particular note is F123 that
forms a hydrophobic interaction with the side chain of D200 from
the opposing monomer (Fig. 3A).52 In EcBirA the homologous amino

acid is R119 that forms a hydrogen bond with D197 on the partner
subunit (Fig. 3B). Interestingly, substitution of R119 with an aro-
matic amino acid (R119W) has been shown to strongly disrupt
homodimerization.44 Analytical ultra centrifugation studies on SaBirA
revealed that replacing the F123with either glycine or arginine abol-
ished dimerization even in the presence of biotin, highlighting a role
for this aromatic residue in homodimer assembly.52

Recent studies on SaBirA dimerization indicate that the non-
liganded form of the enzyme is also able to dimerize at low
concentrations with a KD of 29 ± 1.8 μM. This is a sharp contrast to
apo EcBirA, which only dimerizes at millimolar concentrations.39,43,44

Apo-SaBirA dimer was also shown to bind DNA in an electropho-
retic mobility shift assay with KD = 649 ± 43 nM, which is only 6-fold
weaker than the binding of the holo-enzyme (KD = 108 ± 6.0 nM).52

Hence, allosteric regulation of the BirA switch in S. aureus may be
more complex than originally thought. These data highlight key dif-
ferences between E. coli and S. aureus BirAs that may have important
physiological consequences that impact the bacteria’s ability to sense
their surroundings and adapt to the niche microenvironments they
inhabit.

6. Switching between enzymatic and repressor
functions of BPL

Both the biotin ligase and transcriptional repressor activities of
BPL are critical for cell metabolism and survival. Therefore, con-
trolling the switch between these two mutually exclusive functions
is likely important for virulence. This raises a key question; how does
the enzyme switch between enzymatic and DNA binding modes?
One hypothesis proposed by Weaver and co-workers53 is based on
the observation that EcBirA utilizes the same β sheet for both
homodimerization and the interaction with the substrate BCCP
(Fig. 4). A co-complex of the enzyme with BCCP has not yet been
crystallized with a Class II BPL, but has been achieved with the Class
I enzyme from P. horikoshii.21 The model proposes that when there
is an excess of non-biotinylated substrate, holo-BirA will preferen-
tially bind BCCP, thereby preventing BirA homodimerization.
Alternatively, when the concentration of BCCP is low, holo-BirA will
accumulate and homodimerize, leading to DNA binding and sub-
sequent repression of transcription. Therefore, in this model, the
regulatory switch between the enzymatic and transcriptional re-
pressor functions of BirA is governed by competing protein:protein

Fig. 3. Intersubunit contacts of BirA. The structures of dimeric holo BirA from (A)
S. aureus [PDB 3RIR46] and (B) E. coli [PDB 2EWN20] are shown, with one subunit
colored while the other subunit is in gray ribbon. Key amino acids in the dimeriza-
tion interface are highlighted.

Fig. 4. Competing protein:protein interactions. The structure of holo E. coli BirA is
shown with one subunit in space filled mode and the other in blue ribbon [PDB
2EWN20]. The BCCP substrate bound to BirA (pink ribbon) has been modeled using
the BPL:BCCP complex from P. horikoshii [PDB 2EJG32] with UCSF Chimera software.54
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interactions and the intracellular concentration of non-biotinylated
BCCP.46,53 Recent DNase I footprint studies performed in the pres-
ence of BCCP provide support for this model.55

In contrast, Solbiati and Cronan56 proposed an alternative mech-
anism whereby biotinyl-5′-AMP is the key regulator of alternative
protein:protein interactions. These authors argue that in order to
compete with homodimerization, the BirA:BCCP complex must be
strong and long lived in the cell. However, the enzyme-substrate
interaction is believed to be transient as there has been no evi-
dence to support a stable BirA:BCCP complex. Furthermore, these
authors showed that a small 14 amino acid synthetic peptide was
effective at de-repressing a EcBirA regulated reporter construct in
vivo.56 Given the small size of this biotin-accepting substrate, ex-
tensive protein–protein interactions were not required to effectively
disrupt EcBirA binding to DNA. The authors propose that the reg-
ulatory switch between the two functions is, therefore, the removal
of the biotinyl-5′-AMP co-repressor from the active site of EcBirA
rather than the competing protein-protein interactions.

A study conducted by Pendini and colleagues suggests that the
level of the apo-BCCP is likely to be the key switch between the two
mutually exclusive functions, at least in S. aureus.46 Small-angle X-ray
scattering data showed that in the absence of BCCP, SaBPL formed
a homodimer that was receptive to binding DNA. However, when
apo-BCCP was included in the same reaction mixture, DNA binding
activity was disrupted. These authors highlight that X-ray crystal
structures demonstrated that upon the removal of biotin from the
enzyme’s catalytic site, the dimerization interface is destabilized by
the conformational changes in the biotin-binding loop. Presum-
ably this mechanism allows for the release of BCCP following
biotinylation.

7. Regulation of biotin biosynthesis and biotin transport in
organisms with class I BPL

In organisms containing Class I BPLs and no BirA homolog, such
as α-proteobacteria, the transcriptional regulation of biotin biosyn-
thesis has to be fulfilled by other proteins. A comparative genome
study revealed co-localization of biotin biosynthetic genes with a
recognition sequence for a GntR-type transcription factor called BioR
in many α-proteobacterial genomes.57 Additionally, a protein be-
longing to the TetR family of transcription factors, BioQ, has recently
been identified as the key player in the regulation of biotin bio-
synthesis in Mycobacterium smegmatis58 and biotin transport in
Corynebacterium glutamicum.59 The target genes regulated by BioQ
and BioR are summarized in Fig. 5A. As these two proteins have only
been identified recently, they have not yet been as extensively
studied as BirA. For both BioR and BioQ, the repressor function of
both proteins appears to be independent of biotin, and no ligands
have yet been identified for these transcription factors.58 A two-
protein model involving BPL together with either BioQ or BioR has
been proposed as a possible mechanism for biotin sensing and reg-
ulation in bacteria containing Class I BPLs (Fig. 5B).58 This model
assumes that there is cross talk between the biotin sensor (BPL) and
the transcriptional regulator (BioQ/R). However, themolecular details
supporting this model still require experimental validation.

8. BioR mediated gene expression

Bioinformatic analysis of genomic sequences from
α-proteobacteria suggested that biotin synthesis in these bacteria
is regulated by BioR.57 It was also observed that the DNA recogni-
tion sequence for BioR was found upstream of the bioY gene biotin
transporter in several other α-proteobacteria such asM. loti, B. meli-
tensis, Silicibacter sp. TM1040 and S. pomeroyi. The BioR recognition
sequence also co-localized with bioR genes in certain organisms such
asMesorhizobium loti, Brucella melitensis, Bradyrizhobium japonicum,

Silicibacter pmeroyi and Rhodobacder sphaeroides, suggesting auto-
regulation – a feature not observedwith BirA/BPL. However this auto-
regulation is not completely conserved as the BioR recognition
sequencewas not present upstream of the bioR gene in Agrobacterium
tumefaciens. Moreover, in A. tumefaciens, BioR does not control the
expression of the BioY biotin transporter protein. Fig. 6 outlines the
localization of BioR recognition sequence in differentα-proteobacteria.

Feng and co-workers further investigated the role of BioR in regu-
lating biotin synthesis by conducting a series of electromobility gel
shift assays.10 In addition to binding the recognition sequence in its
own genome, BioR from A. tumefacienswas able to bind DNA probes
with sequences derived from B. japonicum, R. sphaeroides and B. meli-
tensis. In addition, the B. melitensis BioR was able to repress
expression of A. tumefaciens bioB in vivo.10 These data support the
hypothesis that the BioR:operator interaction is well conserved in
α-proteobacteria. It also revealed that the expression of the biotin
operon (bioBFDAZ) in wildtype A. tumefacienswas 10–15 fold lower
relative to a BioR knockout when the bacteria were grown in high
(1 μM) biotin media. This observation further validates the role of
BioR as a transcriptional repressor.10

In B. melitensis, the BioR recognition sequence is located up-
stream of the genes encoding both BioR and the BioY biotin
transporter (Fig. 6). Two BioR sites are also present in the bioBFDAZ
operon, indicating a complex regulatory network of biotin metab-
olism involving BioR.10 Electromobility gel shift assays also confirmed
that B. melitensis BioR was able to bind to a DNA probe containing
the BioY promoter sequence, providing the first evidence that BioR
can mediate expression of the biotin transporter in these bacteria.10

In contrast, A. tumefaciens BioR does not regulate biotin transport
and only binds weakly to the recognition site present within the
coding region of bioB, in vivo.10 As a consequence, the amount of
biotin produced by A. tumefaciens is greater than their minimum
growth requirement, which presumably is beneficial for survival in
their environment.10

A search for a ligand and co-repressor of BioR concluded that
biotin is not the natural ligand.10 Complete removal of biotin from
the protein preparations had no effect upon DNA-binding in vitro.
Conversely, the hypothesis that biotin can serve as a dissociation
factor that disrupts DNA-BioR complex was also tested. Again, the

Fig. 5. Summary of BioR and BioQ transcriptional regulation. (A) The genes andmet-
abolic pathways regulated by BioR (blue boxes) and BioQ (red boxes) are shown. Each
box represents an individual operator. (B) Schematic overview showing the two-
protein model of protein biotinylation and transcriptional regulation in Class I BPLs.
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addition or removal of biotin had no effect on DNA-binding activ-
ity. Various biotin metabolites were also tested and none showed
evidence of being a ligand for BioR. Hence, further studies are re-
quired to define the links between biotin sensing by BPL and
downstream control by BioR in the two protein model of biotin-
regulated gene expression.

9. BioQ mediated gene expression

In Corynebacterium glutamicum, the biotin synthesis pathway is
incomplete, thereby rendering the bacteria biotin auxotrophic.
However, the expression of the bio genes is proposed to be con-
trolled by a transcription factor belonging to the TetR protein family,
namely BioQ. Although the TetR family of regulators has been well
characterized, none have previously been shown to regulate biotin
synthesis.60 Bioinformatic analysis of the C. glutamicum genome re-
vealed co-localization of the bioQ coding region with the biotin
biosynthetic genes (Fig. 6).59 The presence of the BioQ recognition
sequence in the promoter of the bioQ gene suggests auto-regulation

of the transcription factor (Fig. 6). In addition, the same regulato-
ry sequence is also found upstream of the bioY biotin transporter,
suggesting BioQ regulates its expression. This is crucial for biotin
auxotrophic C. glutamicum that relies on supply of the micronutri-
ent from the external environment. In addition, the study showed
that increasing the biotin concentration in the growth media only
had modest repression on the transcription of the biotin operon in
this organism.59

In contrast to C. glutamicum, BioQ is believed to regulate ex-
pression of the transporter genes inMycobacterium smegmatis. The
recognition sites are also localized upstream of the bioF and bioQ/B
genes suggesting regulation of biotin biosynthesis and auto-
regulation by BioQ in this species (Fig. 6).58 Tang et al. also showed
that BioQ binding sites are also found in othermycobacterium species
such as M. abcessus, M. gilvum, M.JLS, M. massiliense, M. rhodesiae
andM. vanbaalenii, but not in the clinically important human patho-
genM. tuberculosis.58 The same study also confirmed the role of BioQ
as a functional repressor. Increased mRNA levels of bioF, bioB and
bioDwere measured in a ΔbioQmutant strain ofM. smegmatis com-
pared to the wildtype parent. LacZ-based reporter assays using the
bioFD promoter also showed expression was highly increased in
ΔbioQ strain whereas no LacZ activity was observed in the wildtype
strain.58 In addition, increasing levels of biotin in the growth media
resulted in decreasing expression of biotin biosynthesis genes bioF,
bioD and bioB for the wildtype bacteria whereas there was no sig-
nificant change in the ΔbioQ strain. These findings underline the
biotin sensing ability of BioQ.

10. Potential biotechnological applications

Synthetic biology facilitates us to better understand life through
the dissection then reconstruction of complex biological systems.61

At the heart of this endeavor are engineered genetic circuits that
allow us to dissect the interplay between genes, proteins, cells and
systems. Synthetic biology is currently used to deliver valuable bio-
products and therapeutic molecules, such as fine chemicals, peptides,
proteins and antibodies. For example, most monoclonal antibod-
ies are produced recombinantly using genetically engineered Chinese
hamster ovary cells as bio-factories.62 Many of the reagents that have
been developed by industry are becoming valuable tools in aca-
demia. Underpinning synthetic biology are well-characterized
transcriptional regulators required to engineer the genetic circuits
and tightly control bio-production. The TetR inducible expression
system is an example that is widely employed due to its high speci-
ficity toward its recognition system and the high affinity to
tetracycline, a well characterized antibiotic.63 There is now a need
fill our discovery toolbox with a greater variety of well-characterized
transcriptional regulators with utility in systems biology. In this
review, the mechanisms of BirA, BioQ and BioR in regulating their
target genes are discussed. The high specificity of BirA to its target
operator, as well its ability to regulate gene expression in re-
sponse to external biotin, provides an attractive approach to
developing novel ligand-regulated gene expression systems for use
in bacteria, yeast plants and animal systems. To date this ap-
proach has not yet been exploited. Biotin provides a highly attractive
ligand to regulate transcription due to its low cost, solubility in
aqueous solutions, low toxicity to many cell types and has no reg-
ulatory issues. While the well-studied Class II BirA enzyme/
repressor from E. coli provides one useful example for generating
a controllable genetic switch, the emergence of other biotin re-
sponsive transcription factors extends our repertoire of potential
systems. Other Class II BPLs may be more responsive to environ-
mental biotin levels, such as that from S. aureus. The BioR and BioQ
proteins provide alternative repressors with distinctive mecha-
nisms of action to BirA/BPL. These may potentially be advantageous
when generating new genetic circuits that are highly responsive to

Fig. 6. BioR and BioQ. Sequences of the binding sites for BioR and BioQ are shown.
Transcription start sites are boxed, and −35 and −10 sequences are underlined. Se-
quences of the binding sites for BioR (blue) and BioQ (red) are colored.
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external stimuli, such as the addition of a vitamin. Further re-
search on biotin regulated transcriptional factors promise to replenish
our toolkit with greater variety of new agents for systems biology.
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