
Coarse-Graining ddCOSMO through an Interface between Tinker
and the ddX Library
Published as part of The Journal of Physical Chemistry virtual special issue “Biomolecular Electrostatic
Phenomena”.

Michele Nottoli, Aleksandr Mikhalev, Benjamin Stamm, and Filippo Lipparini*

Cite This: J. Phys. Chem. B 2022, 126, 8827−8837 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The domain decomposition conductor-like screening model is an
efficient way to compute the solvation energy of solutes within a polarizable
continuum medium in a linear scaling computational time. Despite its efficiency,
the application to very large systems is still challenging. A possibility to further
accelerate the algorithm is resorting to coarse-graining strategies. In this paper we
present a preliminary interface between the molecular dynamics package Tinker
and the ddX library. The interface was used to test a united atom coarse-graining
strategy that allowed us to push ddCOSMO to its limits by computing solvation
energies on systems with up to 7 million atoms. We first present benchmarks to
find an optimal discretization, and then, we discuss the performance and results
obtained with fine- and coarse-grained solvation energy calculations.

■ INTRODUCTION
Polarizable continuum solvation models (PCSM) are well
established techniques used to model in a cheap, yet effective
way the effects of the environment,1−6 let it be a solvent or
even more complex matrices, on the molecular properties of
the solute, by introducing a polarization term in the solute’s
Hamiltonian that includes self-consistently mutual polarization
effects. In PCSM, the solute is accommodated in a cavity
surrounded by a uniform, infinite dielectric, which is polarized
by the solute’s charge distribution. There are many possible
definitions for the molecular cavity, which is an empirical
construct, as it is not associated with a quantum mechanical
molecular observable. The most commonly used definitions
are the van der Waals (VdW) cavity,7−9 the solvent-accessible
surface (SAS),10−12 and the solvent-excluded surface (SES),
also referred to as Connolly’s surface.13−15 The first two
cavities are geometrically simple, as they are both the union of
interlocking spheres, with radii chosen, respectively, as (scaled)
van der Waals radii or van der Waals radii augmented by the
radius of a probe that represents the solvent. VdW cavities are
commonly used in quantum mechanical calculations, where
the solute is a small- to medium-sized molecule. Their use for
large solutes can be problematic, as such cavities can have
nonphysical holes and crevices, making the SAS a preferred
choice. The SES is mathematically a much more complicated
construct. There are several algorithms used to construct
it,16−21 but unfortunatly its application makes analytical energy
derivatives particularly hard to formulate. Nevertheless, it is the

most commonly used surface to compute solvation-free
energies in biophysics.
In standard implementations, the solvent polarization is

obtained by solving an integral equation defined at the
boundary of the molecular cavity. This is commonly done
using dense linear-algebra techniques, that require N( )3 flops,
where N is the number of discretization elements, which in the
best possible case is proportional to the surface exposed to the
solvent. In standard applications, where the solute is treated
using an accurate quantum-mechanical technique, this is
overall a small contribution to the total computational effort
required to carry out the calculation, which is largely
dominated by the cost of solving the quantum mechanical
equations. However, if one uses a cheaper semiempirical model
or even a multiscale QM/MM approach, the size of treatable
systems can become very large, making N( )3 operations an
insurmountable bottleneck. The computational complexity of
PCSM stems from their polarizable nature, that is, they add a
genuine many-body contribution to the energy that requires
the solution to a linear system of equations whose size is
proportional to the global size of the embedded system. To
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overcome such a bottleneck, formulations that achieve a linear
scaling computational cost with respect to the size of the
system are mandatory. At the same time, if one wants to use
such a model to compute molecular structure and properties, it
is paramount that the formulation maintains the numerical
accuracy required to compute analytical derivatives, which
include not only geometrical gradients, but also, for example,
contributions of the environment to the molecular Hamil-
tonian and response functions.22

The domain decomposition algorithm for the conductor-like
screening model (ddCOSMO), introduced in 2013 by Cances̀,
Maday, and Stamm, enjoys all of such properties.23−25 The
ddCOSMO implementation of the conductor-like screening
model4,26 naturally enjoys linear scaling properties as the
COSMO polarization equations obtained in the dd paradigm
are sparse, making the calculation of matrix-vector products
possible in N( ) flops and with N( ) memory requirements.
In the past decade, ddCOSMO has been implemented in the
context of quantum chemistry,27,28 polarizable molecular
dynamics (MD),29 QM/MM, and polarizable QM/MM.30

Geometrical gradients, as well as second-order electric
properties and excitation energies have been implemented
for both QM methods such as Hartree−Fock and density
functional theory, as well as semiempirical models. It has been
used to perform polarizable MD simulations of small peptides
in water29 and recently has been coupled in a fully self-
consistent way to a polarizable QM/MM strategy based on
density functional theory and the AMOEBA polarizable force
field.31 In all these examples, we have tested ddCOSMO for
systems of hundreds and even up to a few tens of thousands
atoms. While such systems are large in the context of QM or
even QM/MM calculations, they are still quite small when
compared to the systems studied in classical simulations, such
as large proteins or even entire viruses.32,33 Furthermore, even
on such large, but not extremely large, systems, ddCOSMO
can still be rather expensive, especially when the solution of the
ddCOSMO equations is required many times, for example, to
compute the self-consistent AMOEBA/ddCOSMO polar-
ization.34

In the last years, we have worked on an open-source, state-
of-the-art implementation of ddCOSMO, which, together with
the domain decomposition implementation of the polarizable
continuum model35−37 and of the linearized Poisson−
Boltzmann model,38,39 has been recently released as part of
the ddX library.40 In this contribution, we have interfaced the
ddX library with the Tinker classical MD package.41 We push
the limits of polarizable continuum solvation by presenting
benchmark calculations done with ddCOSMO on systems
made by up to 7 million atoms. Furthermore, we present a
ddCOSMO implementation for a coarse-grained SAS cavity,
which is obtained by using a united-atom topology. Such a
cavity has been originally proposed by Barone et al.42 in the
context of the polarizable continuum model and is made by the
union of interlocking spheres, each centered at a heavy atom,
with the hydrogen atoms being contained in the spheres
around the heavy atoms they are bonded to. We demonstrate
that the new implementation, which uses the fast multipole
method to compute the solute’s potential, needed to build the
right-hand side (RHS) of the ddCOSMO equations, allows
one to perform calculations on extremely large systems, even
on moderate hardware, paving the way for a polarizable
continuum model that bridges the gap between models used in
quantum chemistry and biophysics. We also discuss the choice

of the numerical parameters that control the ddCOSMO
discretization to achieve a desired precision on absolute and
relative energies.
The rest of this paper is organized as follows. In the next

section, we first present the theory of ddCOSMO and how the
united atom coarse-graining strategy is formulated, and then
we briefly illustrate the interface between Tinker and ddX. In
the Results and Discussion, we first present the benchmarks
used to determine suitable discretization parameters, and
finally, we present a comparison of the fine- and coarse-grained
models on systems of up to 7 million atoms.

■ DDCOSMO FOR A UNITED ATOMS CAVITY
In COSMO,4,26 the solute is accommodated in a cavity in a
conductor medium, characterized by an infinite dielectric
permittivity, the density of the solute polarizes the environ-
ment, and in turn, the polarization interacts with the solute’s
density, giving rise to an electrostatic contribution to the
solvation energy. The domain decomposition strategy allows
one to rewrite the COSMO problem as a collection of local
problems, each of them coupled only with the neighboring
local problems. In this way, after the discretization, the
problem is characterized by a sparse linear system, which can
be solved with linear scaling computational complexity and
memory requirements.43

The only requirement posed by the ddCOSMO method on
the cavity definition is that it must be the union of spheres and
that it must enclose the solute’s density. From a formal point of
view, the second requirement means that the support of the
solute’s density must be strictly contained in the cavity, which
is not an issue for MM solutes. In all the previous works, the
cavity definition is based on a one-to-one correspondence
between atoms and spheres, however this is not the only
possibility. For example, the number of spheres could be
reduced and the radii of the spheres could be enlarged, so that
the cavity is simplified or in other words coarse-grained, while
still enclosing the solute’s density. Reducing the number of
spheres in turn reduces the computational cost associated with
assembling the right-hand side and solving the linear system,
thus allowing the description of even larger systems.
The cavity coarse-graining requires particular care: the set of

rules used to define the radii and positions of the spheres must
be differentiable with respect to the atoms’ positions in order
to retain the differentiability of the energy, and hence a
definition of the forces. In the remaining part of this section,
we present the theory of ddCOSMO for a cavity described
using the united atom (UATM) strategy, which is one of the
most straightforward, yet differentiable, possible strategies. The
definition of such a cavity is described in detail in ref 42.
Let us consider a solute, with its charge distribution ρ, and

let = =i
N

i1
sph be a molecular cavity that accommodates it.

We assume that Ω is the union of Nsph interlocking spheres Ωi,
as it is the case for van der Waals (VdW) or SAS cavities, and
these two kinds of cavities, combined with the coarse- or fine-
grain strategies, lead to the four different surfaces that are
shown as an example in Figure 1. We also assume that ρ is a
distribution of point charges, as it is typical in classical
molecular mechanics force fields. The generalization to more
advanced charge distributions, including quantum mechanical
ones, induced point dipoles, and distributed multipoles, can be
found in the relevant literature.27,29 However, in this
contribution, we no longer assume that each atom is endowed
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with a sphere, that is, we consider the possibility of having
solute’s charges that are not in the center of a sphere.
The ddCOSMO algorithm is an efficient numerical

realization of COSMO, that computes a numerical solution
to the following partial differential equation (PDE)

=
= =

W

W V

0 in

on

2

sol (1)

where Vsol is the electrostatic potential of the solute computed
in vacuo and W is the reaction potential. In ddCOSMO, eq 1 is
replaced by an equivalent set of coupled differential equations,
one for each sphere Ωi, in the spirit of Schwarz’s domain
decomposition method. Let Γi = ∂Ωi and let i

ext and i
int be

the portions of Γi that are exposed to the solvent (i.e.,
=i i

ext ) or buried inside the cavity, respectively. Let
also i be the list of spheres Ωj, j ≠ i that intersect Ωi and let
| |r( )i be the number of intersecting spheres at a specific point
r ∈ Γi. The ddCOSMO coupled integral equations read, for
each sphere Ωi
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From eq 2 it is apparent that each equation is only coupled to
the equations at neighboring spheres, making the set sparse. It
is possible to recast the ddCOSMO equations in a more
compact form by introducing a few auxiliary quantities. Let

=r
r

( )
1 ,

0 otherwisei
i

l
moo
noo (3)

be the characteristic function of the i-th sphere, and let

=
| |

r
r

r
( )

( )

( )ij
j

i (4)

Using such quantities, we can further define the characteristic
function of the external surface Γ as

=
=

U r r( ) 1 ( )i
j

ij
1

i

(5)

By using the quantities defined in eqs 4 and 5, the ddCOSMO
equations become, for each sphere Ωi,

= +
=

W r U r V r r W r( ) ( ) ( ) ( ) ( )i i
j

ij j
sol

1

i

(6)

As each Wi function is harmonic, the ddCOSMO equations
can be rewritten as a set of coupled integral equations by
introducing, for each sphere, a local apparent surface charge σi
such that

=
| |

=r W r
s

r s
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=
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2

i (8)

where we have introduced the single layer potential S and
single layer operator S.44 Note that the formal difference lies in
the point r where the expression is evaluated. The ddCOSMO
set of coupled integral equations becomes, thus

= +S r U r V r r S r( )( ) ( ) ( ) ( )( )( )i i i
j

ij j j
sol

i

(9)

The ddCOSMO equations are then discretized by expanding
the local ASC into a truncated set of real-valued spherical
harmonics Y m up to angular momentum max:
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where xi is the center of the i-th sphere, and we have
introduced a short-hand notation for the double sum in m( , ).
In this way, we can introduce a vector X, which is the
collection, for each sphere, of the coefficients of the linear
combination of spherical harmonics. The solute’s potential,
which constitutes the right-hand side for the ddCOSMO
equations, is discretized as

[ ] =
| |

+ +
=
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i
k
jjjjj

y
{
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(11)

where we have introduced the Lebedev−Laikov quadrature45
(weights and points wn, sn) to compute the surface integral, and
Ngrid is the number of Lebedev points on a sphere.
Furthermore, to achieve a smooth dependence of the energy
with respect to the positions of the spheres (and, therefore, of
the atoms), the characteristic function is smoothed based on a
regularization parameter η > 0. All the details can be found in
ref 24. After discretizing the single layer operators S and S , one
gets a sparse linear set of equations that we write, for brevity, as

=LX (12)

where L is the ddCOSMO matrix and we have collected all the
discretized ASCs and right-hand sides in the vectors X and Φ.

Figure 1. Exampe representation of the four possible surfaces coming
from the VdW and SAS definitions combined with the use of the
UATM strategy. The radius used for the solvent in the SAS definition
correspond to water (1.4 Å).
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The ddCOSMO equations can be efficiently solved by using an
iterative solver. In our implementation, we use Jacobi
Iterations accelerated with Pulay’s Direct Inversion in the
Iterative Subspace (JI/DIIS).46 The cost of solving the linear
equation is N( )sph , thanks to the sparsity of the ddCOSMO
matrix L.
Once the ddCOSMO linear system has been solved, it is

possible to compute the electrostatic contribution to the
solvation energy as

=

= [ ]
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| |
| |

= [ ] [ ] =
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(13)

where fϵ is an empirical scaling factors that accounts for the
dielectric nature of the solvent.
The definition of the L matrix only depends on the geometry

of the cavity, that is, the centers and radii of the interlocking
spheres, and is not affected explicitly by the number and
positions of the solute’s atoms. In other words, whether an all-
atoms or a coarse-grained cavity is used, the structure and size
of the matrix is modified but the equations that are used to
define it remain the same. On the contrary, Φ and Ψ depend
explicitly on the solute’s charge distribution and its relation
with the spheres composing the cavity and are computed using
different expressions. In the remaining part of this section we
consider the case of a UATM cavity, by first explaining how
this coarse-graining strategy work and then by providing the
expressions for Φ and Ψ.
In the UATM approach, the topology of the system is

analyzed and all the spheres that correspond to hydrogens
bonded to heavy atoms are removed. At the same time, the
radii of the spheres corresponding to the heavy atoms are
increased depending on the number of removed bonded
hydrogens. The outcome is that the large spheres placed on the
heavy atoms contain both the heavy atoms and the hydrogens
linked to them. An example of two cavities, a SAS fine-grained
cavity and a SAS UATM coarse-grained cavity, are reported in
Figure 2, whereas simpler cavities for a VdW surface are shown
in Figure 1. The precise rules used for computing the radii are
cumbersome as depend on the atomic number and on the
hybridization of the heavy atoms, for this reason we refer to the
work of Barone et al. for their definitions.42

In our implementation, we decided to not only coarse-grain
the cavity definition, but to coarse-grain also the multipolar
distribution according to the same rules. In other words, the
partial charges associated with hydrogens linked to heavy
atoms are moved to the heavy atoms themselves using a
multipolar translation.
This additional coarse-graining results in the multipoles

being at the center of the spheres composing the cavity, and a
one-to-one correspondence between multipoles and spheres.
In this way there is a large advantage concerning the
implementation: the same ddX interface, provided that can
handle multipoles of higher order, can handle in the same exact
way a fine- and a coarse-grain case, without the need of even
knowing that a coarse-grain calculation is being performed.

During the development, we tested also a different strategy
in which the multipoles are not coarse-grained, in such a way
there is a few-to-one correspondence between multipoles and
spheres, and the multipoles are not necessarily at the centers of
the spheres. Using either one or the other strategy results in
differences in the computation of Ψ and Φ. For what concerns
the first, the coarse-graining of the multipoles results only in a
difference in the implementation, from a mathematical point of
view, performing a translation and then integrating is
equivalent to evaluating the integral in eq 13 with off-centered
multipoles. Moreover, also the computational cost is similar, as
the operations required in the translation of the multipoles are
also required in the computation of Ψ with off-centered
multipoles. For what concerns Φ, the differences are more
significant. First, representing the potential of a collection of
multipoles with a single multipole obtained through M2M
translations is an approximation - and in particular, the same
used by the FMM method. Provided that the expansion order
is high enough, the approximation is accurate. In practice, we
observed that with a maximum angular momentum equal to
max the effect on the final results is negligible. Second, there
could be an effect on the computational cost of evaluating the
potential: both the strategies coarse-grain the cavity, and
hence, the number of target points is the same. The strategy
which coarse-grains the multipoles has fewer sources, but
despite this, it is not necessarily cheaper as the coarse-grained
multipoles have a higher angular momentum, and hence a
more complicated kernel for the evaluation of the potential. In
practice, we observed that the cost of computing Φ using the
two strategies is similar due to some cancellation of costs:
lower angular momentum and more sources against higher
angular momentum and fewer sources.
With this preface on the coarse-graining, the theory required

is composed of two parts: a way to perform the multipolar
translations, and an expression for Φ and Ψ for higher order
multipolar distributions.
The multipolar translations are performed using a part of the

fast multipole method (FMM) machinery,47 namely the M2M

Figure 2. Example of a fine-grained SAS cavity and of a coarse-grained
UATM SAS cavity for the same small peptide, PDB code 2p7r (see
Table 1).
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operator. This operator, in the basis of real spherical
harmonics, is represented with a square matrix of size

+( 1)max
2, with max being the selected maximum angular

momentum. In the FMM implementation available in ddX,48

we apply a rotation-based technique to lower the computa-
tional complexity of the operation. The multipoles at the
source are rotated such that the positions of the source and of
the target are aligned to the OZ axis. Then an M2M operation
along the OZ axis is performed, and finally the inverse rotation
is applied. The expression of an M2M matrix associated with a
translation along the vector v can be written as

= · | | ·Q e Qv v v vM2M( ) ( ) M2M( ) ( )z
T

(14)

[ | | ] =
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| | +
+

e

m m
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oooooo
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(15)

In this expression, Q(v) is the rotation matrix that aligns the v
vector with the ez axis, and = ! + !A m m(( ) ( ) )m 1/2.
Once the translated multipolar distribution is assembled, it is

possible to compute Ψ as

[ ] =
+

[ ]
r

M4
2 1

1
i

m

i
i

m

(16)

where M is the collection of the higher order multipolar
distributions in real spherical harmonics, and [ ]Mi

m is an
element of the multipole placed on the i-th sphere. For what
concerns Φ, the first step is assembling the electrostatic
potential of the solute’s density at the exposed grid points, and
then, expression 11 is used to assemble the desired quantity.
For a multipolar distribution in real spherical harmonics, the
expression for the electrostatic potential, evaluated in x, reads
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jjjjjj

y
{
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where xj is the position of the j-th multipole and Nmult is the
number of multipoles. Assembling the solute’s potential, if
done naively, requires N N( )mult sph operations, and is
therefore, in principle, quadratically scaling with respect to
the size of the system. In the current implementation, this
bottleneck is removed by using the FMM,47 that has been
implemented in the ddX library and is part of the publicly
available code. The FMM library already accepts multipoles of
any order as input, so for further technical details about the
computation of the electric potential, we refer to reference48
where we present the ddX-FMM implementation. We
conclude this section with a remark. The implementation of
the coarse-graining scheme could be easily extended to QM
densities, as the machinery to compute the Φ and Ψ quantities
for QM solutes is completely general and makes no assumption

Figure 3. Simplified scheme of the interface between Tinker and ddX. Most of the data handling is omitted for clarity, however, all the subroutines
involved are represented with colored boxes.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04579
J. Phys. Chem. B 2022, 126, 8827−8837

8831

https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04579?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04579?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04579?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04579?fig=fig3&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04579?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


on the position of the atoms with respect to the centers of the
spheres.28,35 Note, however, that given the size of treatable full
QM solutes, a coarse-grained approach is computationally not
very attractive.
Tinker−ddCOSMO Interface. The UATM coarse-grain-

ing scheme was implemented in Tinker 8 together with an
interface to the ddX library.40,41 Since the ddX library accepts
as input multipoles of arbitrary order, the support for advanced
force fields is already partially present; however, polarizable
force fields, such as AMOEBA, require to account for the
mutual polarization between the solute and the continuum and
hence require additional steps that have not been implemented
yet. At the moment, the Tinker−ddX interface can be used to
compute the solvation energy in the case of a nonpolarizable
force field, in a fine-grained case and in a coarse-grained case,
the latter based on the UATM definition. In this section, we
provide technical details about the implementation together
with a general overview of the interface for the computation of
the solvation energy.
The ddX library is compiled as a shared object that can be

linked to the Tinker executables so that it is possible to use the
ddX functionalities easily. All the data handling is entirely done
in Tinker, which has to keep track of the workspaces,
constants, RHSs, and solutions needed and produced by the
ddX library.
Figure 3 presents a simplified scheme of the interface, the

figure shows the routines exposed by ddX, which have to be
called during a continuum solvation calculation and the
routines which have been added to Tinker to make the data
handling, the logic operation, and the coarse-graining possible.
First, we added a new routine (ddx_parameters) that parses

the Tinker input file (.key) for control keywords directly aimed
at the ddX library: in this way it is possible to set the model,
max , Ngrid, ϵ, the convergence threshold, the number of
OpenMP threads, the use of the FMM, and the maximum
angular momentum for the FMM, as well as the coarse-
graining method.
Then, the rest of the steps are done within the routine

eddx3, which is the top level driver for the computation of the
solvation energy. Such a routine also takes care of the
initialization of the ddX library. As the various quantities that
need to be set before calling the ddX workers depend on the
geometry of the system, it has to be done externally, also in the
perspective of doing molecular dynamics simulations, that
would require to repeat the initialization at every simulation
step. In ddX two different routines perform the initialization
ddinit allocates temporary workspaces and precomputes the
constants used by the method, ddx_init_state allocates space
for the RHSs, solutions and all the relevant quantities needed
for postprocessing. The latter is a separate routine, so that if
needed, more ddCOSMO problems corresponding to different
densities can be solved at the same time, while using a
common pool of constants and parameters. ddx_init
precomputes the scaling factors for the spherical harmonics
and the FMM transformations, computes the Lebedev points
and weights on the unit sphere and evaluates the spherical
harmonics at them, constructs the cluster tree used by the
FMM method through recursive intertial bisection,48 con-
structs the neighbor list to be used by ddCOSMO, computes
the position of the Lebedev points for all the spheres, and
finally, evaluates the functions Ui and ωij at them.
In eddx3, first, various basic quantities such as the cavity

definition in terms of radii and centers of the spheres, and the

multipoles in real spherical harmonics, are computed. Then,
additional processing of the molecular cavity is performed. For
example, additional spheres can be appended to the cavity, or
the coarse-graining can be applied. The UATM implementa-
tion uses the information available in Tinker about the
connectivity and about the atom types to decide which atoms
are hydrogens bonded to heavy atoms. Then it uses the rules
for the cavity together with the M2M translation to modify the
three arrays ddx_multipoles, ddx_radii, and ddx_coords. In
this M2M translation, we truncate the multipolar distributions
at the same value max , which is used for the ddCOSMO
discretization. It is important to note that the coarse-graining is
completely contained in this call, making it possible to
implement different coarse-graining schemes without having
to modify the remaining part of the implementation.
Once the cavity is available, it is possible to initialize the ddX

library, by calling the appropriate routines which allocate the
required memory and precompute the constants. The
computation of the vectors Φ and Ψ for multipolar
distributions is left to ddX, and then Φ is used to solve the
linear system LX = −Φ. Finally, once the solution X is known,
the energy can be computed and the library can be finalized by
calling the appropriate subroutines for the deallocation of the
memory. In Figure 3 we also reported a solver for ddPCM,
which is out of the scope of the present contribution but, at the
same time, is implemented in the ddX library and completely
shares the interface with ddCOSMO, so it is usable without
further modifications.

■ RESULTS AND DISCUSSION
In this section, we present numerical results that explore the
accuracy of the calculation with respect to the choice of the
ddCOSMO discretization parameters, and benchmark calcu-
lations on a variety of large systems composed of whole viral
capsides. The accuracy tests have been performed on a set of
smaller structures. The complete list of the used structures is
reported in Table 1.

Table 1. Details about the Systems Used for Benchmarks on
Timings and Energies, the Systems Ranging from 2p7r to
7v7e Have Also Been Used for the FMM and lmax
Bencharksa

PDB code name ref N atoms

2p7r cyclic pentapeptide 49 70
1etn enterotoxin 50 143
1du9 scorpion toxin 51 381
1gzz growth factor 52 944
1d3w ferredoxin 53 2051
1qgt hepatitis B (capsid unit) 54 9062
1ju2 hydroxynitrile lyase 55 20288
7v7e SARS-CoV-2 spike 47896

1stm satellite panicum mosaic virus 56 138408
3n7x Penaeus stylirostris densovirus 57 312660
1ohf Nudaurelia capensis omega virus 58 2141700
3jay nuclear polyhedrosis virus 59 3863940
1uf2 rice dwarf virus 60 6958380

aTop block: smaller systems used also for the FMM and max
benchmarks; bottom block: larger systems only used for benchmarks
on timings and energies.
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The starting point for the calculations are input files for
Tinker. To assemble those we used the program pdb2xyz,
which is provided by the Tinker package and allows generating
a Tinker xyz file from a PDB file and a force field, this tool also
protonates the structure according to the valences prescribed
by the force field. For generating all the input structures, we
used the Amber99 force field.61 For the whole viral capsides,
the PDB files contain only the structure of the repeating unit,
so we used the transformation matrices contained in the PDB
header to reconstruct the whole structures.
All the calculations have been performed using the following

parameters for ddCOSMO: (i) a convergence threshold of
10−6; (ii) a dielectric permittivity ϵ = 80; (iii) an internal
switching region η = 0.1. We systematically use a SAS cavity,
assembled either using the UATM scheme or directly from the
fine-grained list of atoms. In both cases, the effective radius of
the solvent (1.4 Å for water) is added to the VdW radius8 (or
UATM radius) of the atom.
All the calculations have been performed on a single cluster

node equipped with 2 AMD EPYC 7282 16-Core @ 2.30 GHz
CPUs, for a total of 32 cores, together with 512 GB of RAM
memory. Both Tinker and ddX were compiled using the Intel
ifort compiler and linked against the Intel MKL libraries.
For the calculations, we used our fork of commit 056b5da of

the release branch of TinkerTools/tinker on GitHub, and
commit 935a471 of the branch mnottoli/tinker of ACoM-
Computational-Mathematics/ddX on GitHub.
Accuracy of the FMM. In ddCOSMO, the FMM is used

to accelerate the computation of the RHS, such that it is done
in a linear scaling time. This step is controlled by two
parameters, namely the maximum angular momentum of the
multipolar (pm) and local (pl) distributions: in the following
discussion we set pm = pl = pmax. For each test structure, we
performed both a fine-grained and a coarse-grained calculation,
setting pmax to the values 2, 4, 6, 8, and 10 and a reference value
of 20. For each calculation, we set = 6max and Ngrid = 110.
Figure 4 reports the relative difference on the energy

computed with respect to the reference value pmax = 20, for

each system and for the varying control parameters. From this
analysis we evidence two main conclusions. First, since in the
coarse-graining step we truncate the multipolar distributions at
max , we need pmax of at least the same value to avoid a loss of
information about the multipolar distribution. When pmax is
equal to 6 the relative difference obtained with a coarse- and a

fine-grained model is similar. Second, for what concerns the
general accuracy, we note that even with a low value of pmax, we
already achieve a relative difference below 1%. The differences
are consistent with those found in ref 48, where the FMM
implementation available in ddX is used to compute both the
electrostatic potential required by the sphere−sphere inter-
actions present in ddPCM and by the RHS as for ddCOSMO.
Accuracy of the Discretization. As a second preliminary

benchmark, we looked for a value of max that provides results
with an accuracy of about 1% with respect to a fully converged
calculation. To do this, for each test structure, we performed
fine- and coarse-grained calculations, setting max to the values
2, 4, 6, 8, 10, 12, and 14 and to a reference value of 20. Each
set of fine- and coarse-grained calculations uses as a reference
the corresponding fine- or coarse-grained calculation done with

= 20max . In the fine-grained case, we used a fixed pmax = 4 for
all values of max , whereas in the coarse-grained case, we used

=pmax max to avoid the truncation of the input multipolar
distributions. In all the cases, Ngrid was set to a large value of
2030, which is required to properly integrate the spherical
harmonics with = 20max .
The relative differences are reported in Figure 5 for the

various systems and various maximum angular momenta. For
all the structures we observe the same trend, the difference
exponentially decreases with an increasing max . The results
obtained with a coarse-grained model also follow the fine-
grained ones, with an exception for the smallest system, where
the two convergence profiles are slightly different. In general,
an accuracy of ∼1% is obtained with a value of = 6max ; higher
accuracies of ∼1‰ require a = 12max .
Effect of the Discretization on the Relative Stability of

Conformers. To further assess the quality of the discretization,
and to validate the parameters proposed in the previous
section, we performed an analysis of the relative stability of a
set of conformers. The structures were taken from the PDB file
1du9 (details are given in Table 1), which contains the
structures of 25 conformers (only the first was used in the
previous section). The conformers have been labeled with the
letters from “a” to “y” following the same order given in the
PDB file; the conformer presenting the lowest solvation energy
is the “b” and is used as a reference for computing the energy
differences. In these calculations we set max to the values 6 and
12 and a reference value of 20, Ngrid = 2030 and pmax = 4 for
the fine-grain and =pmax max for the coarse-grain.
Figure 6 reports the absolute error in kcal/mol of the

energies of the conformers and the absolute error on the
energy differences with respect to conformer “b”. As it can be
observed, the error on the relative energies is roughly 1 order
of magnitude smaller, this is because the discretization error is
systematic in the positive direction (as it can be seen from
Figure 5), so when energy differences are computed, there is an
error cancellation that allows to use lower values of max . For
the analyzed system, using = 6max already is sufficient to
obtain errors on the solvation ΔE, which are below 1 kcal/mol.
The same trend is observed for both the fine- and coarse-
grained calculations. In a fine-grained calculation the energetic
order of the conformers is stable after = 8max , whereas in a
coarse-grained calculation it is stable after = 6max .
Comparison of the Fine- and Coarse-Grained Results.

Once the optimal parameters for achieving an accuracy of ∼1%
were determined, we ran a series of benchmarks on structures

Figure 4. Relative error on the energies computed for the different
test structures, using the fine- and coarse-grain implementations, for
various accuracies of the FMM. The different colors report various
values of pmax.
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with numbers of atoms spanning all the orders of magnitude
from 102 to 106. These calculations were obtained using

= 6max , Ngrid = 110 (which we tested to be enough to
integrate the spherical harmonics with = 6max ), and in the
fine-grained case, pmax = 4, whereas in the coarse-grained case
we used pmax = 6. The calculation on the largest system was
only possible with the coarse-grained model due to a high
memory usage using the fine-grained model. We note here that
a consistent memory usage (∼80 GB for the largest system)
comes also from the allocations made by Tinker.
Figure 7 reports the ratio between the coarse- and fine-

grained energies, as well as the number of iterations in the two
cases. The effect of the coarse-graining on the energy for a SAS
cavity is a small increase in its value: all the coarse-grained
energies are between 1× and 1.3× larger than the
correspondent fine-grained ones. This can be rationalized by
the fact that the charges of the hydrogens are closer to the
cavity boundary, and hence, the polarization effects are

stronger. We remark here that a sizable difference in the
electrostatic contribution to the solvation energies between
calculations performed with different molecular surfaces is to
be expected, the only important thing being that the computed
values are of the same order of magnitude. What we report are,
in fact, not solvation-free energies, but only one of the
contributions. Computing free energies would require one to
parametrize the nonelectrostatic contributions and add them
to the computed electrostatic energies. Such a parametrization
is currently being investigated for both cavities and will be the
object of a future communication. Another important
consequence of the coarse-graining is that, simplifying the
molecular cavity affects the number of iterations required for
the solution of the linear system: their number is significantly
lowered and, thus, the efficiency of the method is increased.
Figure 8 reports the timings for all the steps required by a

ddCOSMO calculation: solving the linear system, assembling
the RHSs Φ and Ψ, plus the initialization and the time
required for the coarse-graining. Table 2, on the other hand,
reports the total time required by the ddX library, sum of all
the steps reported in the plot. All the steps show that the

Figure 5. Relative differences on the energies for various structures and maximum angular momenta of the spherical harmonics. The reference
values are the energies obtained using a coarse- and fine-grained model for = 20max . The relative differences of 1% and 1‰ are highlighted using
horizontal dotted lines.

Figure 6. Top: absolute error on the solvation energy of the 25
conformers, Bottom: absolute error on the relative energies of the
conformers with respect to the energy of conformer “b”. In both cases,
the reference values are computed with = 20max .

Figure 7. Purple: energy obtained with a coarse-grained calculation
divided by the correspondent fine-grain energy for the various
structure. Orange: number of iterations required by the Jacobi/DIIS
solver for a fine- and a coarse-grained calculation, respectively,
reported using solid and dashed lines.
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computational cost scales linearly with the size of the system,
with a small exception for the cost of the linear system, which
is slightly more than linear scaling: despite the cost for a single
iteration being linear, for the systems below 104 atoms, we
observe that the number of iterations increases with the size of
the system (Figure 7). As expected, the most expensive step is
solving the linear system, all the other steps are at least 1 order
of magnitude faster, with the computation of Ψ and the coarse-
graining being almost negligible on the total.
Switching to a coarse-grained description results in a

significantly lower time for the three most expensive steps,
more about this is reported in Figure 9. For all the investigated
structures, a coarse-grained calculation is between 1.7 and 4.6
times faster than a fine-grained calculation. As expected, the
speedup shows a correlation to the fraction of hydrogens which
are removed in the coarse-graining. However, the reduction in
time associated with the coarse-graining is not exactly linear in
the number of removed atoms: this is due to the fact that not
only the number of spheres decreases, but also the average
number of neighbors and the number of iterations is lower in
the coarse-grained case.

■ CONCLUSIONS
In this paper we presented a Tinker−ddX interface that can be
used to compute the electrostatic contribution to the solvation
energy for systems described using non polarizable force fields.
The interface was also adapted to implement the united atom
coarse-graining strategy, making it possible to test the coarse-
grained ddCOSMO against the regular fine-grained ddCOS-
MO on a large variety of systems.
In our tests, we first identified discretization parameters that

allow for an accuracy on the solvation energies of ∼1% and we
then computed the solvation energies of systems with a
number of atoms spanning all the order of magnitude from 10
to 106. From the results, we found that the coarse-graining
strategy applied to ddCOSMO is very effective at reducing its
computational cost by both reducing the cost associated with a
matrix-vector multiplication, and reducing the number of
iterations required to converge the solution. For the largest
systems, applying the coarse-grain results in a significant 4-fold
increase in efficiency. At the same time, the discretization error
is unchanged, and the energies obtained with coarse-grained
calculations are comparable with those obtained with fine-
grained calculations. Overall, we showed that ddCOSMO is a
promising numerical strategy to compute the solvation energy
for systems of any size, ranging from small systems as the ones
used in high-accuracy quantum-mechanical applications, to
very large ones, bridging thus the continuum solvation gap
between quantum chemistry and biophysics.
A mandatory future development to make this strategy

viable for practical applications is the parametrization of the
nonelectrostatic contributions to the solvation free energy, for
both fine- and coarse-grained cavities. A further natural
continuation of this work is extending the support to more
advanced force fields, such as the AMOEBA force field,62−65

which contains higher order multipoles and induced dipoles,
and implementing the code required for the computation of
the forces, both for fine- and coarse-grained calculations.
Finally, different, more aggressive, coarse-graining strategies

could be devised and tested as well, which would allow
applying ddCOSMO to systems even larger than those
presented in this contribution.

Figure 8. Time required to complete all the steps of a ddCOSMO
calculation in a fine- and in a coarse-grained case, respectively,
reported using solid and dashed lines. The labels refer to solving the
linear system (LS), computing the electric potential (Φ), computing
the representation of the solute density (Ψ), initialization (Init.), and
coarse-graining. The light gray guidelines show the linear scaling
regime.

Table 2. Total Time Required by the ddX Library in Fine-
and Coarse-Grained ddCOSMO Calculations

fine-grain coarse-grain

system h m s h m s

2p7r 0 0 0.08 0 0 0.05
1etn 0 0 0.15 0 0 0.07
1du9 0 0 0.31 0 0 0.15
1gzz 0 0 1.08 0 0 0.28
1d3w 0 0 2.65 0 0 0.75
1qgt 0 0 13.25 0 0 3.30
1ju2 0 0 46.39 0 0 10.05
7v7e 0 1 14.15 0 0 18.77
1stm 0 4 19.90 0 1 3.07
3n7x 0 11 41.72 0 2 50.66
1ohf 1 40 59.34 0 23 48.18
3jay 2 9 20.22 0 32 42.42
1uf2 0 56 9.21

Figure 9. Purple: total time required by a fine-grained calculation
divided by the total time required by a coarse-grained calculation for
the various structures. Orange: fraction of hydrogens on the total
number of atoms for the various structures.
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(26) Klamt, A.; Schüürmann, G. COSMO: a new approach to
dielectric screening in solvents with explicit expressions for the
screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2 1993,
799−805.
(27) Lipparini, F.; Scalmani, G.; Lagarder̀e, L.; Stamm, B.; Cances̀,
E.; Maday, Y.; Piquemal, J.-P.; Frisch, M. J.; Mennucci, B. Quantum,
classical, and hybrid QM/MM calculations in solution: General
implementation of the ddCOSMO linear scaling strategy. J. Chem.
Phys. 2014, 141, 184108.
(28) Lipparini, F.; Lagarder̀e, L.; Scalmani, G.; Stamm, B.; Cances̀,
E.; Maday, Y.; Piquemal, J.-P.; Frisch, M. J.; Mennucci, B. Quantum
Calculations in Solution for Large to Very Large Molecules: A New
Linear Scaling QM/Continuum Approach. J. Phys. Chem. Lett. 2014,
5, 953−958.
(29) Lipparini, F.; Lagarder̀e, L.; Raynaud, C.; Stamm, B.; Cances̀,
E.; Mennucci, B.; Schnieders, M.; Ren, P.; Maday, Y.; Piquemal, J.-P.
Polarizable Molecular Dynamics in a Polarizable Continuum Solvent.
J. Chem. Theory Comput. 2015, 11, 623−634.
(30) Caprasecca, S.; Jurinovich, S.; Lagarder̀e, L.; Stamm, B.;
Lipparini, F. Achieving Linear Scaling in Computational Cost for a
Fully Polarizable MM/Continuum Embedding. J. Chem. Theory
Comput. 2015, 11, 694−704.
(31) Nottoli, M.; Nifosì, R.; Mennucci, B.; Lipparini, F. Energy,
Structures, and Response Properties with a Fully Coupled QM/
AMOEBA/ddCOSMO Implementation. J. Chem. Theory Comput.
2021, 17, 5661−5672.
(32) Wang, T.; Cooper, C. D.; Betcke, T.; Barba, L. A. High-
productivity, high-performance workflow for virus-scale electrostatic
simulations with Bempp-Exafmm. arXiv:2103.01048 [physics.comp-ph]
2021, na.
(33) Martínez, M.; Cooper, C. D.; Poma, A. B.; Guzman, H. V. Free
Energies of the Disassembly of Viral Capsids from a Multiscale
Molecular Simulation Approach. J. Chem. Inf. Model. 2020, 60, 974−
981.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04579
J. Phys. Chem. B 2022, 126, 8827−8837

8836

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Filippo+Lipparini"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4947-3912
https://orcid.org/0000-0002-4947-3912
mailto:filippo.lipparini@unipi.it
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michele+Nottoli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6544-0897
https://orcid.org/0000-0002-6544-0897
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aleksandr+Mikhalev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benjamin+Stamm"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3375-483X
https://orcid.org/0000-0003-3375-483X
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04579?ref=pdf
https://doi.org/10.1063/1.4947236
https://doi.org/10.1063/1.4947236
https://doi.org/10.1002/wcms.1086
https://doi.org/10.1002/wcms.56
https://doi.org/10.1021/cr9904009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr9904009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr960149m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr960149m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp953141+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp953141+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp953141+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100785a001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100161a070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100161a070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0022-2836(71)90324-X
https://doi.org/10.1016/0022-2836(71)90324-X
https://doi.org/10.1146/annurev.bb.06.060177.001055
https://doi.org/10.1146/annurev.bb.06.060177.001055
https://doi.org/10.1073/pnas.75.1.303
https://doi.org/10.1073/pnas.75.1.303
https://doi.org/10.1016/0263-7855(93)87010-3
https://doi.org/10.1016/0022-2836(84)90231-6
https://doi.org/10.1016/0022-2836(84)90231-6
https://doi.org/10.1107/S0021889883010985
https://doi.org/10.1016/j.jcp.2016.07.007
https://doi.org/10.1016/j.jcp.2016.07.007
https://doi.org/10.1093/bioinformatics/bty761
https://doi.org/10.1093/bioinformatics/bty761
https://doi.org/10.1093/bioinformatics/bty761
https://doi.org/10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
https://doi.org/10.1002/jcc.540151009
https://doi.org/10.1002/jcc.540151009
https://doi.org/10.1002/jcc.540151009
https://doi.org/10.1002/(SICI)1096-987X(19981130)19:15<1758::AID-JCC8>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1096-987X(19981130)19:15<1758::AID-JCC8>3.0.CO;2-M
https://doi.org/10.1007/s002140050300
https://doi.org/10.1007/s002140050300
https://doi.org/10.1063/1.2173258
https://doi.org/10.1063/1.2173258
https://doi.org/10.1063/1.2173258
https://doi.org/10.1063/1.4816767
https://doi.org/10.1063/1.4816767
https://doi.org/10.1021/ct400280b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct400280b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/qua.25669
https://doi.org/10.1002/qua.25669
https://doi.org/10.1002/qua.25669
https://doi.org/10.1002/qua.25669
https://doi.org/10.1039/P29930000799
https://doi.org/10.1039/P29930000799
https://doi.org/10.1039/P29930000799
https://doi.org/10.1063/1.4901304
https://doi.org/10.1063/1.4901304
https://doi.org/10.1063/1.4901304
https://doi.org/10.1021/jz5002506?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz5002506?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz5002506?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct500998q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct501087m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct501087m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2103.01048
https://doi.org/10.48550/arXiv.2103.01048
https://doi.org/10.48550/arXiv.2103.01048
https://doi.org/10.1021/acs.jcim.9b00883?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00883?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00883?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04579?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(34) Nottoli, M.; Lipparini, F. General Formulation of Polarizable
Embedding Models and of Their Coupling. J. Chem. Phys. 2020, 153,
224108.
(35) Nottoli, M.; Stamm, B.; Scalmani, G.; Lipparini, F. Quantum
Calculations in Solution of Energies, Structures, and Properties with a
Domain Decomposition Polarizable Continuum Model. J. Chem.
Theory Comput. 2019, 15, 6061−6073.
(36) Gatto, P.; Lipparini, F.; Stamm, B. Computation of forces
arising from the polarizable continuum model within the domain-
decomposition paradigm. J. Chem. Phys. 2017, 147, 224108.
(37) Stamm, B.; Cances̀, E.; Lipparini, F.; Maday, Y. A new
discretization for the polarizable continuum model within the domain
decomposition paradigm. J. Chem. Phys. 2016, 144, 054101.
(38) Jha, A.; Nottoli, M.; Quan, C.; Stamm, B. Computation of
forces arising from the linear Poisson−Boltzmann method in the
domain-decomposition paradigm. arXiv:2203.00552 [math.NA] 2022,
na.
(39) Quan, C.; Stamm, B.; Maday, Y. A Domain Decomposition
Method for the Poisson−Boltzmann Solvation Models. Siam J. Sci.
Comput. 2019, 41, B320−B350.
(40) Herbst, M.; Jha, A.; Lipparini, F.; Mikhalev, A.; Nottoli, M.;
Stamm, B.ddX.https://github.com/ACoM-Computational-
Mathematics/ddX.
(41) Rackers, J. A.; Wang, Z.; Lu, C.; Laury, M. L.; Lagarder̀e, L.;
Schnieders, M. J.; Piquemal, J.-P.; Ren, P.; Ponder, J. W. Tinker 8:
Software Tools for Molecular Design. J. Chem. Theory Comput. 2018,
14, 5273−5289.
(42) Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities
for the Computation of Solvation Free Energies by the Polarizable
Continuum Model. J. Chem. Phys. 1997, 107, 3210.
(43) Ciaramella, G.; Hassan, M.; Stamm, B. On the Scalability of the
Schwarz Method. Smai J. Comput. Math. 2020, 6, 33−68.
(44) Cances̀, E. In Continuum Solvation Models in Chemical Physics:

From Theory to Applications; Mennucci, B., Cammi, R., Eds.; Wiley,
2007; Chapter 1, pp 29−48.
(45) Lebedev, V. I.; Laikov, D. N. A quadrature formula for te sphere
of the 131st algebraic order of accuracy. Dokl. Math. 1999, 59, 477−
481.
(46) Pulay, P. Convergence acceleration of iterative sequences. the
case of scf iteration. Chem. Phys. Lett. 1980, 73, 393−398.
(47) Greengard, L.; Rokhlin, V. A new version of the Fast Multipole
Method for the Laplace equation in three dimensions. Acta Num
1997, 6, 229−269.
(48) Mikhalev, A.; Nottoli, M.; Stamm, B. Linearly scaling
computation of ddPCM solvation energy and forces using the fast
multipole method. J. Chem. Phys. 2022, 157, 114103.
(49) Hall, P. R.; Malone, L.; Sillerud, L. O.; Ye, C.; Hjelle, B. L.;
Larson, R. S. Characterization and NMR Solution Structure of a
Novel Cyclic Pentapeptide Inhibitor of Pathogenic Hantaviruses.
Chem. Biol. & Drug Des. 2007, 69, 180−190.
(50) Ozaki, H.; Sato, T.; Kubota, H.; Hata, Y.; Katsube, Y.;
Shimonishi, Y. Molecular structure of the toxin domain of heat-stable
enterotoxin produced by a pathogenic strain of Escherichia coli. A
putative binding site for a binding protein on rat intestinal epithelial
cell membranes. J. Biol. Chem. 1991, 266, 5934−5941.
(51) Xu, Y.; Wu, J.; Pei, J.; Shi, Y.; Ji, Y.; Tong, Q. Solution Structure
of BmP02, a New Potassium Channel Blocker from the Venom of the
Chinese Scorpion Buthus martensi Karsch. Biochemistry 2000, 39,
13669−13675.
(52) Brzozowski, A. M.; Dodson, E. J.; Dodson, G. G.; Murshudov,
G. N.; Verma, C.; Turkenburg, J. P.; de Bree, F. M.; Dauter, Z.
Structural Origins of the Functional Divergence of Human Insulin-
Like Growth Factor-I and Insulin. Biochemistry 2002, 41, 9389−9397.
(53) Chen, K.; Hirst, J.; Camba, R.; Bonagura, C. A.; Stout, C. D.;
Burgess, B. K.; Armstrong, F. A. Atomically defined mechanism for
proton transfer to a buried redox centre in a protein. Nat. 2000, 405,
814−817.
(54) Wynne, S.; Crowther, R.; Leslie, A. The Crystal Structure of the
Human Hepatitis B Virus Capsid. Mol. Cell 1999, 3, 771−780.

(55) Dreveny, I.; Gruber, K.; Glieder, A.; Thompson, A.; Kratky, C.
The Hydroxynitrile Lyase from Almond. Struct 2001, 9, 803−815.
(56) Ban, N.; McPherson, A. The structure of satellite panicum
mosaic virus at 1.9 Å resolution. Nat. Struct. Biol. 1995, 2, 882−890.
(57) Kaufmann, B.; Bowman, V. D.; Li, Y.; Szelei, J.; Waddell, P. J.;
Tijssen, P.; Rossmann, M. G. Structure of Penaeus stylirostris
Densovirus, a Shrimp Pathogen. J. Virology 2010, 84, 11289−11296.
(58) Helgstrand, C.; Munshi, S.; Johnson, J. E.; Liljas, L. The refined
structure of Nudaurelia capensis Virus reveals control elements for a
T = 4 capsid maturation. Virology 2004, 318, 192−203.
(59) Yu, X.; Jiang, J.; Sun, J.; Zhou, Z. H. A putative ATPase
mediates RNA transcription and capping in a dsRNA virus. Elife 2015,
4, No. e07901.
(60) Nakagawa, A.; Miyazaki, N.; Taka, J.; Naitow, H.; Ogawa, A.;
Fujimoto, Z.; Mizuno, H.; Higashi, T.; Watanabe, Y.; Omura, T.; et al.
The Atomic Structure of Rice dwarf Virus Reveals the Self-Assembly
Mechanism of Component Proteins. Struct 2003, 11, 1227−1238.
(61) Wang, J.; Cieplak, P.; Kollman, P. A. How well does a
restrained electrostatic potential (RESP) model perform in calculating
conformational energies of organic and biological molecules? J.
Comput. Chem. 2000, 21, 1049−1074.
(62) Ren, P.; Ponder, J. W. Consistent treatment of inter- and
intramolecular polarization in molecular mechanics calculations. J.
Comput. Chem. 2002, 23, 1497−1506.
(63) Ren, P.; Ponder, J. W. Polarizable Atomic Multipole Water
Model for Molecular Mechanics Simulation. J. Phys. Chem. B 2003,
107, 5933−5947.
(64) Grossfield, A.; Ren, P.; Ponder, J. W. Ion Solvation
Thermodynamics from Simulation with a Polarizable Force Field. J.
Am. Chem. Soc. 2003, 125, 15671−15682.
(65) Ponder, J. W.; Wu, C.; Ren, P.; Pande, V. S.; Chodera, J. D.;
Schnieders, M. J.; Haque, I.; Mobley, D. L.; Lambrecht, D. S.;
DiStasio, R. A.; et al. Current Status of the AMOEBA Polarizable
Force Field. J. Phys. Chem. B 2010, 114, 2549−2564.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04579
J. Phys. Chem. B 2022, 126, 8827−8837

8837

https://doi.org/10.1063/5.0035165
https://doi.org/10.1063/5.0035165
https://doi.org/10.1021/acs.jctc.9b00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5008329
https://doi.org/10.1063/1.5008329
https://doi.org/10.1063/1.5008329
https://doi.org/10.1063/1.4940136
https://doi.org/10.1063/1.4940136
https://doi.org/10.1063/1.4940136
https://doi.org/10.48550/arXiv.2203.00552
https://doi.org/10.48550/arXiv.2203.00552
https://doi.org/10.48550/arXiv.2203.00552
https://doi.org/10.1137/18M119553X
https://doi.org/10.1137/18M119553X
https://github.com/ACoM-Computational-Mathematics/ddX
https://github.com/ACoM-Computational-Mathematics/ddX
https://doi.org/10.1021/acs.jctc.8b00529?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00529?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.474671
https://doi.org/10.1063/1.474671
https://doi.org/10.1063/1.474671
https://doi.org/10.5802/smai-jcm.61
https://doi.org/10.5802/smai-jcm.61
https://doi.org/10.1016/0009-2614(80)80396-4
https://doi.org/10.1016/0009-2614(80)80396-4
https://doi.org/10.1017/S0962492900002725
https://doi.org/10.1017/S0962492900002725
https://doi.org/10.1063/5.0104536
https://doi.org/10.1063/5.0104536
https://doi.org/10.1063/5.0104536
https://doi.org/10.1111/j.1747-0285.2007.00489.x
https://doi.org/10.1111/j.1747-0285.2007.00489.x
https://doi.org/10.1016/S0021-9258(19)67688-X
https://doi.org/10.1016/S0021-9258(19)67688-X
https://doi.org/10.1016/S0021-9258(19)67688-X
https://doi.org/10.1016/S0021-9258(19)67688-X
https://doi.org/10.1021/bi000860s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi000860s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi000860s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi020084j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi020084j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/35015610
https://doi.org/10.1038/35015610
https://doi.org/10.1016/S1097-2765(01)80009-5
https://doi.org/10.1016/S1097-2765(01)80009-5
https://doi.org/10.1016/S0969-2126(01)00639-6
https://doi.org/10.1038/nsb1095-882
https://doi.org/10.1038/nsb1095-882
https://doi.org/10.1128/JVI.01240-10
https://doi.org/10.1128/JVI.01240-10
https://doi.org/10.1016/j.virol.2003.08.045
https://doi.org/10.1016/j.virol.2003.08.045
https://doi.org/10.1016/j.virol.2003.08.045
https://doi.org/10.7554/eLife.07901
https://doi.org/10.7554/eLife.07901
https://doi.org/10.1016/j.str.2003.08.012
https://doi.org/10.1016/j.str.2003.08.012
https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
https://doi.org/10.1002/jcc.10127
https://doi.org/10.1002/jcc.10127
https://doi.org/10.1021/jp027815+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp027815+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja037005r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja037005r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp910674d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp910674d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04579?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

