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Vision based supervised restricted 
Boltzmann machine helps 
to actuate novel shape memory 
alloy accurately
Ritaban Dutta1*, Cherry Chen2, David Renshaw2 & Daniel Liang2

Extraordinary shape recovery capabilities of shape memory alloys (SMAs) have made them a crucial 
building block for the development of next-generation soft robotic systems and associated cognitive 
robotic controllers. In this study we desired to determine whether combining video data analysis 
techniques with machine learning techniques could develop a computer vision based predictive 
system to accurately predict force generated by the movement of a SMA body that is capable of a 
multi-point actuation performance. We identified that rapid video capture of the bending movements 
of a SMA body while undergoing external electrical excitements and adapting that characterisation 
using computer vision approach into a machine learning model, can accurately predict the amount of 
actuation force generated by the body. This is a fundamental area for achieving a superior control of 
the actuation of SMA bodies. We demonstrate that a supervised machine learning framework trained 
with Restricted Boltzmann Machine (RBM) inspired features extracted from 45,000 digital thermal 
infrared video frames captured during excitement of various SMA shapes, is capable to estimate 
and predict force and stress with 93% global accuracy with very low false negatives and high level of 
predictive generalisation.

Newly discovered SMAs are increasingly being used for application solutions in automotive1, aerospace2, con-
struction and other commercial fields3,4 for their extraordinary ability to fully recover to their original shape 
from an actuated shape. The unique capability to memorize the original structural shape and recovery back to 
that shape from an excited state, has made this type of materials a novel candidate for the future generation 
soft robotics and for the applications with a requirement of lightweight or miniaturised actuation5–8. Recovery 
characteristics of this SMA provide a superior level of flexibility in movement and higher degree of freedom 
than moving a conventional mechanical structure, especially in applications where the volume and weight of 
actuators are restricted.

Thermally activated SMA based actuators are the potential candidates to replace the traditional actuation sys-
tems including for applications in space stations, satellites, or planet robots9. Compared with the traditional space 
actuating sub-systems, the SMA actuators have a high power-to-weight ratio, a simple actuation mechanism, no 
dust particles created or no leakage of fluids, thus reducing the complexity, sizes and the weight of an actuator10. 
The thermally induced SMAs perform shape memory effect (SME) by undergoing solid-state transformations 
between low and high temperature phases, which are known as martensite and austenite phases, at characteristic 
temperatures. The shape change intrinsically occurs only during heating from martensite to austenite phases, 
not cooling from austenite to martensite, referring to one-way-SME, non-reversible. By applying a series of heat 
treatments or “training” processes, SMA can have two-way-SME with a limited degree of reverse actuation that 
are of little usefulness11,12, e.g., less than 20–30-degree angles for a reversible bending strip13. Therefore, most 
of the commercial SMAs are supplied only for performing a single-point, mostly one-way, actuation—i.e. one-
direction and non-reversible motion at one fixed temperature. Consequently, the lack of an effective, reversible 
actuation ability has limited the use of the SMA actuators to very few simple applications, such as one-off release 
in QWKNUT and Low-Force Nut (LFN)14, locking or deploying mechanisms for truss mounting15 folding 
structures16, and deployable hinges of lightweight flexible solar array17.

The CSIRO scientists have developed a rapid solidification process that can produce NiTi based SMA foils 
with a larger width that can be utilised for constructing actuators18. More importantly, the obtained SMA foils 
exhibit a larger reversible actuation after thermomechanical cycling. As a demonstrative example of the shape 

OPEN

1CSIRO DATA61, Hobart, Australia. 2CSIRO Manufacturing, Clayton, Australia. *email: ritaban.dutta@csiro.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-95939-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16446  | https://doi.org/10.1038/s41598-021-95939-y

www.nature.com/scientificreports/

memorisation training of a SMA body, the large-degree reversible actuation of a CSIRO-produced Omega-
shaped-NiTi SMA body is illustrated in Fig. 1. Between electrical heating on and off, the Omega-shaped SMA 
was closing and opening over a 60 degrees angle, showcasing high potential for an industrial adaptation.

This has achieved a new step towards the wider adaptation of SMA materials in various applications. How-
ever, despite the current advances in the field of reversible shape memory materials, applications of this family 
of novel materials remain a unique challenge due to difficulty in accurately controlling and reversibly actuating a 
SMA body19. Like any moving physical body, SMA based structures also generate force while the whole body or 
a part of the body moves under an external excitement. The actuation amount and speed, thus their control, are 
influenced by the interaction between the internal actuation force generated at the atomic scale and the resist-
ance to the actuation that is related to bulk materials properties. As the SMA internal interaction of the forces are 
unique and are difficult to quantify, the characterisation of the forces and their effects on the actuation behaviours 
through conventional ways either experimentally or analytical modelling are difficult and time consuming20–22.

The aim of this study was to develop a predictive modelling system in order to actuate the novel reversible 
SMA materials in a more controllable way. A method to rapidly and accurately measure the amount of the force 
generated by the SMA movement is the first essential step to control and actuate the SMA body. The second step 
in undertaking this reported work was to develop an intelligent modelling system for the accurate estimation of 
the force generated by a group of reversible-actuating SMA bodies of various shapes (as shown in Figs. 2 and 3).

A promising predictive modelling has been proposed and developed in this paper. This combines computer 
vision and machine learning to characterise novel SMA materials and estimate force generated by a moving SMA 
body under external excitement. We employed infrared digital camera to capture the video of a moving SMA 
body, while measuring generated force simultaneously. The measured force was used as benchmarking ground 
truth data for all future modelling.

The change in the relative position and shape of the SMA body compared to its original position and shape 
under excitement, was captured in the video frames. This dynamically changing information about shape 
and position were correlated with the separately measured generated force for using the proposed predictive 
modelling23–31.

We chose to use vision based supervised Restricted Boltzmann Machine (RBM) approach combined with 
a machine learning classifier algorithm to make this estimation. Machine learning algorithm in classification 
tasks has proven to be highly effective in a wide range of applications while being free of the restrictive assump-
tions of other predictive systems32. RBM has been proven to be a very effective technique to capture unique set 
of features or components from video data. RBM was used as a feature extraction technique, while extracted 
features were used to train a machine learning classifier for developing a predictive model capable to estimate 
and predict the force generated by a moving SMA body. Figure 4 showcases a schematic diagram of the employed 

Figure 1.   (a) Five steel moulds to shape SMA strips into different shapes and the shaped SMA strips in 
“Omega”, “Half circle”, “V”, “4-bend” and “Wave” shapes; (b) experimental setup to generate data for the rapid 
computer vision approach and machine learning based prediction; (c) two-way shape memory effect training 
process, involving steps marked as a-e to train the body.
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machine learning framework involving RBM and a machine learning classifier33–39 and prediction validation of 
such an approach.

Preparation of the SMA and thermal treatment
In this study, NiTi based shape memory alloy (SMA) foils with a width of 30 mm and a thickness around 
80–150 μm, were prepared by planar flow casting i.e. a rapid solidification process. The SMA foils were cut into 
10 mm width and 120 mm long strips and were carefully inserted into the slot of a metal mould. The mould with 
the sample was placed inside a tube furnace, undergoing a standard annealing process at 550 °C for 30 min in 
an argon atmosphere before quenched in water. In this study, five different shapes of SMA strips were produced. 
The moulds along with the shaped SMA strips are shown in Fig. 1a. As indicated by the schematic in Fig. 2b, 
a centre slot 4 mm wide, 115 mm long has been cut out of the SMA strip after moulding. This is to form the 
electrical current path for actuating the SMA.

Chemical analysis.  The SMA foils were characterized by inductively coupled plasma optical emission spec-
troscopy Varian 730-ES ICP-OES (ICP-OES). Around 0.1 g of the sample was dissolved in a solution of HNO3, 
H2SO4, HF and water before the ICP-OES analysis. After calibrated by certified multi-element solutions, the 
analysis results showed that the SMA consisted of 49.1% of Ni and 50.9% of Ti.

Thermal analysis.  Differential Scanning Calorimetry (DSC) was selected to analyse transformation tem-
peratures of the SMA samples. Around 5 mg of SMA sample was used for the test under a nitrogen flow (40 ml/
min). A heating and cooling schedule consisting of a heating rate from − 20 to 100 °C. Followed by a cooling rate 
from 100 to − 20 °C. Both heating and cooling rates both were at 10 °C/min. DSC thermogram was obtained 
using a Mettler Toledo DSC3. The transformation temperatures were extrapolated from the DSC data through 
the tangential line method: Martensite start temperature (Ms), Martensite finish temperature (Mf), Austenite 
start temperature (As) and Austenite finish temperature (Af) are 60.8, 42.33, 72.22 and 89.54, respectively.

Shape memory alloy training.  A certain thermomechanical treatment (so-called training process, shown 
in Fig. 1c) was carried out on the SMA test samples: (a) deform the samples into flat strips; (b) connect each leg 

Figure 2.   (a) Two legs of SMA connected to the DC supply; (b) the sample dimension of SMA used in this 
study; (3) thermal images of the initial and actuated shape of the five different SMA bodies that were used in 
this study. The changes in shape and position during electrical excitement were the key dynamic information 
captured through the video imaging. The captured information was correlated with the measured force and 
stress to develop a predictive machine learning model.
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of the strip to a DC power supply; (c) apply a current of 7 A at the voltage of 5 V for 10 s. The temperature of 
the samples increased due to the Joule heating effect and the samples were recovered to their initial shapes; (d) 
turn off the current and allow it to cool down to room temperature; (e) repeat (a) to (d) steps for 30 times. After 
this training, the SMA samples “remembered” two status i.e. flat and shaped when the current was on and off, 
showing two-way shape memory effect.

Video data capturing and pre‑processing to study SME.  An infrared thermal camera fixed on a test 
rig was used to capture the change in temperature, position and shape of the SMA bodies while under electrical 
excitation as shown in Fig. 1b. The trained SMA flat sample is connected to a DC supply with a current of 7 A and 
a voltage of 5 V, one leg is for current in and the other is for current out to ensure a close loop (Fig. 2a,b). When 
the current was applied, the temperature of the SMA was increased and it started to form the trained shape. 
When the current is turned off, the SMA sample recovers to the original flat shape. The thermal video files were 
treated as a combination of static frames of size 1200 by 1200 pixels. The individual frame was compressed to 300 
by 300 pixels size and converted to grayscale images (as shown in Fig. 4). The quality of the captured video was 
kept consistent during all experimentation in that 51,000 video frames of the five different moving SMA bodies 
were collected. Standardizing the experimental protocol was crucial to capture data of a high quality that are 
consistent and completely reproducible.

The difference between two consecutive video frames (DF) was used as a differential and representative 
information for capturing the changes in shape and position demonstrated by the SMA body under excitement. 
The change in shape and position was apparently the key indicator of the force generated. Each of the DF was 
pre-processed to extract representative features to be used in the training and testing of the predictive machine 
learning algorithms. Selection of a DF to be included in the final study, was determined by a significance toler-
ance factor, defined by the image pixel wise difference between two consecutive frames being greater than 5%. 
This was to eliminate the repetitive video frames (without any significant changes) from the overall analysis 
and any potential bias that could be created by this type of repetition. Finally, 45,000 DFs were selected to be 
included in the analysis.

RBM was used in this study for pre-processing of the video data. We found that RBM based feature repre-
sentation was better suited as an encoder for this study over a conventional autoencoder, as RBM was faster to 
process the large volume of video frames with standard available libraries. Parameters are estimated using Sto-
chastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD)31–43. We utilized 
RBM as a feature extraction method to reduce the very large dimension of the video frames. We found that 

Figure 3.   Setup of the force measurement (a) top-view and (b) side-view. (c) Shows the stress and temperature 
characteristics curves for the five SMA shapes.
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150 extracted components by RBM was optimum and best to explain the variance among the video frames to 
be classified into one of the force classes and stress classes accurately. Optimum learning rate for the RBM was 
determined to be at 0.412.

Force measurement.  The tester to measure the actuation force is shown in Fig. 3. It is equipped with a 
20 kg load cell. The two sample holders of the tester were connected to a DC power supply (DPD3030, Manson). 
The applied current was 5 A and the voltage was 2.3 V.

The SMA samples were cut into a strip with width of 5 mm and length of 120 mm for force measurement. 
After thermally treated, shaped and trained, the SMA test samples of different shapes are flattened and placed 
onto the tester with both ends of SMA sample screwed onto the tester sample holders. Torque wrench was used to 
tighten the screws, ensuring even clamping force is applied to both ends of sample. The test strip is then stretched 
along length ways of the SMA sample (or distance between the two tester arms was 95 mm).

Figure 4.   This figure shows the overall computer vision and machine learning based framework that was 
employed in this study. RBM based feature extraction combined with Random forest classification algorithm 
was able to improve the force and stress prediction accuracy from 84 to 93%. This framework also demonstrated 
that a computer vision approach could be used to characterise novel material rapidly. During the testing phase, 
the experiment mechanically measured ground truth force was compared with the predicted force derived from 
the proposed computer vision (or optical) method. This comparison was the basic method to derive the overall 
accuracy of this predictive method.
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During the tests a current was applied to the samples, the temperature of the samples would increase due to 
the Joule heating effect. The SMA strips would begin to recover to their original shape when they reached their 
phase changing temperature. As the ends of the samples were restricted by the sample holders, generated force 
was applied onto the sample holders, then detected by the load cell. Results recorded are.

Measured time series of the force and force per section area (i.e. stress) were time stamped with the corre-
sponding differential video frames (DFs) and the extracted 150 RBM components from each of the DFs.

Input and output for the machine learning modelling.  It was important to note that for this study 
we aimed to develop a single predictive system for any shape of the SMA, hence all pre-processed data from the 
various shapes were combined into a single data set. The aim was to test a generalisation capability to predict 
force and stress while employing computer vision and machine learning algorithm.

The data set included 10,500 related to the “Omega”, 9000 related to the “Half circle”, 9500 related to the “V”, 
7500 related to the “4-bend” and finally 8500 related to the “Wave” shaped body under experimentation. The 
amount of force was represented by a number between 1 and 12 as the measured values, whereas the amount 
of stress was represented by a number between 1 and 20 as the measured values. They were directly suitable to 
be utilised as class labels of the proposed machine learning based multiclass classification problem. Altogether 
the data set had 45,000 data entry points after removing all repetitive DFs with 5% or less variance between two 
consecutive video frames.

The final data set had 45,000 selected differential video frames (DFs), each of which represented by extracted 
150 RBM components, along with an associated measured amount of force and stress collected during five sets 
of experiments on SMA bodies with five different shapes (Fig. 1).

The dimension of the whole data set was 45,000 rows × 152 columns, where the first 150 columns were 
representing 150 RBM components (each row representing each of the DFs) and the last two columns were 
representing the force and stress values associated with each of the DFs.

The machine learning algorithms were trained with RBM components as inputs with force and stress as train-
ing target. In this way, during testing and validation, a trained model was prepared to predict force and stress 
against a set of unknown inputs. The unknown inputs were the extracted RBM components from a portion of 
the selected DFs which were not a part of the training of the algorithms.

For the predictive modelling using machine learning algorithms, first 150 columns of RBM components were 
used as training and testing inputs. The last two columns with values of measured force and stress were used 
as training and testing learning targets. A schematic diagram of the data pre-processing and machine learning 
based training and testing paradigm has been described in the Fig. 4.

Machine learning modelling.  We designed the proposed system to predict a force and stress value for 
an individual video frame based on the dynamic movement of a SMA body irrespective of its shape. Hence the 
problem space was formulated to identify a unique feature pattern representative of a unique range or values of 
force or stress, which can be learned into a machine learning model. This type of unique feature pattern repre-
senting a specific range or values of force and stress, could be derived from any video frame captured from any 
of the five different types of SMA bodies. Learning a unique set of features against a unique range or values of 
force or stress was main aim of this modelling.

We found that a multi-class classification approach was more suited over a multi-output regression approach 
for the machine learning algorithms to learn and predict, while only inputs for the training and testing were the 
extracted 150 RBM components. In this approach, each of the selected DFs represented by a set of 150 RBM 
components, only needed two simple class labels as training targets, one for the associated force values and the 
other for the associated stress values, for the machine learning modelling.

The physically measured force of the 5 shapes at a specific time of the experiment was marked as the ground 
truth force associated with that DF to be learned as a target in the machine learning algorithm. Physically meas-
ured force values were categorised into 12 force classes (e.g., 0–1, 1–2, 2–3…, 11–12) while each class represented 
a force range 1 Newton gradient) to formulate a quantisation based multiclass classification problem. Similarly, 
measured stress values were categorised into 20 force classes (e.g., 0–1, 1–2, 2–3…, 19–20), while each class rep-
resented a class of stress of range 1 MPa gradient). Idea behind the quantization of the force and stress time series 
into multi-class representation was to simplify the quantification of the prediction accuracy in a traditional man-
ner. It was also found that machine learning algorithms can be trained more accurately with coded class labels.

The development of the predictive model was based on a multi-output multi-class classification model. With 
suitable training the same feature space representing the changes in the video frames, a model was able to predict 
two class labels simultaneously, one for the force (class number ranging between 1 and 12) and other for the 
resistance stress (class number ranging between 1 and 20). A classification probability estimation system was 
incorporated in conjunction with the multi-class classification system. Each of the class prediction related to force 
was associated with 20 class probabilities whereas each of the class predictions related to stress was associated 
with 12 class probabilities. The class probability estimation provided a confidence measure of the accuracy of 
the classification. Highest probability value for a particular class represented a clear classification while similar 
probability values for more than one class represented a borderline classification scenario with a possibility of 
a miss-classification.

Because there are many possible types of machine learning classifiers, we tried ten types of classifier systems 
representing a wide range of algorithms. This was aimed to determine the most appropriate and efficient of 
these classifiers, and to justify the effectiveness of proposed machine learning framework for this study. As a 
comparative paradigm, namely, Feed Forward Back Propagation, Support Vector Machine, Multi-Layer Per-
ceptrons, Random Forest, Radial Basis Neural Network, Decision Tree, Naive Bayes, Quadratic Discriminant 
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Analysis, Gradient Boosting, Logistic Regression classifiers were applied to the same data sets to establish the 
best artificially intelligent feature learning architecture as indicated by force and stress estimation accuracy40–43.

Initially the whole data set was randomly split into 80%-20% proportional ten combinations. In each of the 
new subsets, 80% of the data (combination of inputs and targets) was used in the training–testing of the predic-
tive model, while the rest of the 20% of the data was kept separately for a final validation of the trained model. In 
each of the ten training–testing phases with the 80% of the data, internally, a randomized tenfold cross-validation 
(CV) technique was adapted to overcome the overfitting. In this well accepted approach in the machine learning 
domain, called k-fold CV, the training set is split into k smaller sets. The performance measure reported by k-fold 
cross-validation is then the average of the values computed in the loop. This approach can be computationally 
expensive but does not waste too much data. Similarly, in each of the ten corresponding validations, mean accu-
racy was computed to report as a final accuracy estimation from the whole train-test-validate paradigm (Table 1).

Results
We can conclude that there are two main reasons for the superior classification performance of the Random 
Forest (RF) technique compared to Feed Forward Back Propagation, Support Vector Machine, Multi-Layer Per-
ceptrons, Radial Basis Neural Network, Decision Tree, Naive Bayes, Quadratic Discriminant Analysis, Gradient 
Boosting, and Logistic Regression43–47. RF classifier can adapt themselves to the distribution of abstract feature 
space extracted from a video stream, making them hugely popular as a robust classifier for various applications. 
RF was able to classify most of the patterns corresponding to force and stress classes, due to their ability to adjust 
their scale of generalization to match the morphological variability of the patterns in the video frames. RBM 
based feature extracted from the video frames helped to increase the linear separability of the multiclass clas-
sification problem. In Table 1, we also compared results between two scenarios, with and without using RBM 
features. In the later scenario whole flattened video frame was used as the input vector for the classifying task. It 
was evident that all the classifiers performed significantly better with RBM features while RF was outperforming 
other classifiers with an enhanced performance from 84 to 93% improved accuracy.

The performance of the estimators was quantified by the prediction accuracy ((TP + TN)/(TP + FN + FP + TN) 
where TP = true positives, TN = true negatives, FP = false positives, FN = false negatives). From the achieved mean 
accuracy from the tenfold CV process, it was found that RNN was the best to handle this classification problem 
with 93% global accuracy with very low of false negatives. Results for the independent testing and validation are 
summarised in the Table 2 (for the generated force) and Table 3 (for the resistance stress).

Prediction accuracy, precision (defined by TP/(TP + FP)), recall (TP/(TP + FN)), F1-score (defined by 2 × 
(precision × recall)/(precision + recall)) and classification probability results are reported in these tables. The 
precision, recall, and F1 score (also F-score or F-measure) are measures of an experiment’s accuracy, where a 
score of 1.0 indicates perfect classification and a score of 0.0 indicates all examples were incorrectly classified. 
Tables 2 and 3 shows the complete classification report for the RF based multiclass classification results. Macro 
and Weighted average of the class-based prediction accuracy were also reported in the Tables 2 and 3.

Conclusion
Future generations of SMA materials will be designed with highly bio-inspired motivations. They will aim to be 
soft bodies composed of soft materials, part of soft actuators and sensors, and will be capable of soft movements 
and safe interaction with humans. Development and wider adaptation of SMA materials will rely on higher 
degree of freedom in movement and actuation.

Table 1.   Multioutput multiclass classification results from the ten different machine learning classifiers. A 
random forest (RF) classifier was the best performing classifier in the multiclass classification problem while 
predicting the generated force and the stress by a movement of a SMA body. It was found that a restricted 
Boltzmann machine (RBM) was able to extract features efficiently to enhance the prediction accuracies of the 
classifiers. These findings led to a predictive system which can help to control and actuate the SMA structures 
more accurately.

Multioutput multiclass classifiers to 
predict categories representing class of 
generated force and resistance stress

Accuracy result based on RBM extracted features
Accuracy result without the RBM 
extracted features

10-fold CV mean test accuracy (%) (± 
standard deviation)

Mean validation accuracy (%) (± standard 
deviation)

Mean validation accuracy (%) (± standard 
deviation)

Feed forward back propagation 66.67 (± 11.56) 62.07 (± 13.56) 52.07 (± 18.76)

Support vector machine 73.33 (±10.07) 78.33 (±15.07) 70.21 (±17.34)

Multi-layer perceptrons 76.66 (±15.6) 72.66 (±11.6) 73.66 (±15.2)

Radial basis neural network 89.11(±8.31) 86.56(± 8.31) 79.21(± 11.91)

Random forest 90.37 (±5.07) 92.88 (± 6.77) 84.18 (± 9.06)

Decision tree 87.77 (± 17.77) 80.17 (± 7.77) 73.17 (± 12.77)

Naive Bayes 70.44 (± 10.09) 71.44 (±14.09) 60.74 (±13.79)

Quadratic discriminant analysis 60.00 (±18.32) 65.00 (± 16.32) 55.00 (±18.30)

Gradient boosting 75.55 (±11.16) 73.15 (±12.16) 62.56 (±15.36)

Logistic regression 77.05 (±12.87) 70.55 (± 14.87) 67.55 (±10.47)
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we developed a group of novel SMA materials suitable for large degree reversible actuation mechanism. We 
demonstrated that a newly developed NiTi based SMA with equilibrium microstructure was able to achieve two-
way actuation performance. Validation of this development was tested through consistent reversible actuation 
of various shapes of the same SMA material.

In this work, we reported accurate estimation of generated force and stress through an intelligent system 
instead of a conventional time-consuming approach. We combined computer vision techniques and scalable 

Table 2.   The complete classification report for the RF based multiclass classification results including 
prediction accuracy, precision, recall, F1-score of classification results from the independent validation stage 
while predicting class labels related to the classes of generated force by the SMA body movements.

Force class labels—equivalent of generated 
measured force Precision estimation Recall estimation Calculated F1-score

Total number of support samples for the 
individual class

1 0.93 0.98 0.95 1268

2 0.96 0.90 0.93 960

3 0.92 0.89 0.91 608

4 0.94 0.83 0.88 670

5 0.90 0.89 0.89 540

6 0.81 0.92 0.86 580

7 0.84 0.88 0.86 900

8 0.96 0.95 0.96 560

9 0.99 0.97 0.98 506

10 0.83 0.71 0.77 558

11 1.00 0.85 0.92 890

12 0.99 0.98 0.95 960

Accuracy 0.93 9000

Macro Avg 0.91 0.89 0.90 9000

Weighted Avg 0.93 0.93 0.93 9000

Table 3.   The complete classification report for the RF based multiclass classification results including 
prediction accuracy, precision, recall, F1-score of classification results from the independent validation stage 
while predicting class labels related to the classes of stress.

Stress class labels—equivalent of generated stress Precision estimation Recall estimation Calculated F1-score
Total number of support samples for the individual 
class

1 0.93 0.98 0.95 789

2 0.96 0.90 0.93 678

3 0.92 0.89 0.91 245

4 0.94 0.83 0.88 376

5 0.90 0.89 0.89 560

6 0.81 0.92 0.86 344

7 0.84 0.88 0.86 691

8 0.96 0.95 0.96 230

9 0.99 0.97 0.98 278

10 0.83 0.91 0.92 501

11 1.00 0.85 0.92 457

12 0.99 0.98 0.95 890

13 0.90 0.89 0.89 751

14 0.81 0.92 0.86 220

15 0.84 0.88 0.86 490

16 0.96 0.95 0.96 600

17 0.99 0.97 0.98 210

18 0.90 0.89 0.89 201

19 1.00 0.85 0.92 230

20 0.99 0.98 0.95 259

Accuracy 0.92 9000

Macro Avg 0.92 0.88 0.91 9000

Weighted Avg 0.91 0.92 0.92 9000
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machine learning to develop a model-based architecture for rapid characterization of shape memory materials. 
The reported intelligent system was proven to be highly accurate in computer vision based rapid estimation of 
force and stress generated by a movement. Using computer vision and machine learning based modelling tech-
niques to model deformable SMA bodies is a unique paradigm shift in the conventional characterisation of novel 
materials, which is predominantly actuated and controlled by central processing units and motors.

Through various experimental paradigm, we identified that there is a need to employ an intelligent system 
to characterise this novel material in order to achieve a greater control and intended actuation. Novel SMA 
material can only achieve a greater milestone in real life application, if combined with a suitable pathway to 
flexible actuation. It was established that a data driven framework is needed to rapidly estimate force and stress 
generated by a moving SMA body.

In future this computer vision and machine learning based manufacturing video data processing system 
could easily be adapted as a standard web based system to create a digital tool for the rapid SMA material char-
acterisation. This enhanced capability is able to capture and process raw data in-situ, so the generated data can 
be accessed readily for modelling and simulation. The data acquisition capability to capture data at multi-scale 
could give a comprehensive digital data presentation of the materials properties and the actuation performance 
specification. The machine learning system could be used for the creation of a behavioural digital footprint of a 
novel material incorporated as a digital library for a rapid process of online material performance referencing 
and rapid material selection for highly accurate actuation.
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