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A B S T R A C T

The novel COVID-19 is a global pandemic disease overgrowing worldwide. Computer-aided screening tools
with greater sensitivity are imperative for disease diagnosis and prognosis as early as possible. It also can be
a helpful tool in triage for testing and clinical supervision of COVID-19 patients. However, designing such an
automated tool from non-invasive radiographic images is challenging as many manually annotated datasets
are not publicly available yet, which is the essential core requirement of supervised learning schemes. This
article proposes a 3D Convolutional Neural Network (CNN)-based classification approach considering both the
inter-and intra-slice spatial voxel information. The proposed system is trained end-to-end on the 3D patches
from the whole volumetric Computed Tomography (CT) images to enlarge the number of training samples,
performing the ablation studies on patch size determination. We integrate progressive resizing, segmentation,
augmentations, and class-rebalancing into our 3D network. The segmentation is a critical prerequisite step
for COVID-19 diagnosis enabling the classifier to learn prominent lung features while excluding the outer
lung regions of the CT scans. We evaluate all the extensive experiments on a publicly available dataset
named MosMed, having binary- and multi-class chest CT image partitions. Our experimental results are very
encouraging, yielding areas under the Receiver Operating Characteristics (ROC) curve of 0.914 ± 0.049 and
0.893±0.035 for the binary- and multi-class tasks, respectively, applying 5-fold cross-validations. Our method’s
promising results delegate it as a favorable aiding tool for clinical practitioners and radiologists to assess
COVID-19.
1. Introduction

Pneumonia of unknown cause discovered in Wuhan, China, was
published to the World Health Organization (WHO) office in China
on 31st December 2019. It was consequently assigned to Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) because of having
similar genetic properties to the SARS outbreak of 2003. Therefore,
on 11th February 2020, WHO termed that new disease as COVID-
19 (Coronavirus disease), which displays an upper respiratory tract
and lung infection [1]. The clinical characteristics of critical COVID-
19 pandemic are bronchopneumonia that affects cough, fever, dyspnea,
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and detailed respiratory anxiety ailment [2–4]. According to the WHO
reports, COVID-19’s general indications are equivalent to that of or-
dinary flu, including fever, tiredness, dry cough, shortness of breath,
aches, pains, and sore throat [5]. Those shared signs turn it challenging
to recognize the virus at an ancient step. Moreover, the aforementioned
is a virus, which works on bacterial or fungal infections [5,6] with no
possibility that antibiotics can restrict it. Besides, people suffering from
medical complications, like diabetes and chronic respiratory and car-
diovascular diseases, can undergo COVID-19. An explanatory statement
of the Imperial College advised that the affection rate will be more than
vailable online 28 August 2021
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90.0% of the world’s people, killing 40.6 million people if no reduction
actions are grasped to combat the virus [7].

Advanced presumed discovery of COVID-19 is also a challenge for
public health security and control of pandemics. The COVID-19 detec-
tion failure increases the mortality rate exponentially. The incubation
period, which is a time between catching the virus and causing to
have indications of the illness, is 1 ∼ 14 days, making it remarkably
challenging to identify COVID-19 infection at a preliminary stage of an
individual’s symptoms [5]. The clinical screening test for the COVID-19
s Reverse Transcription Polymerase Chain Reaction (RT-PCR), prac-
icing respiratory exemplars. However, it is a manual, complicated,
iresome, and time-consuming fashion with an estimated true-positive
ate of 63.0% [8]. There is also a significant lack of RT-PCR kit
nventory, leading to a delay in preventing and curing coronavirus
isease [9]. Furthermore, the RT-PCR kit is estimated to cost around
20 ∼ 130 USD. It also requires a specially designed biosafety laboratory
o house the PCR unit, each of which can cost 15, 000 ∼ 90, 000

USD [10]. Nevertheless, using a costly screening device with delayed
test results makes it more challenging to restrict the disease’s spread.
Inadequate availability of screening workstations and measurement
kits constitutes an enormous hardship to identify COVID-19 in this
pandemic circumstance. In such a situation, speedy and trustworthy
presumed COVID-19 cases are a massive difficulty for related personals.

However, it is observed that most of the COVID-19 incidents have
typical properties on radiographic Computed Tomography (CT) and
X-ray images, including bilateral, multi-focal, ground-glass opacities
with a peripheral or posterior distribution, chiefly in the lower lobes
and early- and late-stage pulmonary concentration [11–14]. Those
features can be utilized to build a sensitive Computer-aided Diagnosis
(CAD) tool to identify COVID-19 pneumonia, which is deemed an auto-

ated screening tool [15]. Currently, deep Convolutional Neural Net-
orks (CNNs) allow for building an end-to-end model without requiring
anual and time-consuming feature extraction and engineering [16–
9], demonstrating tremendous success in many domains of medical
maging, such as arrhythmia detection [20–22], skin lesion segmenta-
ion and classification [23–26], breast cancer detection [27–29], brain
isease segmentation and classification [30,31], pneumonia detection
rom chest X-ray images [32], fundus image segmentation [33,34],
nd lung segmentation [35]. Most recently, various deep CNN-based
ethods have been published for identifying COVID-19 from X-rays and
T images, summarizing and bestowing in Table 1, where the mixed
atasets indicate that data have come from different open-sources.
hough the results obtained in the current articles are promising, they
xhibit limited scope for use as a CAD tool, as most of the works, espe-
ially on x-ray images, have been based on data coming from different
ources for two distinct classes (Covid Vs. Normal) [14,75,76,79,84–
7]. This brings inherent bias on the algorithms as the model tends
o learn the distribution of the data source for binary classification
roblems [74]. Therefore, these models perform very low when used
n practical settings, where the models have to adapt to data from
ifferent domains [74]. Recently, the authors in [88] launched a public
hest volumetric CT scan dataset with 1110 COVID-19 related studies
see details in Section 2.1). However, the published articles [89,90] on
his dataset consider only intra-slice spatial voxel information to isolate
OVID-19 and regular healthy patients.

This article aims to evaluate the proposed 3D-CNN classifier’s per-
ormance for identifying COVID-19 utilizing volumetric chest images,
here the volumes have come from the same source (details in Sec-

ion 2.1). However, the core contributions in this article are enlisted as
ollows:

• Designing a 3D-CNN-based classification network for volumetric
CT images as the 3D networks account for the inter-and intra-slice
spatial voxel information while the 2D networks consider only the
2

intra-slice spatial voxel information [83,90–94] c
• Conducting 3D patch-based classification as it increases the sam-
ple numbers in the smaller datasets, where we perform ablation
studies to determine a proper patch size

• Progressively increasing the input patch size of our network up
to the original CT size of 𝑅 × 𝐶 × 𝑆, where the trained network
with the patch size of (𝑅∕2𝑛+1)×(𝐶∕2𝑛+1)×(𝑆∕2𝑛+1) is a pre-trained
model of a network with the patch size of (𝑅∕2𝑛)×(𝐶∕2𝑛)×(𝑆∕2𝑛)

• Developing an unsupervised lung segmentation pipeline for allow-
ing the classifier to learn salient lung features while omitting the
outer lung areas of the CT scans

• Class rebalancing and augmentations, such as intensity- and
geometry-based, are employed to develop a general network,
although a small dataset is being utilized

The remainder of the article is prepared as follows. Section 2 details
he materials and methods practiced in the study, including a brief
ntroduction to the methodology and end-to-end 3D-CNN training. Sec-
ion 3 describes the experimental operations and their corresponding
btained results. Lastly, Section 4 concludes the article.

. Materials and methods

In this section, we describe the materials utilized and methods
o conduct the widespread experiments. We summarize the adopted
ataset in the first Section 2.1. The essential integral preprocessing,
uch as segmentation, augmentation, and class-rebalancing, are re-
orted in the second Section 2.2. The design of the proposed 3D-CNN-
ased COVID-19 classifier, along with its training protocol, is explained
n the third Section 2.3. Finally, in the fourth Section 2.4, we represent
sed hardware to execute the aimed method and evaluation criterion.

.1. Dataset

This article’s experimentations utilize a publicly usable MosMed-
ata dataset administered by municipal hospitals in Moscow, Russia,

rom March to April 2020 [88]. This dataset includes anonymized
uman chest lung CT scans in Neuroimaging Informatics Technology
nitiative (NIFTI) format with and without COVID-19 related findings
f 1110 studies. The population of MosMedData is distributed as 42%
ale, 56% female, and 2% others, where the median age of the

ubjects is 47 years (18 ∼ 97 years). All the studies (𝑛 = 1110) are
istributed into five following categories, as presented in Table 2.
e design two experimental protocols using the MosMedData dataset,

uch as binary- and multi-class identification, to evaluate our proposed
orkflow. In binary-class evaluation, we use NOR vs. NCP (Novel
OVID-19 Positive), where NCP includes MiNCP-, MoNCP-, SeNCP-
and CrNCP-classes, while in multi-class evaluation, we use NOR

s. MiNCP vs. MoNCP vs. SeNCP. In multi-class protocols, we merge
eNCP- and CrNCP-classes, naming them as SeNCP, as CrNCP has only
wo samples in the MosMedData dataset. We have applied a 5-fold
ross-validation technique to choose training, validation, and testing
mages as those are not explicitly given by the data provider. The class-
ise distribution of the MosMedData dataset in Table 2 illustrates that

he class distribution is imbalanced. Such an imbalanced class distribu-
ion produces a biased image classifier towards the class having more
raining samples. Therefore, we apply various rebalancing schemes to
evelop a generic classifier for COVID-19 identification, even though
he dataset is imbalanced.

.2. Preprocessing

The recommended integral preprocessing in the proposed frame-
ork (see in Fig. 1) consists of segmentation, augmentations (both
eometry- and intensity-based), and class-rebalancing, which are con-

isely explained as follows:
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Table 1
Numerous published articles for the COVID-19 identification with their respective utilized datasets and performances exhibiting different metrics, such as mSn, mSp, and mF1,
respectively, for mean sensitivity (recall), specificity, and F1-score (see metric details in Section 2.4).

Different methods Datasets Results

A pre-trained 2D MobileNet-v2 [36] architecture on ImageNet [37] was used to extract
massive high-dimensional features to classify six different diseases using the fully-connected layers [38] Mixed mSn: 0.974

mSp: 0.994

DeTraC [39,40], where the network was trained first using a gradient descent optimization [41], and then,
the class-composition layer of DeTraC was used to refine the final detection results [40] Mixed mSn: 0.979

mSp: 0.919

A multi-objective differential evolution-based CNN method fine-tuning iteratively using mutation, crossover,
and selection operations to discover the best possible results [14] Mixed mSn: 0.907

mSp: 0.906

An ensemble of VGG-16 [42], Inception [43], Xception [44], Inception-ResNet [45], MobileNet [46],
DenseNet [47], and NasNet [48] optimizing the hyperparameters using a greedy search algorithm [49,50] Mixed mSn: 0.990

mSp: 0.990

Support vector machine [29,51]-based method to classify the in-depth features from the pre-trained
MobileNet and SqueezeNet [52] from the restructured the data using a fuzzy color technique [53] Mixed mSn: 0.983

mSp: 0.997

An ensemble of three lightweight pre-trained SqueezeNet, ShuffleNet [54], and EfficientNet-B0 [55]
at various depths and consolidates feature maps in diverse abstraction levels [56] Mixed mSn: 0.978

mSp: 0.985

A fusing and ranking of in-depth features for classifying using a support vector machine, where the
pre-trained CNN models on ImageNet were used to extract the COVID-19 features [57] Mixed mSn: 0.989

mSp: 0.976

A DenseNet-201 [47]-based transfer learning to extract features using its learned weights on the ImageNet
was used to classify the patients as COVID infected or not [58] [59] mSn: 0.960

mSp: 0.960

A transfer learning-based approach using one of the VGG, ResNet [60], Inception, or Xception pre-trained
deep learning model on ImageNet as a backbone [61] [62] mSn: 0.996

mSp: 0.100

A weakly-supervised learning schema, where the lung region was segmented using a pre-trained UNet [63];
then, a 3D network was used to predict the probability of COVID-19 infectious [64] [64] mSn: 0.911

mSp: 0.881

A multi-scale-multi-encoder ensemble of CNN model aggregating the outputs from two different encoders
and their different scales to obtain the final prediction probability [65] Mixed mSn: 0.997

mSp: 0.997

Advanced deep network architectures proposing a transfer learning strategy on ImageNet using a
custom-sized input tailored for each architecture to achieve the best possible results [66] Mixed mSn: 0.996

mSp: 0.998

A pre-trained CNN-based schema leveraging the strength of multiple texture descriptors and base classifiers at
once, where data was re-balanced using resampling algorithms [67] Mixed mSn: −

mF1: 0.889

A deep ResNet-based transfer learning technique with a top-2 smooth loss function and a cost-sensitive
attribute to handle noisy and imbalanced COVID-19 datasets [68] Mixed mSn: 0.915

mSp: 0.948

An auxiliary classifier generative adversarial network-based design to generate synthetic images, where the
synthetic images produced CNN’s enhanced results for the prediction [69] Mixed mSn: 0.900

mSp: 0.970

A framework consisting of a CNN-based feature extractor and k-nearest neighbor [70,71], support vector
machine, and decision tree [71]-based classifiers using the Bayesian algorithm [72] Mixed mSn: 0.894

mSp: 0.998

An architecture based on the deep residual neural network using two parallel levels with different kernel
sizes for capturing both local and global features of the inputs images [73] Mixed mSn: −

mF1: 0.967

A classification architecture combining ResNet and Xception to investigate the challenges and limitations of
deep CNN and different datasets for building generic COVID-19 classifiers [74] Mixed mSn: 0.976

mSp: −

An average rank pooling, multiple-way augmentation, and deep feature fusion-based CNN and graph CNN
was developed to fuse individual image-level features and relation-aware features [75] [75] mSn: 0.963

mSp: 0.970

An end-to-end DarkCovidNet architecture [76] based on DarkNet [76] gradually increasing the number of
filters, where each convolutional layers were followed by BatchNorm [77] and LeakyReLU [78] Mixed mSn: 0.951

mSp: 0.953

A CoroNet model based on pre-trained Xception architecture on ImageNet for automated detection of
COVID-19 infection and trained in end-to-end manners [79] Mixed mSn: 0.993

mSp: 0.986

Comparative analyses of different pre-trained models considering several important factors such as batch size,
learning rate, epoch numbers, and type of optimizers to find the best-suited model [80] Mixed mSn: 0.100

mSp: 0.967

A comparative analysis of different CNN models, such as VGG, Resnet, Inception, Xception, Inception-ResNet,
DenseNet, and NASNet-Large [81], to decide a proper one for multi-modal image classification
minimizing the image quality imbalances in the image samples as a preprocessing [82]

Mixed
mSn: 0.820
mSp: −
mF1: 0.820

A pipeline consisting of segmentation and subsequent classification employing both 3D and 2D CNNs, where
the promising results for detecting were obtained in the 3D-CNNs than the 2D CNNs [83] [83] mSn: 0.891

mSp: 0.911
Segmentation. The segmentation, to separate an image into re-
ions with similar properties such as gray level, color, texture, bright-
ess, and contrast, is the significant element for automated detection
ipeline [95]. It is also a fundamental prerequisite for the COVID-19
dentification as it extracts the lung region and delivers explanatory
nformation about the shapes, structures, and textures. However, this
rticle proposes an unsupervised Lung Segmentation (LS) technique
pplying different image processing algorithms, as a massive number
f annotated COVID-19 images are not available yet in this pandemic
ituation. Fig. 2 depicts the pipeline of the proposed LS method. The
roposed threshold-based LS’s primary step is transforming all the CT
olumes to Hounsfield units (HU), as it is a quantitative measure of
3

adiodensity for CT scans. We set the HU unit as -1000 to −400 as
the study shows that lung regions are within that range, which was
also used in many articles [96–98]. The thresholded binary lung masks
are then refined to exclude different false-positive regions, such as the
connected blobs with the image border and other small false-positive
areas and false-negative areas, such as small holes in the lung regions.
Firstly, the border-connected regions are eradicated. Secondly, the two
largest areas are picked using the region properties algorithm [99].
Thirdly, morphological erosion separates the lung nodules attached to
the blood vessels and morphological closing to keep nodules attached
to the lung wall. Finally, the false-negative regions are removed using
binary hole fill algorithms [100]. Such an unsupervised thresholding-
based segmentation method is better for efficiency, taking only a few

seconds, and yields utterly reproducible LS.
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Table 2
Distribution of utilized MosMedData dataset for COVID-19 identification with a short class description.

Class acronym Description PPI∗ Samples (%)

NOR Not consistent with pneumonia, including COVID-19, and refer to a
specialist

– 254 (22.8%)

MiNCP Mild novel COVID-19 positive with ground-glass opacities and
follow-up at home using mandatory telemonitoring

=< 25% 684 (61.6%)

MoNCP Moderate novel COVID-19 positive with ground-glass opacities and
follow-up at home by a primary care physician

25 − 50% 125 (11.3%)

SeNCP Severe novel COVID-19 positive with ground-glass opacities and
immediate admission to a COVID specialized hospital

50 − 75% 45 (4.1%)

CrNCP Critical novel COVID-19 positive with diffuse ground-glass opacities
and emergency medical care

>= 75% 2 (0.2%)

Total Samples (%) 1110 (100%)

PPI∗: Pulmonary parenchymal involvement.
Fig. 1. The intended framework for the automatic COVID-19 identification from the volumetric 3D CT scans, consisting of essential integral preprocessing.
Fig. 2. The proposed block diagram of an unsupervised lung segmentation pipeline, without requiring a manually annotated lung region.
Augmentation. The CNN-based classifiers are profoundly depen-
dent on large data samples to evade the overfitting. Lamentably, vari-
ous medical imaging fields, especially the current COVID-19 pandemic,
suffer from an inadequate dataset size as manually annotated massive
training samples are still unavailable. In such a scenario, the aug-
mentations are very dormant preprocessing for increasing the training
samples as they are incredibly discriminative [101]. Data augmen-
tation incorporates a method that magnifies training datasets’ size
and property to develop a better-CNN classifier [102]. The geometric-
based augmentation, including a rotation (around 𝑟𝑜𝑤∕2 and 𝑐𝑜𝑙∕2) of
−25◦, −15◦, 10◦, 30◦ and height & width flipping, the intensity-based
augmentation, including gamma correction & adding Gaussian random
noise, and Elastic deformation1 are applied in this article as a part of
the recommended preprocessing. Two values of gamma (𝛾), such as 0.7
and 1.7, have been used in gamma correction to adjust the luminance

1 https://pypi.org/project/elasticdeform/.
4

of the CT volumes by 𝑉𝑜𝑢𝑡 = 𝑉 𝛾
𝑖𝑛, where 𝑉𝑜𝑢𝑡 and 𝑉𝑖𝑛 individually denote

the output and input values of the luminance.

Rebalancing. The utilized dataset in Table 2 is imbalanced. This
situation is obvious in the medical diagnosis field due to the scarcity of
massive manually annotated training samples, especially in COVID-19
datasets. The undesired class-biasing occurs in the supervised learning
systems towards the class with majority samples. However, we apply
two techniques to rebalance the imbalanced class distribution, such
as adding extra CT volumes (90 samples) from the publicly available
CC-CCII dataset (see details in [103]) and weighting the loss function
for penalizing the overrepresented class. The latter approach rewards
more extra consideration to the class with minority samples. Here, we
estimate the class weight using a portion of 𝑊𝑛 = 𝑁𝑛∕𝑁 , where 𝑊𝑛,
𝑁 , and 𝑁𝑛 separately denote the 𝑛th-class weight, the total sample
numbers, and the samples in 𝑛th-class. We employ both the class-
rebalancing strategies in the binary-class protocol, whereas the only
class weighting method is adopted in the multi-class protocol.

https://pypi.org/project/elasticdeform/
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Fig. 3. The architectural construction of the proposed base network, inputted with a size of 𝑀 × 𝑁 , training with the most smaller 3D patches. This trained base network is
applied as a pre-trained model for the following bigger patches. Best view in the color figure. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
2.3. Methodologies

2.3.1. Architecture
The deep neural network is a machine learning framework with a

wide range of applications, from natural language processing [104] to
medical image classification [105], segmentation [105], and registra-
tion [106]. In special, CNNs have become a prevalent technique in
the computer vision community. They are practiced in diverse tasks,
including object detection [107], classification [108], and localiza-
tion [109]. The CNN-based deep neural systems are also popularly
adopted in recent pandemic for COVID-19 identification [110,111]
(see in Table 1). CNN is an excellent discriminant feature extractor
at various abstraction levels, which is translation-invariant. Conse-
quently, utilizing it to classify medical images evades complicated and
expensive feature engineering [112]. The early few CNN layers learn
low-level image features and later layers learn high-level image features
particular to the application types [91]. However, the 2D-CNNs are
frequently employed in natural RGB and grayscale images to extract
the spatial features only in two dimensions [43]. The 2D-CNN also
can be applied to the volumetric medical image datasets taking cross-
sectional 2D slices of the CT, MRI, or similar scans. However, the recent
experimental results have revealed the advantages of 3D-CNN over 2D-
CNN, where the 3D-CNN accepts the volumetric spatial information
as an input [113]. Conventional 2D-CNNs’ effectiveness is degraded
due to the loss of spatial voxel information for volumetric 3D medical
imaging tasks. A 3D-CNN, a 3D space implementation of convolution
and pooling operation, is practiced to overcome spatial voxel infor-
mation loss as in the 2D-CNNs. The image becomes scalable in the
spatial direction using a 3D-CNN, allowing accurate image detection
with different frame sizes [114]. Therefore, we propose a classifier
based on 3D-CNN to identify COVID-19 from the volumetric CT scans.

Fig. 3 represents the constructional structure of our proposed COVID-
19 base classifier of the proposed framework in Fig. 1. The proposed
base network in Fig. 3 essentially consists of two modules, such as
feature extractor and feature classifier. The former module is a stack
of convolutional, pooling, and batch normalization layers, whereas
the latter module is a stack of fully connected layers followed by a
softmax layer. In addition, we involve 3D layers for all the feature
extractor module components to operate on volumetric medical images
for extracting the most discriminating features, accounting for both the
5

intra- and inter-slice spatial voxel information. In our network, each
3D convolutional layer with Rectified Linear Unit (ReLU) activation is
followed by a 3D max-pooling layer, where the pooling layer increases
translational invariances of the network. The pooled feature maps are
then used as an input to the successive layers, which may dynamically
change during training at each training epoch [92]. The more enormous
changes prone to bring difficulties for searching an optimal parameter
or hyperparameter; often become computationally expensive to reach
an optimal value [77]. Such a problem is mitigated by integrating batch
normalization layers in our network [77]. It also facilitates the smooth
training of the network architectures in fewer times [92]. The Global
Average Pooling (GAP) [115] is used as a bridge layer between the
feature extractor and feature classifier modules, converting the feature
tensor into a single long continuous linear vector. In GAP, only one
feature map is produced for each corresponding category, achieving a
more extreme dimensionality compression to evade overfitting [115]. A
dropout layer [116] is also employed as a regularizer, which randomly
sets half of the activation of the fully-connected layers to zero through
the training of our network.

Again, as mentioned earlier, the CNNs are heavily reliant on the
massive dataset to bypass overfitting and build a generic network.
The acquisition of annotated medical images is arduous to accumulate,
as the medical data collection and labeling are confronted with data
privacy, requiring time-consuming expert explanations [117]. There
are two general resolving directions: accumulating more data, such as
crowdsourcing [118] or digging into the present clinical reports [119].
Another technique is investigating how to enhance the achievement
of the CNNs with small datasets, which is exceptionally significant
because the understanding achieved from the research can migrate
the data insufficiency in the medical imaging fields [117]. Transfer
learning is a widely adopted method for advancing the performance of
CNNs with inadequate datasets [120]. There is no public pre-trained
3D-CNN model for the COVID-19 identification from the volumetric
chest images with limited samples to our most trustworthy knowledge.
Therefore, we create a pre-trained model by training our base model
(see in Fig. 3) on the extracted 3D patches from whole chest CT scans
(see details in Section 2.3.2). Then, we double the patches’ size and
use them for training the modified base network, where we also double
the base model’s input size applying a stack of convolutional, pooling,
and batch normalization layers (see details in Fig. 4). At the same
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Fig. 4. The proposed progressively resized network’s architectural structure, where the base model (see in Fig. 3), inputted with a size of 𝑀 ×𝑁 , is trained with the smaller 3D
patches. Then, the input size is doubled than the base network’s size, termed as 1st-time progressive resizing, where the network trained with the smaller patches is the pre-trained
model for the subsequent bigger patches. This process is continued until we reach the original given CT scan size. Best view in the color figure. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
time, we keep the base model’s trained weights for the smaller patches.
We repeat to enlarge (𝑛th-times) the patch and network sizes until we
arrive at the provided CT scans’ size, as pictured in Fig. 4. Such training
is called progressive resizing [121], where the training begins with
smaller image sizes followed by a progressive expansion of size. This
training process continues until the last patch, and network sizes are
the same as the initial image dimension.

2.3.2. Training protocol
We first extract five different patches with different sizes (see in

Fig. 5) to begin the experimentations. We perform ablation studies in
Section 3.1 looking for the best patch size. The weights of the base
network in Fig. 3 are initialized with Xavier’s normal distribution. The
weights of the first progressively resized network are initialized with
the weights of the base network. In general, the weights of the network
with the patch size of (𝑅∕2𝑛) × (𝐶∕2𝑛) × (𝑆∕2𝑛) are initialized with the
weights of the network with the patch size of (𝑅∕2𝑛+1) × (𝐶∕2𝑛+1) ×
(𝑆∕2𝑛+1) for the original CT volume size of 𝑅 × 𝐶 × 𝑆.

The filters in each layer of the network are initialized with the
‘‘he normal’’ distribution. Categorical cross-entropy and accuracy are
utilized as a loss function and metric, respectively, for training all the
networks in this article. We use Adam [122] optimizer with initial
learning rate (𝐿𝑅), exponential decay rates (𝛽1, 𝛽2) as 𝐿𝑅 = 0.0001,
𝛽1 = 0.9, and 𝛽2 = 0.999, respectively, without AMSGrad [123]
variant. The exponential decaying LR schedule is also employed for the
networks’ optimization. Initial epochs are set as 200, and training is
terminated if validation performance stops growing after 15 epochs.

2.4. Hardware and evaluation criterion

We execute all the comprehensive experiments on a Windows-10
machine utilizing the Python, with various Keras [124] and image
processing APIs, and MATLAB programming languages. The former
Python language is utilized to implement a deep learning framework,
and the latter MATLAB language is used to access the NIfTI Tool2
for volumetric medical images. The device configurations of the used

2 https://in.mathworks.com/matlabcentral/profile/authors/757722.
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machine are: Intel® CoreTM i7-7700 HQ CPU @ 3.60 GHz processor with
a install memory (RAM) of 32.0GB, and GeForce GTX 1080 GPU with
a memory of 8.0GB (GDDR5).

We evaluate all the experimental outcomes by employing numerous
metrics, such as recall, precision, and F1-score, for evaluating them
from diverse perspectives. The mathematical formulations of those
metrics are provided in Eq. (1).

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

,

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

,

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑇𝑃
2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

,

(1)

where TP, FP, and FN indicate true positive, false positive, and false
negative of the detection, respectively. The recall measures the type-II
error (the patient having positive COVID-19 characteristics erroneously
abandons to be repealed). In contrast, the precision estimates the pos-
itive predictive values (a portion of absolutely positive-identification
amid all the positive-identification). The harmonic mean of recall and
precision is manifested using the F1-score, conferring the trade-off
between these two metrics. Furthermore, we also quantify the prog-
nostication probability of an anonymously picked CT sample using a
Receiver Operating Characteristics (ROC) with its Area Under the ROC
Curve (AUC) value.

3. Results and discussion

In this section, the achieved results from different experiments are
reported with a comprehensive discussion. In Section 3.1, we confer
the results of COVID-19 identification utilizing various 3D patches and
compare them with original CT image utilization on the same experi-
mental conditions and network. We discuss the results of progressive
resizing over a single fixed size in Section 3.2. We demonstrate the
effects of different proposed preprocessing on COVID-19 identification
in Section 3.3. In this subsection, we also investigate a statistical
ANOVA test to validate the proposed preprocessing for the aimed
task. Finally, in Section 3.4, we dispense the results for binary- and
multi-class COVID-19 classification applying our proposed network and
preprocessing.

https://in.mathworks.com/matlabcentral/profile/authors/757722
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Fig. 5. Example of various extracted patches having different sizes, as mentioned earlier, where patches 𝑃1 to 𝑃6 are displayed in a) to f), respectively. The middle slices of each
3D patches are illustrated for the same sample (study_0258.nii.gz) in the MosMedData dataset. Slices are captured using a ITK-Snap windows version.
3.1. Patch selection

We extract five different 3D patches, named 𝑃1, 𝑃2, 𝑃3, 𝑃4, and 𝑃5,
having respective size of 16 × 16 × 9, 32 × 32 × 12, 64 × 64 × 15,
128 × 128 × 20, and 256 × 256 × 27. The original CT scans having
size of 512 × 512 × 36 is named as 𝑃6. The height and width of the
patch 𝑃5 is half of the 𝑃6, whereas these dimensions of the patch 𝑃4
is one-fourth of the 𝑃6, and so on. We extract 2𝑛 number of patches
for a 𝑛th-time reduction of the height and width. Therefore, we train
and test our network with 71040 (= 26 × 1110), 35520 (= 25 × 1110),
17760 (= 24 × 1110), 8880 (= 23 × 1110), 4440 (= 22 × 1110), and 1110
samples for the 3D volumes 𝑃1 to 𝑃6, respectively. The examples of the
extracted patches are shown in Fig. 5, where we select the middle slices
of the extracted patches of the same CT scan.

Various patches in Fig. 5 confers their respective resolutions, where
it is seen that the patches 𝑃1 and 𝑃2 demonstrate very low resolutions,
which may degrade the network’s learning capability. However, the
effects of those patch resolutions are judged by classifying the NOR vs.
NCP classes (see class details in Section 2.1).

The classification results are presented in Fig. 6 for all the patches
(𝑃1 to 𝑃5) and original CT scans (𝑃6), employing our 3D network
without any type of preprocessing. The results determine that the
network inputting with 𝑃1 patch outputs COVID-19 identification with
type-II errors as 69.0% and 25.0% for NOR- and NCP-classes, respec-
tively. Such results confirm that NCP-class has been identified more
accurately (44.0% more in NCP-class), pointing that classifier is biased
towards the NCP-class. On the other hand, the utilization of patch 𝑃2
produces identification results with type-II errors as 56.0% and 39.0%
for NOR- and NCP-classes, which reduce the differences between these
two classes (only 17.0% more in NCP-class). Although the 𝑃1 patch has
double samples, it fails to provide a class-balanced performance as in
the 𝑃2 patch. This is because of having a better resolution in the 𝑃2
patch than the 𝑃1 patch (see in Fig. 5), as other experimental settings
are maintained constant. Those results on 𝑃1 and 𝑃2 patches reveal that
significantly less resolution diminishes the CNN’s performance, as there
is a possibility of losing shape and texture information from the images
with meager resolution. Again, the patch 𝑃3 further improves the iden-
tification results with type-II errors as 54.0% and 28.0% for NOR- and
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NCP-classes. Approximately, the patch 𝑃4 also provides similar results
to the 𝑃3 patch. It is noteworthy from those experimentations that 𝑃3
or 𝑃4 patches have much fewer samples than 𝑃1 (4-times and 8-times,
respectively); still, they outperform the identification results of 𝑃1
and 𝑃2 patches with the same experimental settings. Furthermore, the
utilization of patch 𝑃5 further reduces the performances (type-II errors
as 6.0% and 99.0% for NOR- and NCP-classes) than all the previous
patches discussed above. Such a result explains that it produces a more
biased model towards the NCP class. Fig. 5 shows that the patch 𝑃4
and 𝑃5 are visually looking similar but 𝑃4 has two-times samples as of
𝑃5. This experiment exposes that having fewer samples also generates
class-biased classifiers if input images are similar in resolution.

Finally, the network with the original images also provides less
COVID-19 identification performance as in the patch 𝑃5 (see in Fig. 6).
All the experiments illustrate that our network with 𝑃3 or 𝑃4 patches
has better identification results. Such experimental results unquestion-
ably prove that the input resolution and the number of samples play
an important role in CNN-based classifiers’ learning. Unfortunately, we
cannot increase the number of specimens taking the smaller patch sizes
of the given images in the patch-based strategies, as it has a shallow
resolution, which adversely affects the classifiers.

3.2. Progressive resizing

The aforementioned results reveal that the utilization of better-
resolution with more sample numbers increases the performance of
CNN for image identification. Therefore, we propose to employ pro-
gressive resizing of our proposed 3D-CNN (see details in Section 2.3).
Firstly, we begin training the recommended network with a suitable
3D patch with more training samples from the previous experiments,
acting as a base model. Then, we add some CNN layers to the input of
the base model with the higher resolution (2-times more in this article),
where the base model is adopted as a pre-trained model (see details in
Section 2.3). Finally, we repeat this network resizing until we reach to
original given CT size (𝑃6).

The results for such a progressive resizing are presented in the

confusion metrics in Table 3 and ROC curves (with respective AUC
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Table 3
Normalized confusion matrix employing our network with progressive resizing, where we progressively increase the input
resolution from 𝑃4 to 𝑃5 then to 𝑃6 (original resolution). The first table (left) for the resolution of 𝑃4, the second table
(middle) for resolution of 𝑃4 ⟼ 𝑃5, and the last (right) for resolution of 𝑃4 ⟼ 𝑃5 ⟼ 𝑃6.

Actual
𝑃4 NOR NCP

NOR 24.26% 13.52%
Pr

ed
ic

t
NCP 75.74% 86.48%

Actual
𝑃4 ⟼ 𝑃5 NOR NCP

NOR 21.08% 5.38%

Pr
ed

ic
t

NCP 78.92% 94.62%

Actual𝑃4 ⟼ 𝑃5
𝑃5 ⟼ 𝑃6 NOR NCP

NOR 39.22% 9.30%

Pr
ed

ic
t

NCP 60.78% 90.70%
Fig. 6. The binary classification results from our 3D-CNN utilizing different 3D-patch sizes, where the bars with dots, horizontal lines, stars, and diagonal hatching respectively
denote recall and precision of NOR- and NCP-classes. Best view in the color figure. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Fig. 7. The ROC curves for the progressive resizing of our 3D network. Best view in
the color figure. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

values) in Fig. 7. The confusion matrix in Table 3, for more detailed
analysis of the identification results, points that 24.26%-NOR samples
are accurately classified as NOR, whereas 86.48%-NCP samples are
correctly classified as NCP while utilizing the 3D patch 𝑃4 with 8880
samples. Therefore, this training is set as a base model. Now, employing
the base model as a pre-trained model, the utilization of 𝑃5 patch,
with 4440 samples, decreases the false-negative rate of NCP by 8.14%
although false-positive rate increases by 3.18% (see in Table 3 (left and
middle)). This training is a first-time progressive resizing (𝑃4 ⟼ 𝑃5).
Again, employing 𝑃4 ⟼ 𝑃5 as a pre-trained model, the utilization of
𝑃6 (original CT scans), with 1110 samples, increases the false-negative
rate of NCP by 3.92%, still less than baseline false-negative rate of
13.52%. It also decreases the false-positive rate by a margin of 18.14%,
8

which is less than the former two false-positive rates (see all tables in
Table 3). Furthermore, the proposed final progressively resized network
(𝑃4 ⟼ 𝑃5 ⟼ 𝑃6) obtains an AUC of 0.754, which indicates that the
probability of correct COVID-19 identification is as high as 75.4% for
any given random CT samples (see in Fig. 7). It has beaten the baseline
𝑃4 and 𝑃4 ⟼ 𝑃5 respectively by 17.0% and 7.70% in terms of AUC,
as presented in Fig. 7. Those ROC curves in Fig. 7 also depict that for
a given false-positive rate, the possibility of getting a true-positive rate
is significantly higher for the 𝑃4 ⟼ 𝑃5 ⟼ 𝑃6 than the other two
approaches. Although the final progressively resized network (𝑃4 ⟼

𝑃5 ⟼ 𝑃6) has an input of the original CT scans, its performance
is considerably better than the network training with 𝑃6 alone (see
in Fig. 6). Transferring the knowledge from the prior smaller patch
inputted network is responsible for achieving much better results than
the random initialization of the filter kernels of the proposed network.
All the above discussions of this subsection experimentally certify the
progressive resizing supremacy for the COVID-19 identification instead
of training using single-size input CT scans.

3.3. Prepossessing employment

This subsection exhibits the COVID-19 identification results from
our progressively resized 3D network, employing different preprocess-
ing for the ablation studies, such as augmentation, segmentation, and
class-rebalancing. At the end of this subsection, the effectiveness of the
introduced preprocessing has been validated by applying a statistical
ANOVA test.

Table 4 bestows different experimental results, where we explic-
itly illustrate the outcomes of each preprocessing for the COVID-19
identification from volumetric chest CT scans. Without progressive
resizing and inputting with original CT scans (𝑃6), the baseline model
produces low identification consequences resulting in type-II errors of
86.3% and 1.7% respectively for NOR- and NCP-classes, conferring
high class-imbalanced results. The weighted average type-II error is
only 21.1% with respective average positive predictive value as 77.2%.
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Table 4
The COVID-19 identification results on the MosMedData dataset from our 3D-CNN network, utilizing various recommended preprocessing.

Class-wise and weighted average metrics

Recall PrecisionDifferent experiments
NOR NCP Avg. NOR NCP Avg.

Baseline model 0.137 0.983 0.789 0.700 0.793 0.772
Progressively Resized Network (PRN) 0.392 0.907 0.789 0.556 0.834 0.770
PRN with Augmentation (PRNA) 0.529 0.884 0.803 0.574 0.864 0.798
PRN with Lung Segmentation (PRNS) 0.333 0.971 0.825 0.773 0.831 0.818
PRNA and PRNS with Class-rebalancing (PRNASCR) 0.706 0.919 0.870 0.720 0.913 0.869
The experimental results determine that, on average, 77.2% samples
are correctly recognized as positive out of all positive identifications,
which are 70.0% and 79.3% for the NOR- and NCP-classes, respectively.
Highly imbalanced training samples (𝑁𝑂𝑅 ∶ 𝑁𝐶𝑃 = 1 ∶ 3.37)

ith less intra-class heterogeneity and high inter-class similarity are
he probable causes for providing such a poor result of the intended
ask. However, the utilization of different 3D patches in the following
xperiment of progressive resizing (PRN) improves the classification
esults, where the base model on the smaller patches acts as a pre-
rained model. This PRN also mitigates the class-imbalanced outcomes,
s reflected in the PRN results (see in the second row of Table 4).
he appliance of PRN successfully improves the type-II error of NOR-
lass by a margin of 25.5%, while the weighted average type-II error is
dentical to the baseline experiment (21.1%). In the PRN, the network is
rained with more sample numbers and better resolution (discussed in
ection 3.1 and Section 3.2), which improves intra-class heterogeneity
nd inter-class similarity, leading to enhanced outcomes in the PRN ex-
eriment. However, the following three paragraphs explain the results
f our progressively resized 3D network, combining Augmentation,
egmentation, and Class-rebalancing in the manner of ablation studies.

RN with Augmentation (PRNA). The employment of different im-
age augmentations, such as random rotation, height & width flipping,
gamma correction, adding Gaussian noise, and Elastic deformation (see
details in Section 2.2) with PRN further improves the COVID-19 iden-
tification results (see in Table 4). An example of such augmentations
is displayed in Fig. 8. It gives far better class-balanced (type-II error
of NOR-class improved by a margin of 13.7% with significantly less
reduction as 2.3% in NCP-class). The weighted average type-II error
is increased by 1.4% with respective increases in average positive
predictive value by 2.8% for the appliance of augmentations with the
PRN. This experiment reveals that the augmentations bring variability
in the training sample with high intra-class heterogeneity and less inter-
class similarity, which empowers the CNN model to learn from many
examples, driving to enhanced classification results.

PRN with Segmentation (PRNS). The well-defined segmentation, with
less coarseness, is an essential requirement for further classification.
The incorporation of segmentation with the PRN further promotes
the identification results than the PRN alone, as exposed in Table 4.
Several examples of the segmented lung from our proposed unsuper-
vised pipeline (as described in Section 2.2) are depicted in Fig. 9
for qualitative evaluation. Those segmentation results quantitatively
demonstrate that the segmented lung regions are pretty much accurate
visually. However, the COVID-19 identification results incorporating
lung segmentation with the PRN reflects its supremacy over the PRN
alone, extending the weighted average type-II error by 3.6% with
respective improvements in average positive predictive value by 4.8%
(see in Table 4). Those results indicate that 4.8% additional specimens
are perfectly identified as positive out of all positive classifications.
The class-imbalanced identification is also lessened due to segmented
lung area utilization over the complete CT volumes. The reasonable
ground for those enhanced performances due to the segmentation is
that it extracts an abstract region, enabling the classifier to learn only
the precise lung areas’ features while avoiding the surrounding healthy
tissues of the chest CT scans.
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PRN with Augmentation, Segmentation, and Class-rebalancing
(PRNASCR). Combining augmentations, segmentation, and class-
rebalancing with the PRN provides this article’s best COVID-19 identi-
fication results. This experiment identifies the COVID-19 from the chest
CT scans with relatively more minor class imbalance with the weighted
average type-II error of 13.0% with respective average positive pre-
dictive value as 13.1%. All the preprocessing employment heightens
the former metric by a margins of 8.1% and the latter metric by 9.7%
from the baseline model (see in Table 4) with less class-imbalance
performance. Besides, Fig. 10 displays the ROC curves of our PRN
with/without all the preprocessing and a baseline model with their
corresponding AUC values. The proposed PRNASCR achieves an AUC
of 0.897, determining the probability of accurate COVID-19 recognition
is as large as 89.7% for any yielded random chest CT sample. For AUC,
the proposed PRNASCR betters the baseline model, PRN, PRNA, and
PRNS respectively by 18.9%, 14.3%, 10.9%, and 7.3%. From Fig. 10
and given 10.0% false-positive rates, the true-positive rates of COVID-
19 identification from the baseline model, PRN, PRNA, PRNS, and
PRNASCR are approximately 22.0%, 35.0%, 46.0%, 52.0%, and 67.0%,
respectively, showing the improvements of 45.0% from the baseline
22.0%.

Moreover, the experimental results from different experiments, such
as baseline model, PRN, PRNA, PRNS, and PRNASCR, have been con-
firmed employing a statistical test called ANOVA and 5-fold cross-
validation. Fig. 11 dispenses the Box and Whisker plot of the AUC
values of this validation test. For ANOVA testing, 𝛼 = 0.05 is applied as
a threshold to reject the Null hypothesis (all experiments’ mean AUC
values are equal) if 𝑝-value ≤ 0.05, which outcomes significant results.
The ANOVA test demonstrates a 𝑝-value of 0.000837 (≤ 0.05), which
reveals that an alternative hypothesis is accepted, strongly pointing
that none of the mean AUCs are equal (also displayed in Fig. 11).
Again, a post hoc T-test (Bonferroni correction) is combined with the
ANOVA test for determining the better experiment for the recom-
mended COVID-19 detection system, which confirms the superiority of
the offered PRNASCR scheme for the aimed task.

3.4. Binary- Vs. Multi-class evaluation

This subsection displays the COVID-19 identification results us-
ing our proposed PRNASCR for binary- and multi-class (see in Sec-
tion 2.1), utilizing the 5-fold cross-validation. The detailed class-wise
performance of our PRNASCR for both the binary- and multi-class is
exhibited in the confusion metrics in Table 5 (left) and Table 5 (right),
correspondingly.

The binary-classification results in Table 5 (left) show that among
254-NOR CT samples, correctly classified samples are 167 (67.75%),
whereas only 87 (34.25%) samples are erroneously classified as NCP
(false positive). It is also noteworthy that among 856-NCP samples,
rightly classified samples are 848 (99.06%), whereas only 8 (0.94%) sam-
ples are wrongly classified as NOR (false negative). Again, the matrix
in Table 5 (right) for multi-class recognition reveals the FN and FP for
the COVID-19 identification, where number of wrongly classified CT
images (type-I or type-II errors) are 66∕256 (25.78%), 104∕684 (15.20%),
39∕125 (31.20%), and 16∕47 (34.04%) respectively for the NOR-, MiNCP-,
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Table 5
The confusion matrix for the COVID-19 identification on the MosMedData dataset from our proposed 3D-CNN
network and preprocessing for the binary- (left) and multi- (right) class problems.

Actual
2-classes NOR NCP

NOR 167
65.75%

8
0.94%Predict

NCP 87
34.25%

848
99.06%

Actual
4-classes NOR MiNCP MoNCP SeNCP

NOR 188
74.02%

67
9.80%

3
2.40%

2
4.26%

MiNCP 62
24.41%

580
84.80%

29
23.2%

13
27.66%

MoNCP 3
1.18%

22
3.22%

86
68.80%

1
2.13%

Predict

SeNCP 1
0.39%

15
2.18%

7
5.60%

31
65.95%
Fig. 8. Qualitative examples of augmentation results applied for automatic COVID-19 identification from the proposed framework.
Fig. 9. Examples of lung segmentation results applying our unsupervised pipeline, as described in Section 2.2.
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ig. 10. The ROC curves for the employment of various preprocessing to our 3D
etwork. Best view in the color figure. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

oNCP-, and SeNCP-classes. Those binary- and multi-class results ex-
ose that the NOR-class performance has been improved by 8.27%
argin with other constant experimental settings. The identification re-

ults for the severity prediction (MoNCP vs. SeNCP) confer tremendous
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A

ig. 11. Box and Whisker plot of the AUC values obtained from 5-fold cross-validation
n different experiments in Table 4 for COVID-19 identification.

uccess in our pipeline, where barely 5.60%-MoNCP and 2.13%-SeNCP
amples are prognosticated as SeNCP- and MoNCP-classes, respectively
see in Table 5). Although overall macro-average AUC of the binary
lassification defeats the multi-class recognition (see in Fig. 12) by a
argin of 2.1%, the later protocol has better class-balance results. The
ulti-class protocol also provides more minor inter-fold variation than

he binary-class, as depicted in Fig. 12. However, our approach for the
OVID-19 identification exhibits praiseworthy achievement with high
UC values with less inter-fold variation in both of the class protocols.
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Fig. 12. The ROC curves for the binary- and multi-class identification of COVID-19, applying 5-fold cross-validations. Best view in the color figure. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Quantitative comparison of our proposed method with other techniques for the identical intended task and dataset using the Bar plots of recall and accuracy.
To compare our proposed framework with the existing works [125–
130], we consider the articles, which are tested on the same MosMed-
Data dataset. Fig. 13 exhibits a quantitative comparison of different
methods for the same task and dataset, dispensing recall and accu-
racy. The comparative results in Fig. 13 point that the recommended
framework achieves the highest recall of 0.991, delivering significantly
less type-II error of COVID-19 identification. Although the accuracy
of our system is less, it is still better than other methods of Ibrahim
et al. [125], Qiblawey et al. [126], Demir et al. [127], Mittal and
Oh [128], Lacerda et al. [129], Mahmud et al. [130] for medical
diagnostic procedures because our system has significantly fewer false-
negative rates with slightly higher false-positive rates. Additionally,
most of the authors in [125–130] split data for training, validation,
and testing without cross-validation. However, selecting test images in
such a splitting cannot guarantee not choosing the most straightforward
samples, which perhaps exhibited better accuracy from those articles.
11
4. Conclusion

During the current COVID-19 pandemic emergency, precise recog-
nition with negligible false negative is essential to mitigate the per-
manent lung damage due to coronavirus. This article aimed to de-
sign an artificial screening system for automated COVID-19 identi-
fication. A progressively resized 3D-CNN classifier is recommended
in this study, incorporating lung segmentation, image augmentations,
and class-rebalancing. The experimental analysis confirms that the
CNN classifier’s training with the suitable smaller patches and progres-
sively increasing the network size enhance the identification results.
Furthermore, incorporating the lung segmentation empowers the clas-
sifier to learn salient and characteristic COVID-19 features rather than
utilizing whole chest CT images, driving improved COVID-19 classi-
fication performance. Again, the augmentations and class-rebalancing
result in improved COVID-19 identification with high class-balanced
recognition, shielding the network from being biased to a particular
overrepresented class. In the future, the proposed pipeline will be
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employed in other volumetric medical imaging domains to validate
its efficacy, versatility, and robustness. We also aim to deploy our
trained model to a user-friendly web application for clinical utilization.
The proposed system can be an excellent tool for clinicians to fight
this deadly epidemic by the quicker and automated screening of the
COVID-19.
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