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In the area of genetic epidemiology, genetic risk predictive modeling is becoming an
important area of translational success. As an increasing number of genetic variants are
successfully discovered, the use of multiple genetic variants in constructing a genetic
risk score (GRS) for modeling has been widely applied using a variety of approaches.
Previously, we compared the performance of a simple, additive GRS with weighted
GRS approaches, but our initial simulation experiment assumed very simple models
without many of the complications found in real genetic studies. In particular, interactions
between variants and linkage disequilibrium (LD) (indirect mapping) remain important
and challenging problems for GRS modeling. In the present study, we applied two
simulation strategies to mimic various types of epistasis to evaluate their impact on
the performance of the GRS models. We simulated a range of models demonstrating
statistical interaction and linkage disequilibrium. Three genetic risk models were compared
in terms of power, type I error, C-statistic and AIC, including a simple count GRS (SC-GRS),
an odds ratio weighted GRS (OR-GRS) and an explained variance weighted GRS (EV-
GRS). Simulation factors of interest included allele frequencies, effect sizes, strengths
of interaction, degrees of LD and heritability. We extensively examined the extent to how
these interactions could influence the performance of genetic risk models. Our results
show that the weighted methods outperform simple count method in general even if
interaction or LD is present, with well controlled type I error.

Keywords: explained variance, genetic risk score (GRS), interaction, linkage disequilibrium (LD), predictive

modeling

INTRODUCTION
In recent years, Genome-Wide Association Studies (GWAS)
and candidate gene studies have identified a large number
of genetic variants with varying effect size that are associ-
ated with complex diseases (McCarthy et al., 2008) and drug
response/pharmacogenomic traits (Ritchie, 2012). This identifi-
cation of causal and/or associated variants provides new oppor-
tunities to develop more personalized approaches to disease
prediction and prevention. One popular approach for incorpo-
rating identified genetic variants is by constructing a genetic risk
score (GRS) for modeling using a variety of approaches, such
as an additive simple count and weighted GRS (Carayol et al.,
2010; Paynter et al., 2010). The applicability of these cumulative
risk scores as predictive models for disease has been proposed
and brought anecdotal successes in the real genetic studies (Hess
et al., 2006; Meigs et al., 2008; Klein et al., 2009; Manolio,
2010). While several approaches have been implemented success-
fully and become widely applied in real data analyses, these risk
score models have not been thoroughly evaluated, particularly in
complex scenarios.

Previously, we compared the performance of a simple, addi-
tive GRS with weighted GRS approaches in a wide range of
simulation scenarios. Our initial findings show that a weighted
method involving both the odds ratio and allele frequency of
variants robustly outperforms other GRS models in general (Che

and Motsinger-Reif, 2012). However, we recognized that our
simulation experiment assumed very simple models without
many of the complications found in real genetic studies. In partic-
ular, interactions between variants in predicting disease risk and
linkage disequilibrium (LD) (indirect correlation between mark-
ers) remain important and challenging problems (Winham et al.,
2012). When moving from variant discovery to validation and
prediction, such complex architecture may bring more challenges.
Therefore, a more comprehensive exploration of the consequence
of complex etiology and multi-locus correlation on risk model-
ing is becoming a priority. Although the primary goal of GRS
is beyond the initial detection of risk alleles, and typically only
involves variants with previously established associations, ignor-
ing interactions may largely limit the success of risk prediction
model for complex disease and pharmacogenomic studies.

Epistasis or gene-gene interaction has become a hot topic
in complex disease genetics recently. In the previous literature,
discussion of epistasis has been considerably confused by dif-
fering definitions as well as by applying the same terminology
to quite different concepts. In essence, epistasis refers to depar-
ture from “independence” of the effects of multiple loci in the
way that they combine to cause disease (Cordell, 2002). From a
statistical point of view, epistasis represents departure from addi-
tivity in a mathematical model that describes the relationship
between multiple variants and disease outcome in the population
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(Cordell, 2002, 2009; Pattin et al., 2009). In contrast, we also sim-
ulated models that exhibit correlation between loci—representing
linkage disequilibrium (LD) (Lunetta, 2008). Linkage disequilib-
rium refers to the non-random association of alleles at two or
more loci in a population (Shifman et al., 2003; Lunetta, 2008).

In the current study, we explicitly compared the performance
of three genetic risk score approaches to detect the true risk model
in the presence of interaction and LD, including a simple count
(SC-), an odds ratio weighted (OR-) and an explained variance
weighted (EV-) genetic risk score method. We employed two sim-
ulation strategies to represent (1) epistasis (gene-gene interaction
effects on the phenotype) and (2) linkage disequilibrium. The
effect sizes and allele frequencies were considered as important
factors to evaluate the role of weights in the GRS construction.
We also addressed the relationship among effect size, allele fre-
quency, interaction effect, heritability and the predictive power
for the GRS models. The main goal of this study was to explore
the relationship between the degree of interaction and the perfor-
mance of genetic risk scores in model prediction in a wide range
of scenarios, which may in turn help guide the application of GRS
in risk prediction.

METHODS
GENETIC RISK SCORE MODELS
In the present study, GRS models were evaluated for single
nucleotide polymorphism (SNP) data only. However, it could
be easily generalized to other genetic variants or risk fac-
tors. It should be noted that we choose SNPs in the GRS
construction based on either the previous knowledge of the
disease predisposition or the data at hand. Several promis-
ing approaches, such as random forests (Winham et al., 2012)
and statistical epistasis networks (Hu et al., 2011), were devel-
oped to characterize genetic interactions. An evaluation of
methods for the identification and selection of risk vari-
ants with interaction are beyond the primary goal of the
GRS models as implemented here. In the current study, we
assume the associated SNPs have been discovered prior to
GRS modeling.

Three representative GRS methods were compared in this
study, including SC-, OR- and EV-GRS. As implemented in a
previous study, a very simple main effect and additive genetic
model was assumed in the risk modeling (Che and Motsinger-
Reif, 2012). Let D denote the binary phenotype value, where
D = 1 represent case and D = 0 represent control. G is a vector
of genotype combinations across all genetic loci. Gi is the number
of the risk alleles for the i-th SNP. α is an intercept and β measures
the overall effect of the genetic risk score. All parameters were esti-
mated under a logistic regression model without any interaction
term (Che and Motsinger-Reif, 2012).

Simple count GRS (SC-GRS)

logit P(D = 1|G) = α + β(SC_GRS) = α + β

I∑
i = 1

Gi (1)

SC_GRS =
I∑

i = 1

Gi (2)

This simple count score model sums up all risk alleles over all loci
as a summary score. No prior knowledge is needed. It is relatively
simple and thus is in wide application in the current literature
(Paynter et al., 2010).

Odds ratio weighted GRS (OR-GRS)

logit P(D = 1|G) = α + β(OR_GRS) = α + β

I∑
i = 1

wOR_iGi (3)

wOR_i = log(ORi) (4)

OR_GRS =
I∑

i = 1

wOR_iGi (5)

rescaled: OR_GRS = I

(
I∑

i = 1

wOR_iGi

)/( I∑
i = 1

wOR_i

)
(6)

This weighted summary score takes into account the fact that
effect sizes among SNPs vary. In general, log per-allele odds ratio
from meta-analysis or from other independent data is considered
as a reasonable weight to apply to each SNP (Talmud et al., 2010).
A rescaled score is utilized since it is more directly comparable to
the unweighted score.

Explained variance weighted GRS (EV-GRS)

logit P(D = 1|G) = α + β(EV_GRS) = α + β

I∑
i = 1

wEV_iGi (7)

wEV_i = log(ORi)
√

2MAFi(1 − MAFi) (8)

EV_GRS =
I∑

i = 1

wEV_iGi (9)

rescaled: EV_GRS = I

(
I∑

i = 1

wEV_iGi

)/( I∑
i = 1

wEV_i

)
(10)

An alternative weight incorporates MAF as well as OR. The
development of this score was motivated by the assumption
that both MAF and OR are important factors to explain the
genetic variance and heritability (Park et al., 2010). It has
been developed to construct a weight in the risk modeling.
The odds ratio estimates could be obtained identically as dis-
cussed above for the OR-GRS, and the MAF could be gen-
erated from NCBI and HapMap databases, or from the data
at hand.

SIMULATION DESIGN
Simulation design 1: interaction
In the current study, we simulated epistasis as multiple loci,
non-additive disease risk models. In these simulations, the loci
involved in the interaction model are independent (not corre-
lated), but together interact to predict disease. This “statisti-
cal interaction” was simulated assuming that the multiple loci
genotypes jointly contribute to an underlying (unobserved) con-
tinuous trait by varying their interaction term under a linear
regression model. The disease occurs if this continuous trait
exceeds a certain threshold.

Frontiers in Genetics | Statistical Genetics and Methodology July 2013 | Volume 4 | Article 138 | 2

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Che and Motsinger-Reif Evaluation of GRS with interaction and LD

Firstly, genotype Gi at SNP i was generated independently
under Hardy-Weinberg Equilibrium (HWE). The genotype value
was coded as 0, 1, and 2, representing the number of risk alle-
les. Minor allele frequencies (MAF) of the SNPs were set to 0.4
and 0.05, which resemble common and relatively rare variants.
Continuous phenotypes Y were then generated conditional on
genotypes, according to

Y = β0 + β1G1 + β2G2 + β3G3 + β4G4

+ β34G3G4 + e, e ∼ N(0, σ2) (11)

where β0 = 20 and σ2 = 10. Binary affection status D was
assigned to 1 (case) if phenotype Y > median(Y) and D was
0 (control) otherwise, where the threshold median(Y) was only
chosen in order to achieve prevalence P(D) = 0.5 and balanced
case and control data. Under this linear model, β = (β0, β1, β2,
β3, β4, β34) was ranged to reflect different effect sizes (ES) among
SNPs. SNPs 1 and 2 have main effects only, while SNPs 3 and 4
have interactions where β34 reflects the strength of interactions
(Winham et al., 2012). In this simulation, main effect means SNPs
contribute to the disease risk in an independent way only, while
interaction effect defines SNPs are independent but attribute to
the risk both marginally and dependently.

We considered 2 scenarios in simulation one, with 4 and 2
disease-causing SNPs respectively, with a total of 4 SNPs sim-
ulated. In scenario 1, our primary interest was to compare the
performance of genetic risk models including only true “dele-
terious” SNPs. Four SNPs were causative with both main and
interaction effects. In scenario 2, only SNPs 3 and 4 were causative
with interaction effects. The priority was to investigate risk mod-
els when “noise” SNPs were present. In order to examine the effect
of weight and interaction, important simulation factors involved
MAF, effect size (ES) and interaction. All common variants, all
rare variants, common plus rare variants were simulated with
both same and different effect sizes among these SNPs, and three
settings of interactions (negligible, moderate and strong) were
considered, which led to 18 combinations in total. For each com-
bination, 100 replicates were generated with 250 cases and 250
controls. In preliminary studies we simulated datasets with sam-
ple sizes of 1000. The results showed similar patterns and thus the
additional details were not included.

Heritability in the broad sense is defined as the proportion of
the phenotypic variance that could be attributed to variance of
genotypic values, and in the narrow sense it is due to the additive
genetic effect (Visscher et al., 2008). The specific heritability com-
ponent mainly depends on MAF, ES and degree of interaction.
Culverhouse et al. and Winham et al. have described the calcula-
tion of heritability in the presence of main effects and epistasis for
binary traits as simulated here (Culverhouse et al., 2002; Winham
et al., 2012). For a single locus A with genotypes a = 0, 1, 2, the
heritability can be expressed as:

H2
A =

∑2
a = 0 P(Ga){P(D|Ga) − P(D)}2

P(D){1 − P(D)} , (12)

where P(Ga) is the genotype frequency of locus A, P(D) is the
disease prevalence and P(D|Ga) is the penetrance. Penetrance was
defined as the probability of disease conditional on a particular
genotype combination at the disease risk locus/loci. Similarly, the
total heritability due to the two loci A and B, with genotypes a,
b = 0, 1, 2 respectively, is:

H2
AB =

∑2
a = 0

∑2
b = 0 P(Gab){P(D|Gab) − P(D)}2

P(D){1 − P(D)} , (13)

where P(Gab) is the frequency of genotype combinations of a and
b, and P(D|Gab) is the corresponding penetrance. The heritability
due to the marginal effect of locus A is defined as:

H2
M, A =

∑2
a = 0

{∑2
b = 0 P(Gab)

} {∑2
b = 0 P(D|Gab)P(Gab)−P(D)

}2

P(D){1−P(D)} .

(14)

The heritability due to the interaction effect could therefore be
interpreted as the proportion of that is not attributable to the
marginal effects by either locus, that is:

H2
I, AB = H2

AB − H2
M, A − H2

M, B. (15)

This heritability calculation method could be generalized to a
scenario with more causal SNPs. The property of our simu-
lated models could be reflected by varying heritability component
due to the main effects (H2

G1G2 = H2
M,G1 + H2

M,G2) and inter-

action effects (H2
G3G4 = H2

M,G3 + H2
M,G4 + H2

I,G3G4). Low heri-

tability (H2
Total = H2

G1G2 + H2
G3G4 < 5%) was chosen to reflect

detectable effect sizes in the realistic genetic association studies
and to ensure the reasonable power to discriminate the difference
of performance (Winham et al., 2012).

Supplemental Table S1 summarized the simulated model spec-
ifications in terms of MAF, ES, interaction and heritability.

Simulation design 2: linkage disequilibrium
In simulation two, SNP linkage disequilibrium (correlation) was
investigated. We assumed two loci were correlated regardless of
disease outcome. To mimic linkage disequilibrium, simulations
were performed by designing the genotype combination frequen-
cies of two or more loci, and in turn contributing to disease in an
additive but relatively independent fashion under a probabilistic
model. We simulated a true disease risk model involving two inde-
pendent “deleterious” SNPs (SNPs 1 and 2). Two scenarios were
considered with SNP 3 was dependent (strong LD model) and
independent (weak LD model) of SNP 2 respectively. SNPs 1 and
2 were generated as multinomial under HWE, and then SNP 3 was
generated according to Supplemental Table S4. In Scenario 1, for
each level of SNP 2 values, the genotype frequencies of SNP 3 var-
ied. We defined that SNPs 2 and 3 were in strong LD (correlated).
In Scenario 2, the genotype frequencies of SNP 3 were fixed and
irrelevant to the genotype of SNP 2. In this case, we defined SNPs
2 and 3 were in weak/no LD (non-correlated). GRS approaches
were compared when only “deleterious” SNPs were included (true
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model), or when all three SNPs were included (Scenario 1 strong
LD: true + dependence model; Scenario 2 weak LD: true + inde-
pendence model). In the case of weak/no LD, including the third
SNP could also be thought of as including a false positive locus.

Rather than the linear model in simulation one, a direct prob-
abilistic model was used here to generate the disease status. To
simplify, an additive genetic mode was determined. Let the alle-
les from SNP 1 be denoted “A” and “a”, and let those from SNP
2 be denoted “B” and “b”. Then, SNP 1 has three genotypes as
“AA”, “Aa” and “aa”, whereas SNP 2 has three genotypes as “BB”,
“Bb” and “bb” correspondingly, thus leading to nine genotypes
combinations. Table 1 demonstrated the penetrance pattern for
two-locus main effect model for nine genotypes combinations,
where k was the baseline penetrance and θ was the specified rela-
tive risk (RR) of having a disease between different genotypes for
each SNP.

As presented in Supplemental Table S5, MAFs ranged from 0.4
to 0.05 to represent common and relatively rare variants. Four
scenarios were included, one where both SNPs 1 and 2 were com-
mon or rare, one where SNP 1 was common and SNP 2 was rare,
and vice versa. Relative risks (RRs) considered in our model were
either 1.25 or 1.75 to simulate different effect sizes between SNPs 1
and 2, and 1.5 to simulate models where both SNPs had the same
effect sizes. Baseline penetrance k was fixed at 0.1. Balanced (equal
allocation) case-control data was simulated with a total sample
size of 400. 100 replicates were simulated as training data to cal-
culate external weights for OR- and EV-GRS approaches, and then
another 100 replicates were generated as test data to evaluate the
performance of GRS methods.

DATA ANALYSIS
The main focus of the prediction modeling was to determine the
true risk model correctly. In general, the training data sets were
used to derive weights for the weighted GRS methods, assuming
all causative SNPs are known. For each method, the GRS were
calculated for each subject in the test data. A logistic regression
model was applied to fit the test data using each genetic risk mod-
eling approach respectively, with a summary GRS as the only
predictor. We used power, type I error, C-statistic and Akaike
information criterion (AIC) to evaluate the performance of each
of the GRS. Power or type I error rate was calculated as the num-
ber of times the model is statistically significant at P-value <0.05
across the number of simulated replicates (Che et al., 2012). A
likelihood ratio test was used as the global measure of model fit. In
the simulation study, if the binary case/control status was assigned
based on the specific genetic values, the detection ability could

Table 1 | Penetrance pattern under additive genetic mode for

two-locus main effect model.

Mode Genotype

Additive AA k
(θb + 1)k

2
θbk

Aa
(θa + 1)k

2
(θa + θb)k

2
(θa + 2θb − 1)k

2

aa θak
(2θa + θb − 1)k

2
(θa + θb − 1)k

be reflected by power. In contrast, if the case/control status was
irrelevant to genetic variants, the type I error under the null sim-
ulation then could be interpreted as false positive rate. The best
risk score approach was expected to detect the model if it is true,
whereas to control the probability to incorrectly accepting the
false model. The C-statistic measures the discriminatory capabil-
ity of each model to distinguish case from control. AIC is a mea-
sure of the goodness of fit of the model, which describes the trade-
off between accuracy and complexity of the model (Che et al.,
2012). In general, a model is preferred if it has larger power and
C-statistic and has a smaller AIC, with a reasonable type I error.

Under the null model (involving only “noise” SNP), the P-
value for the likelihood ratio test was recorded for each replicate,
and then the number of times across the 100 replicates that the
P-value was less than 0.05 was calculated as the type I error.
Under the true disease risk model (involving any causative SNP),
the C-statistic, AIC and P-value for the likelihood ratio test were
recorded. The power was calculated as the proportion of times a
true model was correctly identified (P-value < 0.05) across 100
replicates. For each model, the C-statistic and AIC were aver-
aged across all replicates. All results were statistically evaluated
for differences under a generalized linear model, and Tukey’s
method was used to adjust for pair-wise contrasts between meth-
ods, which has been described previously (Winham et al., 2010;
Che and Motsinger-Reif, 2012).

In simulation one, data generation was performed on R plat-
form (www.r-project.org). For all the remaining data simulations
and analyses were applied using SAS 9.2 (www.sas.com).

RESULTS
SIMULATION RESULT 1: INTERACTION
In Scenario 1, with four deleterious SNPs, both main and interac-
tion effects exist. Figure 1i shows the power results when all the
SNPs have similar effect sizes. If there is no interaction between
SNPs 3 and 4, the weighted and unweighted methods are equiv-
alent. When all SNPs are common variants (Figure 1A) or both
common and rare variants (Figure 1C), as the degree of inter-
action increases, the weighted methods outperform the simple
count GRS. However, when all SNPs are rare variants, the power
of three methods is identical.

In Figure 1j, when the effect sizes among SNPs vary, it is
clear that the weighted methods are consistently preferable to the
unweighted one. There is no significant difference between the
two weighted methods, OR- and EV-GRS.

In Scenario 2, the total heritability is due to SNPs 3 and 4
only, and then SNPs 1 and 2 were simulated as “noise” SNPs. As
expected, the weighted methods show improved power over the
simple count method across all models (Figure 2).

SIMULATION RESULT 2: LINKAGE DISEQUILIBRIUM
Scenario 1 shows the strong linkage disequilibrium model when
SNPs 2 and 3 are correlated. As demonstrated in Figure 3i, all
three methods have similar power if only deleterious SNPs with
similar effect sizes are included in the risk model (true model).
However, if the dependent but non-causative SNP 3 is added (so
a model including true loci plus marker(s) that are correlated with
the true loci), the power of SC-GRS declines rapidly.

Frontiers in Genetics | Statistical Genetics and Methodology July 2013 | Volume 4 | Article 138 | 4

BB Bb bb

http://www.r-project.org
www.sas.com
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Che and Motsinger-Reif Evaluation of GRS with interaction and LD

FIGURE 1 | Power comparison for the interaction model with

four deleterious SNPs. Panels by column: (A) All SNPs are
common variants. (B) All SNPs are rare variants. (C) SNPs 1 and

3 are common variants, and SNPs 2 and 4 are rare variants.
Panels by row: (i) SNPs have same effect size. (j) SNPs have
different effect size.

FIGURE 2 | Power comparison for the interaction model with two

deleterious SNPs. Panels by column: (A) All SNPs are common
variants. (B) All SNPs are rare variants. (C) SNPs 1 and 3 are

common variants, and SNPs 2 and 4 are rare variants. Panels by
row: (i) SNPs have same effect size. (j) SNPs have different effect
size.
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FIGURE 3 | Power comparison for the strong linkage disequilibrium

model when SNPs 2 and 3 are dependent. Panels by column: (A) SNPs 1
and 2 are common variants. (B) SNPs 1 and 2 are rare variants. (C) SNP 1 is

common variant, and SNP 2 is rare variant. (D) SNP 1 is rare variant, and SNP
2 is common variant. Panels by row: (i) SNPs have same effect size. (j) SNPs
have different effect size. “Dep” means SNPs 2 and 3 are dependent.

For the scenarios where there are different effect sizes of the
causative SNPs (Figure 3j), the results of the power comparison
are very similar, except the weighted methods are also preferable
when the causal variants are common (Figure 3Aj).

A similar pattern is observed when SNP 3 is independent
and non-causative in the weak linkage disequilibrium model, as
shown in Figure 4.

In summary, the weighted approaches outperform the SC-GRS
across all scenarios in terms of power and C-statistic (P-value
<0.05), as shown in Supplemental Tables S6, S7. EV- is slightly
better than OR-GRS, with no significant difference. In respect to
AIC, there is no significant difference.

For the null simulations, the type I error rates across all models
are well reasonably controlled (data was shown in Supplemental
Tables S3, S5). There are no statistically significant differences
in terms of type I error among these methods and the cut-off
value 0.05. While SC-GRS has the lowest type I error, EV- is still
preferable than OR-GRS (Supplemental Table S6).

Table 2 summarizes the results of significance tests of the pair-
wise contrasts of the different methods. For each table cell, if
one method significantly outperforms the other, that method is
listed. As these results show the weighted methods perform bet-
ter than the SC-GRS in terms of power and C-statistic, but there
is no significant difference between OR- and EV-GRS for these
measures of performance.

DISCUSSION
The primary goal of our study was to explore how interaction
and correlation could impact the risk prediction and to further
determine the usefulness of genetic risk score as a predictive

model that allows for gene-gene interaction, assuming sample
sizes and genetic effect sizes likely to be encountered in real
genetic studies. Since in real data the underlying disease mech-
anism is often unknown and is likely to vary across diseases,
we try to employ relatively comprehensive simulation strategies
to resemble potential complicated sources of interaction. Based
on a wide range of simulation experiments, we observed that
the weighted methods generally outperform the simple count
method.

In simulation one, as expected, we observed a clear and intu-
itive relationship among effect size, MAF, heritability and power
for all methods. For instance, in the case of MAF3 = MAF4 =
0.4 and ES3 = 0.2, H2

G3G4 increases from 0.2 to 0.9% when ES4
increases from 0.2 to 0.5 (models 1–4). In the case of MAF3 =
MAF4 = 0.05 and ES4 = 0.8, H2

G3G4 increases from 0.4 to 0.7%
when ES3 increases from 0.2 to 0.8 (models 10–7). The increase
of heritability is more rapid for common variants. In respect to
the MAF and heritability, in the case of ES3 = ES4 = 0.5 and
MAF3 = 0.4, H2

G3G4 increases from 0.9 to 1.5% when MAF4
increases from 0.05 to 0.4 (models 31–19). In the case of ES3 =
0.2, ES4 = 0.8 and MAF4 = 0.05, H2

G3G4 increases from 0.4 to
0.5% when MAF3 increases from 0.05 to 0.4 (models 10–16). It
is consistent with the assumption that both effect size and MAF
are essential to drive the heritability and the impact of effect size
seems more obvious. We also observed a clear pattern of heri-
tability and power. The power of SC-GRS has improved from 26
to 75 and that of weighted GRS from 26 to 85, as the total her-
itability increases from 0.5 to 1.7% (models 1–4). Therefore, it
becomes easy to identify the risk model when the heritability is
high.
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FIGURE 4 | Power comparison for the weak linkage disequilibrium

model when SNPs 2 and 3 are independent. Panels by column: (A) SNPs 1
and 2 are common variants. (B) SNPs 1 and 2 are rare variants. (C) SNP 1 is

common variant, and SNP 2 is rare variant. (D) SNP 1 is rare variant, and SNP
2 is common variant. Panels by row: (i) SNPs have same effect size. (j) SNPs
have different effect size. “Indep” means SNPs 2 and 3 are independent.

Table 2 | Significant winner∗ in pair-wise method comparisons in

terms of power, type I error, C-statistic and AIC.

Pair-wise comparison Power Type I error C-statistic AIC

SC-OR OR OR

SC-EV EV EV

OR-EV

*Significant winner denotes the method significantly outperforms with larger

power and C-statistic, and smaller type I error and AIC (Tukey adjusted P-value

<0.05). The blank means no significant difference is detected.

To further demonstrate the relationship between the potential
important factors and heritability, we utilized two-locus model
to calculate the heritability due to total, marginal and interac-
tion, according to formulas 13–15 respectively. Figure 5 portrays
a clear relationship between effect size, minor allele frequency,
risk allele frequency, interaction effect and heritability. Firstly,
we assumed there is no interaction between two loci (panels
A–C). Similarly, common variants have MAF = 0.4 and rare
variants have MAF = 0.05. In panel (A), ES1 was fixed at 0.1
if two loci were common, whereas ES1 was 0.3 if two loci
were rare. When ES2 increases from 0 to 0.5, the total heri-
tability and marginal heritability due to SNP 2 increase more
rapidly for common than rare variants. In panels (B–C), effect
sizes for two loci were fixed at 0.5 and SNP 1 was considered
as common and rare respectively. The total and marginal her-
itability due to SNP 2 increase as MAF2 increases from 0 to
0.5, and decline as risk allele frequency (RAF) 2 increases from
0.5 to 1. This relationship pattern further illustrates the validity

of explained variance genetic risk score. Both the log scale of
effect size and the square root of minor allele frequency are
appropriate to explain the genetic variance due to SNP (that
is heritability), and thus it is reasonable to incorporate both
ES and MAF to construct the weight. Secondly, we investigated
the relationship between interaction effect and heritability, and
the results were shown in panels (D–F). Both marginal effect
sizes were set to 0.1 for panel (D) (common variants) and 0.4
for panel (E) (rare variants). In panel (F), SNP 1 was common
and SNP 2 was rare, but they were set as the same effect size
0.2. We considered both positive (β12 > 0) and negative interac-
tion effect (β12 < 0). For positive interaction, when interaction
effect increases, the total, marginal and interaction heritability
increase consistently (panels D–F). Furthermore, as the interac-
tion effect increases, the marginal heritability due to rare variant
is more sensitive than that due to common variant (panel F).
However, it is relatively complicated to account for negative
interaction effect. The pattern depends on both marginal and
interaction effect sizes. It also explains the complicated pattern
for Figures 1, 2. As the negative interaction effect increases, the
heritability may either increase or decrease, which in turn affects
the power. Therefore, this relationship pattern provides some
theoretical evidences for the weight construction method of EV-
GRS, as well as the complicated pattern of the risk score model
performance.

To further address the role of allele frequency in the heri-
tability, we applied one-locus model to calculate the heritability
(formula 12). Effect size was fixed at 0.5 and risk allele frequency
ranged from 0 to 1. Explained variance weight was obtained
using formula 8, where the effect size was equivalent to log odds
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FIGURE 5 | Relationship between effect size, minor allele frequency, risk

allele frequency, interaction effect and heritability. (A) Relationship
between heritability and effect size. (B) Relationship between heritability and
minor allele frequency. (C) Relationship between heritability and risk allele

frequency. (D) Relationship between heritability and interaction effect when
SNPs are common variants. (E) Relationship between heritability and
interaction effect when SNPs are rare variants. (F) Relationship between
heritability and interaction effect when SNPs are common and rare variants.

ratio in the logistic regression model. In Figure 6A, we observed
a clear positive correlation between heritability and EV weight,
which emphasized the role of allele frequency besides effect size.
As to the relationship between heritability, EV weight and RAF,
Figures 6B,C shared a similar pattern.

It should be noted that the performance of all three GRS
models do not significantly differ for the models with rare vari-
ants with the same effect sizes, regardless of the strength or
presence of interaction (Figure 1Bi). Referring of the total her-
itability of these models, it is understandable that the heritability
due to interaction between SNPs 3 and 4 is very low, rang-
ing from 0, 0.1 to 0.2%, while the total heritability is around
1.5% (models 7–9). This demonstrates the concept that the
heritability due to only rare variants is limited, and thus GRS
modeling may not work effectively in prediction with all the
rare variants. Furthermore, in the scenario of all rare variants
with similar effect sizes, weighted and unweighted methods are
identical even if the interaction exists. Nevertheless, weighted
methods are still preferable if different effect sizes exist, in all cases
of MAF.

Understanding that current simulations may include a lim-
ited number of SNPs and low level interaction, as a follow
up we also considered more complicated scenarios with six

disease-causing SNPs. As shown in Supplemental Table S2, model
37 involved two two-way interactions, by varying the interac-
tion term of SNPs 3 and 4 (β34) and that of SNPs 5 and 6
(β56). Similarly, model 38 involved three-way interactions, where
SNPs 3, 4, and 5 were interacted to cause disease by specifying
β345. The power improvement of the weighted GRS approaches
were exaggerated compared with the SC-GRS. The details of
results were presented in Supplemental Table S3. It seems that
the impact of simulated effects may be amplified by the number
of SNPs and the degree of interaction. Based on our empiri-
cal evidences, we expect these results could be generalized to
larger models, but the extrapolations should be interpreted cau-
tiously. Future studies should further evaluate the performance
of these GRS methods for larger, and increasingly complex
models.

In general, weighted and unweighted approaches are equiva-
lent only if the true model is fully discovered, all causative SNPs
have identical effect sizes and no interaction exists. However, it
is almost impossible to satisfy all three requirements in practice.
As the strength of interaction increases, the power of SC-GRS
declines rapidly, while the advantage of weighted approaches
becomes more obvious. If there are “noise” SNPs involving in
the risk score, the weighted methods could limit the negative
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FIGURE 6 | Relationship between risk allele frequency, explained variance weight and heritability. (A) Relationship between heritability and explained
variance weight. (B) Relationship between heritability and risk allele frequency. (C) Relationship between explained variance weight and risk allele frequency.

influence of the non-causative SNP. The performance of weighted
method does not diminish when non-causative SNPs are added,
and whether it is in strong or weak LD with true SNP. It is intuitive
the performance of the weighted methods are greatly improved
if the effect sizes of causative SNPs vary. As to the comparison
of the weighted GRS approaches, EV- is preferred than OR-GRS
with stronger power and lower type I error over these scenar-
ios, but the difference is not statistically significant. Although it
is believed that MAF is an important factor to explain the genetic
variance and heritability, the effect size may still dominate the
overall direction of the weight (Park et al., 2010). More com-
prehensive studies of MAF in the presence of interaction may be
necessary.

In summary, our findings allow us to draw a consistent con-
clusion that weighted genetic risk score models are superior to the
unweighted one overall and EV-GRS is the most robust approach,
in the presence of potential genetic interactions, LD and false pos-
itive predictors. It provides some useful guidance for researchers
in selecting an appropriate genetic risk score and advocates a
wide implementation of the robust EV-GRS in real data analyses.
It should be noted that beyond the discovery and identification
of novel genetic variants, we are more focused on the follow-
up direction to utilize these identified variants to predict the
disease risk or the effectiveness and toxicity of interventions in
pharmacogenetics study. Although the application of risk predic-
tion in the complex disease has been limited due to complexity,
several interesting evidences support application of prediction
model in pharmacogenetic study is appealing and encouraging
(Hess et al., 2006; Klein et al., 2009; Ritchie, 2012). Also, we are
interested in the sensitiveness and robustness of the risk model.

We should be cautious to use over-optimistic estimates for the
risk factors, particularly in pharmacogenomics studies (Ritchie,
2012). In this sense, weighted methods perform robustly over-
all. Notably, it is reasonable and straightforward to assign more
weights to important factors and limit the weights for seemingly
noisy predictors.

Despite these solid conclusions, we recognized our study does
not explicitly simulate more complex architectures and thus
some inherent limitations remain to address. We only considered
simple disease models involving marginal effects and two-locus
interactions. Also, a limited number of scenarios of LD were
examined. In future studies, it would be of great interest if we
expand simulations to high-order gene-gene interactions, or even
involving gene-environment interactions. Although it was not a
thorough list of all complicated scenarios, our findings still pro-
vide insight that weighted risk model may play an vital role in the
risk prediction when interaction or LD exists. Furthermore, cur-
rent GRS models assume an additive model and independence of
SNPs, which would rarely be the case. Despite the advantages of
weighted GRS under the violation of these assumptions, the inno-
vation of GRS that incorporates interaction term(s) will definitely
be an important future direction. It is believed that to account
for interaction or more complex architectures appropriately, the
refinement and extension of risk models becomes an important
priority in the human genetics.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/Statistical_Genetics_and_
Methodology/10.3389/fgene.2013.00138/abstract
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