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Abstract: Enrofloxacin is frequently administered via drinking water for the treatment of colibacillosis
in broiler chickens. However, the EMA/CVMP has urged to re-evaluate historically approved doses,
especially for antimicrobials administered via drinking water. In response, the objectives of this study
were two-fold. First, to evaluate the pharmacokinetics (PK) of enrofloxacin following IV, PO and
drinking water administration. Second, to predict the efficacy of a range of doses in the drinking water
for the treatment of APEC infections. For the first objective, PK parameters were estimated by fitting
a one-compartmental model with a zero-order IV infusion and an oral absorption lag function to the
simultaneously modelled IV and PO data. After fixing these parameter values, a drinking behaviour
pharmacokinetic (DBPK) model was developed for the description and prediction of drinking water
PK profiles by adding three model improvements (different diurnal and nocturnal drinking rates,
inter-animal variability in water consumption and taking account of dose non-proportionality). The
subsequent simulations and probability of target attainment (PTA) analysis predicted that a dose of
12.5 mg/kg/24 h is efficacious in treating colibacillosis with an MIC up to 0.125 µg/mL (ECOFF),
whereas the currently registered dose (10 mg/kg/24 h) reaches a PTA of 66% at ECOFF.

Keywords: colibacillosis; dose optimization; population pharmacokinetics

1. Introduction

Enrofloxacin is a second-generation fluoroquinolone with a high potency against
Gram-negative aerobic bacteria, exclusively developed for veterinary use [1]. Enrofloxacin
is still an important part in the veterinarian’s armamentarium for the treatment of avian
colibacillosis in many parts of the world [2,3]. Colibacillosis refers to any localized or
systemic infection caused by avian pathogenic Escherichia coli (APEC) [4,5]. However,
the use of fluoroquinolones is becoming increasingly restricted through legislation or
even prohibited in some countries (like the USA) as this antimicrobial class is of critical
importance for human medicine [6].

The European Medicines Agency’s Committee for Veterinary Medicinal Products
(EMA/CVMP) stated in 2018 that enrofloxacin should no longer be used for the treatment
of E. coli in broilers and turkeys via drinking water. The reason for this was because market
authorization holders failed to provide pharmacokinetic/pharmacodynamic (PK/PD) data
to justify the approved doses [7]. More recently, in 2019, EMA/CVMP released a draft
stating the urgency to optimize the dosage regimens of antimicrobial drugs currently
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employed in veterinary medicine, especially those administered via drinking water, using
modelling/simulation and probability of target attainment (PTA) analysis [8].

As is demonstrated above, there is a clear need for optimizing the currently approved
dosage regimen of enrofloxacin for APEC infections. The current veterinary dosage reg-
imens are determined during drug development via dose-ranging (titration) and dose
confirmation studies using pre-defined doses, treating the dose–effect relationship as a
“black box”, since no or little information is gathered on the PK/PD processes. Subse-
quently, doses estimated via this approach are susceptible to bias, misinterpretation and
are usually suboptimal [9,10]. The optimization of dosage regimens of antimicrobial drugs
using PK/PD modelling is accomplished by selecting the dosage regimen that ensures
that 90% or 95% of the patient population (PTA) achieves a specific value of a PK/PD
target index [11]. For fluoroquinolones, the index associated with clinical efficacy against
Gram-negative bacteria is the ratio AUC(24 h)/MIC ≥ 125 h [12–15].

Enrofloxacin is generally administered via drinking water in broilers [16]. Admin-
istration via this route adds extra variability to the PK process, which is related to the
individual’s water (or feed) intake. However, there are limited examples available illustrat-
ing the compellingly large variation in drinking or feeding behaviour and their impact on
exposure [17–19]. Chicken drinking behaviour is also influenced by fluctuations in temper-
ature and the type of drinker available [20]. When optimizing doses, this variability in dose
uptake has to be taken into consideration. Studies concerning the modelling of variable
drug input are scant. In a study regarding patient compliance in human medicine, dose
uptake variability was modelled by creating a stochastic drug input in the PK model [21,22].
The same authors investigated oxytetracycline administered in pig feed and developed
the new concept of a feeding behaviour pharmacokinetic (FBPK) model to account for
the feeding behaviour-induced PK variability [23]. Studies about PK/PD-modelling of
drinking water administration while taking drinking behavioural variability into account
have so far, to the best of the author’s knowledge, not been published.

Therefore the aims of this study were two-fold. First, we developed an innovative
drinking behaviour PK (DBPK) model of enrofloxacin in broilers, by evaluating the PK of
enrofloxacin following IV, PO and drinking water administration, and taking inter- and
intra-individual sources of variability into account, including the variability in drinking
water uptake. Second, we performed simulations with the previously established DBPK
model to compute the minimal dose to achieve the PK/PD target (AUC (24 h)/MIC = 125 h)
in 90% of individuals at the MIC corresponding to the epidemiological cut-off (ECOFF) of
E. coli, which is 0.125 µg/mL.

2. Results

Figure 1 gives an overview of the PK modelling process and the final DBPK model. A
one-compartment model with zero-order IV infusion (IV delay = ±3 min), and first-order
absorption and elimination with a lag time for the oral absorption process (Tlag = ±2.4 min)
best fitted the simultaneously modelled IV and PO data. After fixing the parameters,
the drinking water data were added to the model and two additional parameters were
estimated, namely, Drink and dVddose.
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Figure 1. An overview of the PK modelling process. Using the data of the IV and PO single bolus administration (rich
and sparsely sampled) animal trials, the parameters of the one-compartment model (Cl, V, Ka and F with an additional
IV delay and Tlag) were estimated and subsequently fixed in further analyses. In order to model the drinking water
administration modality and develop the DBPK model, three model improvements were implemented. First, diurnal
and nocturnal infusion rates were chosen in order to mimic the drinking behaviour during the photo- and scoto-period,
respectively. Second, the variability in drinking water behaviour and therefore in bioavailability was captured using an
additional parameter, Drink. Third, accounting for the nonlinear relationship between dose and exposure, a covariate was
introduced (dVddose) to decrease Drink and hence bioavailability proportionally with higher doses.

The typical values (tv) of the primary structural parameters of the model, their asso-
ciated standard error (SE), coefficient of variation (CV%), 95% confidence intervals and
between-subject variability (BSV) for the final model are presented Table 1. The secondary
parameters can be found the Supplementary Files (S1). The precision of most model pa-
rameters was considered acceptable (CV% < 20). BSV was 11%, 22% and 100% for Cl, V
and Ka, respectively. Therefore, most of the BSV resided in the absorption process rather
than clearance and volumes.

Table 1. Population primary (thetas) parameters of enrofloxacin in broilers obtained via sequential modelling and their
associated standard error (SE), the lower and upper bounds of the 95% confidence interval (CI) and the estimated between-
subject variability (BSV). First, the IV and PO data were fitted with a one-compartment model with IV delay and Tlag
functions. Second, the drinking water PK data was added and the parameters Drink and dVddose were estimated.

Typical Values Estimate Units SE 2.5% CI 97.5% CI BSV (%)

Step 1: Initial modelling of IV and PO PK data

tvCl 458.1 mL/kg/h 29.59 400.0 516.2 11
tvV 4671.9 mL/kg 339.1 4006.2 5337.7 22
tvKa 0.685 1/h 0.051 0.584 0.786 100

tvTlag 0.041 h 0.006 0.030 0.052 -
tvIV_delay 0.054 h 0.013 0.028 0.079 -
logit(tvF) 1.313 * 0.319 0.686 1.940 -

Step 2: Modelling of drinking water PK data

tvDrink 193.9 mL/kg/24 h 5.827 182.4 205.3 24
dVddose −1.849 0.461 −2.754 −0.945 -

tvCMultStdev 0.096 % 0.004 0.087 0.104 -
stdev0 116.8 ng/mL 0.748 115.3 118.3 -

* Back transformation of this value (invlogit) gives an F of 0.788.
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The typical value of the parameter describing water uptake, Drink, was approximately
194 mL/kg/24 h. This corresponds to a mean water consumption of around 316 mL/24 h
per bird (mean weight 1.63 kg). The parameter was estimated with good precision (5.8 CV%
and the 95% confidence interval between 182.5 and 205.3). The associated BSV was 24%.

The predicted quantiles (10%, 50%, and 90%) of the stratified visual predictive checks
(VPCs) were close to the corresponding observed quantiles, indicating a good model fit
(Figure 2). The adequacy of the model can be further verified from the IPRED and PRED
vs. observed concentrations and CWRES vs. time goodness-of-fit plots (Supplementary
Files Figures S2–S4).
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Figure 2. Stratified visual predictive check (VPC) of the different treatment groups ((a)—IV, (b)—PO richly sampled,
(c)—PO sparsely sampled, (d)—drinking water administration 2.5 mg/kg, (e)—drinking water administration 5 mg/kg,
(f)—drinking water administration 10 mg/kg, (g)—drinking water administration 15 mg/kg, and (h)—drinking water
administration 20 mg/kg) with 200 replicates of each animal. Approximately 20% of the data should fall outside the plotted
quantiles. Red lines: observed quantiles; black lines: predicted quantiles; blue circles: observed data.

There was good correlation (Figure 3) between the observed water consumption and
the water consumption estimated by the model (R2 = 0.802).
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Figure 3. Correlation between the observed water consumption and the estimated water uptake
by the model for 15 animals. The observed water drunk over 24 h was determined by adding
the estimated proportion of nocturnal drinking (10.5%) to the water uptake evaluated during the
photoperiod. Coefficient of determination (R2) = 0.8020.
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The variance–covariance matrix and shrinkage are given in Table 2. Low levels of
η-shrinkage (<30%) were indicative of appropriate data richness, which in turn meant
precise estimation of the random effect parameters of the model.

Table 2. Estimates of the random effects variance–covariance matrix, correlation matrix and shrinkage.

Omega

nCl nV nKa
nCl 0.012
nV 0.008 0.048
nKa −0.023 0.150 0.694

Correlation between ETAs and shrinkage

nCl 1
nV 0.348 1

nKa −0.247 0.823 1
Shrinkage 0.207 0.139 0.086

Variances (diagonal) are in bold; nCl, nV and nKa are the random components of the model (ETAs). The BSVs,
expressed as coefficient of variation (CV%) using Equation (2), were 10.9, 22.1 and 100.1% for nCl, nV and nKa,
respectively. The variance, CV% and shrinkage of nDrink (the random component of tvDrink, not included in the
variance–covariance matrix) were 1542.23, 24% and 15%, respectively.

Using MCS and the previously finalized population DBPK model, virtual enrofloxacin
PK profiles were generated for 50 replicate sets of 15 animals per dose, over an 80 h period.
The following nine doses were tested: 2.5, 5, 7.5, 10, 12.5, 15, 20, 30 and 50 mg/kg/24 h.
The IPREDs were simulated, taking into account the structural parameters (θ) and BSV
(η), but not the residual error (σ). These curves were then used to compute the PTA
(%) of the PK/PD-breakpoint fAUC(48–72h)/MIC for the different doses and several MICs
(0.008–0.016–0.032–0.064–0.125–0.25–0.5–1–2 µg/mL), taking only the free concentration
into account (80% of the total concentration). The results of the PTA analysis are displayed
in Figure 4.
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Figure 4. Probability of target attainment (PTA) for fAUC (48–72 h)/MIC ≥ 100 h in 75 simulated broiler chickens for four
doses of enrofloxacin (10, 12.5, 20 and 50 mg/kg) administered via drinking water (five other simulated doses are omitted).
The horizontal dotted line signifies the PTA of 90%. The relative frequency of the MIC distribution of APEC strains is taken
from a recent study from Flanders (Belgium) [24].

Based on the PK/PD index of AUC(48–72h)/MIC of 125 h, which is equivalent to
fAUC(48–72h)/MIC of 100 h, the registered dose of enrofloxacin (10 mg/kg/24 h) is predicted
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to be effective for covering the APEC strains up to an MIC of 0.064 µg/mL (PTA 100%),
but only achieves a PTA of 66% at 0.125 µg/mL, which corresponds to the epidemiological
cut-off (ECOFF). The ECOFF categorizes strains into wild-type and non-wild-type, based
on the absence or presence of an acquired or mutational resistance mechanism. For a dose
of 12.5 mg/kg/24 h or higher, the PTA was 90% for an MIC of 0.125 µg/mL, which could
be established as the PK/PD cut-off. A selective overview of the PTA analysis is given in
the Supplementary Files (S5).

3. Discussion

The dose optimisation of enrofloxacin for the treatment of colibacillosis in broiler
chickens improves the One Health sustainability of antimicrobial agents for three reasons.
First, inadequate dosing and subsequent exposure can lead to treatment failure and re-
sistance development in the target pathogen [24]. Second, APEC strains have zoonotic
potential [25–27] and can lead to human infections, which are more difficult to treat be-
cause of the increased resistance to antimicrobial drugs. Finally, resistance genes can be
exchanged via horizontal gene transfer between the bacteria of animals and humans, where
the environment can have a facilitating role [24].

The first goal of this study was to develop a DBPK model of enrofloxacin administered
in broilers, describing the absorption and disposition of the drug administered via drinking
water while taking the inter-animal variability (IIV) into account.

Modelling this modality of administration allows clear extrapolation from the in silico
models to the veterinary poultry practice, where individual IV and PO administration is
almost non-existent.

The estimated PK parameters were chiefly in alignment with the established literature.
A typical clearance of 485 mL/kg/h was estimated, which is an approximately two-fold
increase from the values reported by two previous studies [28,29]. However, one study
reported a higher mean total body clearance after IV administration to broilers, namely,
10.3 mL/(min*kg) (i.e., 618 mL/(h*kg)) [30]. Similar to the relationship between the
clearance estimated in this study and the reported clearance values in the literature, the
mean estimated volume of distribution (4672 mL/kg) fell in between the mean results
estimated by other studies, which ranged from 1.98 L/kg to 5 L/kg [28–30]. Concerning
bioavailability (F), there is again some variability in the published studies, with values
ranging from 60% [31] to 80% [28] and 90% [30]. Our estimation of F (78.80%) falls yet
again amid this range.

The kinetics of enrofloxacin administered via drinking water were modelled as a zero-
order rate infusion, differentiating between diurnal and nocturnal infusion rates and taking
inter-animal variability into account. One limitation of this approach is that the analysis
and estimation of the drinking behaviour was performed the day before the administration
of enrofloxacin and on a limited sample of 15 animals, who were later exposed to the same
dose of 20 mg/kg/24 h. For a more accurate analysis, the drinking water uptake should
be evaluated during the enrofloxacin administration and on a large number of animals
exposed to different doses. This would then allow for clear extrapolation between the
measured uptake and the exposure (expressed as AUC), and the appraisal of possible dose-
dependent increases or decreases in the water uptake. Nevertheless, a good correlation was
found between both the drinking data before administration and the subsequent exposure
after administration, and the observed and estimated water consumption.

The effect of temperature fluctuations on drinking behaviour was not assessed in this
study. A heuristic in poultry practice states that per degree Fahrenheit increase above
the ambient stable temperature, the birds will drink approximately 7% more. However,
many studies show that drinking water uptake is only significantly increased in periods
of heat stress [20,32–35]. Heat stress occurs when the ambient temperature is above the
thermal comfort zone of the birds, which for adult broilers is generally above 30 ◦C [36–38].
In commercial broiler farms, the temperature is strictly controlled through ventilation.
Therefore, major temperature deviations will be mitigated most of the time. There are
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exceptions of course ((sub)tropical climates and excessively hot summers), but these are of
less importance in the target region of Western Europe.

Moreover, temperature-mediated alterations in the drinking behaviour of the flock
will not impact the administered dosage, since the concentration of the antimicrobial agent
added to the drinking water is dependent on the water consumption of the previous
24 h. This can be appreciated from Equation (1). However, for many antimicrobial agents
and products, this dose calculation is not stated on the leaflet. Therefore, it is possible
that concentration correction of the drug based on the water intake is not always done in
practice. However, it can be considered good veterinary/agricultural practice (GVP/GAP)
to always determine the drug concentration that is needed to be added to the drinking
water to attain a certain dose based on the average water consumption of the flock.

In this study, the potential shift in water uptake was corrected for in the dose calcula-
tion. For this reason, an ambient temperature covariate that could influence the average
water (and drug) uptake at different temperatures was not included in the DBPK model.
However, future studies should be conducted to evaluate the impact of temperature devia-
tions on drinking behaviour and the subsequent absorption, disposition and efficacy of
antimicrobial agents in more detail.

Of note was the bird who drank notably less (and resulted in a lower AUC) than
the other broiler chickens (Figure 6, grey dot). While evaluating the video recording, this
animal moved around less frequently and appeared debilitated. This anecdotal observation
highlights the importance of early treatment intervention (metaphylaxis) during infections,
since these have an impact on the drinking and feeding behaviour of animals, resulting in
a lower exposure when very diseased.

Several doses were administered to the birds via drinking water, ranging from 2.5 to
20 mg/kg/24 h. A nonlinear relationship between exposure (AUC) and increasing doses
was observed. Several approaches were tested to capture the nonlinearity.

First, the inclusion of (intestinal) efflux mechanisms was modelled, since enrofloxacin
is a well-known p-glycoprotein (p-gp) substrate [39]. Other tested mechanisms were
saturable Michaelis–Menten absorption and Imax-driven decrease (inhibitory Emax model)
in absorption. None of these mechanisms significantly improved the model.

Notably, when the nonlinear mechanism was enclosed in the drinking behaviour (see
Equation (6), parameter dVddose), the model fit improved significantly. One explanation
for a decrease in the water uptake associated with higher doses could be an increased
perception of the taste of enrofloxacin. However, this effect was not seen in a study where
they administered a dose of 50 mg/kg/24 h to the birds [40]. Another explanation could
be the increase in variability of the drug concentrations drank by the birds at higher doses,
where birds drinking more or less than average have greater effects on exposure since the
medicated water is more concentrated.

In the second part of this study, the PTA of different doses was determined for
the PK/PD index associated with the clinical efficacy of fluoroquinolones against Gram-
negative bacteria (AUC/MIC ≥ 125 h). This approach is similar to the methodology
stipulated by VetCAST for the determination of a veterinary clinical breakpoint [41,42].
The registered dose of enrofloxacin (10 mg/kg/24 h) administered via drinking water is
effective in treating APEC strains with MIC values equal to or lower than 0.064 µg/mL
(100% PTA). Susceptible strains with an MIC value equal to the ECOFF (0.125 µg/mL) are
covered by a dose of 12.5 mg/kg/24 h (90% PTA). In contrast, susceptible strains with an
MIC equalling the CLSI clinical breakpoint of susceptibility (0.25 µg/mL) are only covered
by the highest investigated dose of 50 mg/kg/24 h (90% PTA).

The discrepancy between the ECOFF and CLSI clinical breakpoint of susceptibility
is of major importance, since the strains that are still deemed susceptible in antimicrobial
susceptibility testing (but with an MIC above the ECOFF) are difficult to treat because they
require an approximately five-fold increase from the currently approved dose. This raises
concerns of the validity of the currently established clinical breakpoint for enrofloxacin
and Escherichia coli. According to VetCAST, veterinary clinical breakpoints are based on the
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following three separate components: an ECOFF, a PK/PD breakpoint and a clinical cut-off
based on clinical data [42]. However, the latter is generally not available in veterinary
medicine. The PK/PD breakpoint is the highest possible MIC for which a given percentage
of animals in the target population achieves a critical value for the selected PK/PD index
using the registered dose. In this study, the PK/PD cut-off was 0.064 µg/mL (just one
dilution below ECOFF), but the PTA was still high (66%) at ECOFF for the registered dose.

Using the conservative PK/PD index of 125 h (and breakpoint values in general) has
limitations, however. The PK/PD indices are summary endpoints and do not provide
detailed information about the time course of the PK and PD processes [43]. Instead, the
development of mechanistic mathematical models characterizing the full time-course of the
PK/PD mechanisms provides a more accurate description of antimicrobial activity [44–47].
This includes quantitative analysis of time–kill curve (TKC) data. This approach has
already been introduced in veterinary medicine [48,49]. In chickens, there are indications
that the AUC(0–24h)/MIC for clinical effectiveness could be lower than 125 h, which would
impact the choice of optimal dose [50,51]. Therefore, it is important to conduct further
research to investigate the dynamics between the concentrations of enrofloxacin and E. coli
concentrations using TKC analysis, and to develop (semi-)mechanistic PK/PD models
to predict more accurate PK/PD indices that are specific with regards to the drug, the
pathogen and the animal species.

4. Materials and Methods
4.1. Animal Trials

The study was approved by the ethical committee of the Faculties of Veterinary
Medicine and Bioscience Engineering of Ghent University (EC2017/94). Care and treatment
of the birds were in full compliance with the national and European legislation concerning
animal welfare [52,53]. Throughout the studies, feed and drinking water were provided
ad libitum.

The PK of enrofloxacin were evaluated in 4 different animal trials (intravenous admin-
istration (IV), oral gavage administration (PO) richly sampled, PO sparsely sampled and
drinking water administration). Temperature in the stables was set depending on the age
of the birds, as described in international guidelines [54]. In the richly sampled IV and PO
trials, 8 birds (4 weeks of age) received 10 mg/kg enrofloxacin intravenously (wing vein)
and to another 8 birds, the same dose of enrofloxacin was administered via oral gavage.
Blood samples were collected (from leg and/or wing veins) at 0 (prior to administration),
5, 10, 20, 30, 45, 60 min and 1.5, 2, 3, 4, 6, 8, 10 and 24 h post administration (p.a.).

Regarding the sparsely sampled PO trial, 120 animals were allocated to 12 different
treatment groups (n = 10). All birds of each group received an oral bolus enrofloxacin of
10 mg/kg. Groups 1 to 3 were treated when the animals were 27 days of age, groups 4–6 on
29 days of age, groups 7–9 on 34 days of age and lastly groups 10–12 on 36 days of age. The
sample points (ranging from 5 min to 32 h p.a.) were randomly assigned to the different
treatment groups. Each animal was sampled 5 times, resulting in 600 sample points in total.
An overview of the sampling design is given in the Supplementary Files (S6).

In the last animal trial (enrofloxacin medicated drinking water), broiler chickens
(5 weeks old) were randomly assigned to 5 treatment groups, each treatment group receiv-
ing a different dose (2.5, 5, 10, 15 and 20 mg/kg/24 h). The temperature in the stables was
set and controlled at 20 ◦C, conforming to international guidelines [54]. The photoperiod
was 16 h (7 a.m.–11 p.m.) and the scotoperiod was subsequently 8 h. One treatment group
consisted of 3 pens, with 5 animals per pen, resulting in a total number of 15 animals.

The amount of enrofloxacin (mL of Baytril® 10% oral solution, Bayer, Diegem, Belgium)
that needed to be added in the drinking water was calculated using the following formula
(Equation (1)):

Dose
(

mg
kg

)
∗ average BW (kg) ∗ number o f animals per group ∗ amount o f water(L)

Average water uptake per group in 24 h (L)
(1)
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The average water uptake of the broiler chickens was determined by weighing the
drinking bells of 5 randomly selected groups at a specific time point and 24 h after. The
average body weight was calculated by taking the average of all the birds present in those
5 groups (n = 25).

After an acclimatization period (1 week), the drinking water was medicated with
enrofloxacin for 3 consecutive days. The drug was administered at 9 a.m. A first blood
sample was taken 8–9 h later (3 p.m.). For the next 2 days, blood samples were taken shortly
after the light was turned on in the stable but before administration (7 a.m.) and then 8–9 h
later around 3 p.m. The last blood sample was collected 79 h p.a. This resulted in 6 samples
per animal (7, 23, 31, 46, 55 and 79 h p.a.). An overview of the experimental design of the
drinking water administration trial is shown in the following figure (Figure 5).

Antibiotics 2021, 10, x FOR PEER REVIEW 9 of 16 
 

𝐷𝑜𝑠𝑒 (
𝑚𝑔
𝑘𝑔

) ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑊 (𝑘𝑔) ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 𝑝𝑒𝑟 𝑔𝑟𝑜𝑢𝑝 ∗ 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟(𝐿)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑎𝑡𝑒𝑟 𝑢𝑝𝑡𝑎𝑘𝑒 𝑝𝑒𝑟 𝑔𝑟𝑜𝑢𝑝 𝑖𝑛 24ℎ (𝐿)
 

(1) 

The average water uptake of the broiler chickens was determined by weighing the 

drinking bells of 5 randomly selected groups at a specific time point and 24 h after. The 

average body weight was calculated by taking the average of all the birds present in those 

5 groups (n = 25).  

After an acclimatization period (1 week), the drinking water was medicated with en-

rofloxacin for 3 consecutive days. The drug was administered at 9 a.m. A first blood sam-

ple was taken 8–9 h later (3 p.m.). For the next 2 days, blood samples were taken shortly 

after the light was turned on in the stable but before administration (7 a.m.) and then 8–9 

h later around 3 p.m. The last blood sample was collected 79 h p.a. This resulted in 6 

samples per animal (7, 23, 31, 46, 55 and 79 h p.a.). An overview of the experimental design 

of the drinking water administration trial is shown in the following figure (Figure 5). 

0 10 20 30 40 50 60 70 80

0

200

400

600

800

1000

Time post first drinking water administration (h)

P
la

s
m

a
 c

o
n

c
e
n

tr
a
ti

o
n

 e
n

ro
fl

o
x
a
c
in

 (
n

g
/m

L
)

Day 1 Day 2  Day 3

7am-11pm 7am-11pm

 

Figure 5. The green lines correspond with the time when enrofloxacin was introduced in the drinking water (9 a.m.) and 

kept for 24 h. This was done for three consecutive days. The red line indicates the cessation of enrofloxacin administration. 

The blue dotted lines relate to the six different sample points (7, 23, 31, 46, 55 and 79 h post administration). The grey areas 

indicate the periods that the light in the stable was turned off (scotoperiod, 11 p.m. to 7 a.m.), and the white areas corre-

spond to the photoperiod. The black dotted line is an example of a PK profile of a representative broiler dosed at 10 

mg/kg/24 h. 

Additionally, 15 animals were filmed during the drinking water administration trial 

(the day before drinking water administration) to evaluate the correlation between drink-

ing water consumption and enrofloxacin exposure on the subsequent day.  

After the experiments, animals were euthanized with pentobarbital IV (sodium pen-

tobarbital 20%, Kela, Hoogstraten, Belgium). The sex of the animals was determined post 

mortem. 

4.2. Quantification of Enrofloxacin in Plasma  

The technique used in this study for the analysis of enrofloxacin in plasma was based 

on the method described by Devreese et al. [1], with slight modifications. Concisely, 250 

µL of plasma sample was spiked with 25 µL of internal standard solution (1 µg/mL) and 

vortex mixed (±15 s). Next, 3 mL of ethyl acetate was added to the samples and these were 

extracted on a roller mixer for ±15 min (liquid–liquid extraction). After mixing, the sam-

ples were centrifuged (2851× g, 10 min, 4 °C). Thereafter, the organic layer was transferred 

Figure 5. The green lines correspond with the time when enrofloxacin was introduced in the drinking water (9 a.m.) and
kept for 24 h. This was done for three consecutive days. The red line indicates the cessation of enrofloxacin administration.
The blue dotted lines relate to the six different sample points (7, 23, 31, 46, 55 and 79 h post administration). The grey
areas indicate the periods that the light in the stable was turned off (scotoperiod, 11 p.m. to 7 a.m.), and the white areas
correspond to the photoperiod. The black dotted line is an example of a PK profile of a representative broiler dosed at
10 mg/kg/24 h.

Additionally, 15 animals were filmed during the drinking water administration trial
(the day before drinking water administration) to evaluate the correlation between drinking
water consumption and enrofloxacin exposure on the subsequent day.

After the experiments, animals were euthanized with pentobarbital IV (sodium pen-
tobarbital 20%, Kela, Hoogstraten, Belgium). The sex of the animals was determined
post mortem.

4.2. Quantification of Enrofloxacin in Plasma

The technique used in this study for the analysis of enrofloxacin in plasma was based
on the method described by Devreese et al. [1], with slight modifications. Concisely, 250 µL
of plasma sample was spiked with 25 µL of internal standard solution (1 µg/mL) and
vortex mixed (±15 s). Next, 3 mL of ethyl acetate was added to the samples and these
were extracted on a roller mixer for ±15 min (liquid–liquid extraction). After mixing,
the samples were centrifuged (2851× g, 10 min, 4 ◦C). Thereafter, the organic layer was
transferred to another tube and evaporated under a gentle nitrogen (N2) stream (45 ± 5 ◦C).
Reconstitution of the dry residue was achieved in 250 µL of ultrapure H2O. Finally, the
sample was transferred to an autosampler vial after filtering through a 0.20 µm nylon
filter (Merck Millipore, Overijse, Belgium) and the aliquot (10 µL) was injected into the
LC–MS/MS system.
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Chromatographic separation was achieved on a Zorbax Eclipse Plus column (reversed
phase C18, 100 mm × 3.0 mm i.d., dp: 3.5 µm) in combination with a guard column of the
same type (13 mm × 3.0 mm i.d., dp: 3.5 µm) (Agilent Technologies, Diegem, Belgium)
using a gradient elution programme consisting of 2 mobile phases (A and C). Mobile phase
A consisted of 0.1% glacial acetic acid in ultrapure H2O and mobile phase C was 100%
ACN. The following gradient elution program was applied: 0–3 min (80% A, 20% C),
3–3.5 min (linear gradient to 50% A), 3.5–5 min (50% A, 50% C), 5–5.5 min (linear gradient
to 80% A) and 5.5–10 min (80% A, 20% C).

Flow rate was set at 0.3 mL/min. After separation, the LC eluent was coupled to a Wa-
ters Quattro Ultima® (Asse, Belgium) triple quadrupole mass spectrometer with ion source
heated electrospray ionization (h-ESI) operating in positive ionization mode. Acquisition
was performed in selected reaction monitoring (SRM) mode. For enrofloxacin and the
IS, the following transitions were followed (*quantification ion): ENR: m/z 360.0 > 316.1,
242.3* and ENR-d5: m/z 365.0 > 321.1. The LC–MS/MS analytical methods were validated
for ENR using matrix-matched calibrator and quality control samples, based on blank
plasma of untreated broiler chickens.

The limit of quantification (LOQ) was 50 ng/mL. The LC–MS/MS analyses were
conducted in accordance with international guidelines [55–57].

4.3. PK/PD Modelling and Simulation

The pharmacokinetic data analyses were conducted using Phoenix® 8.2 (Certara, Prince-
ton, NJ, USA). The PK profiles of the richly sampled PO and IV datasets were analysed
simultaneously with the sparsely sampled PO and drinking water administration datasets
using NLME, as previously described [10]. Estimation of the PK parameters and their
associated variability was performed by minimizing the objective function value (OBV), the
negative 2 log-likelihood (-2LL), using Laplacian maximum likelihood estimation.

Data below the LOQ (BLQ) were excluded (M1 method) with negligible bias for parameter
estimation, since these constituted approximately 0.02% of the combined dataset [41,58–60].

The PK data was modelled sequentially. In the first step, the PK data of the birds
administered IV (n = 8) together with the data of the oral gavage routes (8 densely and
120 sparsely sampled birds) were modelled simultaneously.

Standard goodness-of-fit diagnostics, including individual (and population) vs. con-
centration plots and the conditional distributions of weighted residuals (CWRES) were
used to assess the performance of the candidate models.

Two concurrent, nested models were compared using the likelihood ratio test (LRT).
For the addition of one parameter, given a significance level of 0.05 (type I error), the critical
value of the χ2 distribution is 3.84. Therefore, a decrease of 3.84 in the objective function
value (OBV) with an additional model parameter is significant. A one-compartment model
was chosen to fit the data. The basic mathematical PK model can be written as follows
(Equation (2)):

Y = f (θi, Time)× (1 + ε1) + ε2

θ =



Fi
kai
Cli
Vi

IV_delayi
Tlagi

 =



invlogit(logit (tvF))
tvka × exp

(
ηkai

)
tvCl × exp

(
ηCli

)
tvV × exp

(
ηVi

)
tvIV_delay

tvTlag


(2)

where Y are the observed plasma concentrations, f (θi, Time) represents the structural model
and the (1+ ε1) and the ε2 terms characterize the residual error model. A combined error
model was chosen, consisting of a multiplicative term ε1 and an additive term ε2, having
both a mean of 0 and a standard deviation of σ1 and σ2, respectively.

The individual deviations from typical values (θ) of the structural parameters, ηka,
ηCl and ηV, describing the biological between-subject variability (BSV), were coded as
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log-normally distributed. The distribution of η in the log-domain has a mean of 0 and
a variance of ω2. The bioavailability parameter F was logit transformed to bound its
estimated value between 0 and 1 and was considered fixed. An IV disposition delay
(IV_delay) and a lag in oral absorption (Tlag) parameter were estimated (typical values
only). The full variance–covariance matrix was selected. The reported variance values
(ω2) of the BSV were transformed to represent coefficients of variation (CV%) with the
following equation (Equation (3)) [41,49]:

CV (%) = 100 ×
√

exp(ω2)− 1. (3)

Eta (η)—shrinkage was calculated to evaluate the quality of the empirical Bayes
estimates (EBEs) using the following equation (Equation (4)) [61]:

Eta − shrinkage = 1 −
SD
(
EBEη

)
ω

(4)

where ω is the population model estimate of the variability in the SD of η (variability in
the population) and SD (EBEη) is the SD of the individual values of the EBE’s of η. When
η-shrinkage is high (non-informative and sparse data), the individual parameter estimates
will deviate less from the population mean and the variance in the EBE distribution will be
shrinking towards zero. Shrinkage below 30% was considered acceptable [62].

After initial estimation of the fixed and random-effect parameters from the IV and
PO (rich and sparse) datasets, their typical values and variances were subsequently fixed.
Thereafter, the drinking water PK data was included in the model. Essentially, group admin-
istration in drinking water is comparable to a prolonged monotonous oral administration
(with varying diurnal and nocturnal rates) where chickens self-medicate depending on their
drinking behaviour. As a consequence, three model improvements that are specific to the PK
of group administration via the drinking water of animals were successively implemented.

Firstly, based on the video recording analysis of 15 animals obtained during the
drinking water PK experiment and the weighing of the drinking bells, it was estimated
that 89.5% and 10.5% of the total daily dose was drunk during the photoperiod (16 h) and
scotoperiod (8 h), respectively. Succession of day–night doses, apportioned to the water
consumption in the photo- and scoto-period, respectively, were inputted as infusions in
Phoenix using the ADDL function (depending on the timespan of the day/light period and
the enrofloxacin concentration of the medicated drinking water).

Secondly, there was evidence of variability in water uptake between the different birds.
Indeed, there was a high correlation (R2 = 0.813, Figure 6) between the amount of water
drunk by 15 filmed individual broiler chickens on the day before dosing (photoperiod)
and their subsequent corresponding AUC (0–72 h) after administration of 20 mg/kg/24 h
enrofloxacin (calculated by non-compartmental analysis). Note the one outlier on the left
(grey dot) who drank very little, which is examined further in the discussion.
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Figure 6. The correlation between AUC(0–72h) of enrofloxacin administered via the drinking water of
15 broiler chickens dosed at 20 mg/kg and the amount of water drunk over 16 h (the filming period)
per bird the day before administration. Coefficient of determination (R2) = 0.8127.

To account for the variability in drinking water uptake between animals, an additional
parameter Drink (mL/kg/24 h) with associated BSV (ηDrink) was introduced as a factor
influencing bioavailability (F) according to the following formula (Equation (5)):

Fi = invlogit(logit (tvF))× Drink. (5)

Thirdly and finally, a lack of dose proportionality had to be implemented. Indeed, the
dose proportionality between the 5 administered doses in water was refuted by evaluating
the AUC (0–72 h) determined via non-compartmental analysis, using a power model. To
account for the observed less than proportional exposure (AUC) to dose relationship, we
included a covariate (dVddose) that decreased the tvDrink proportionally with dose, as
described by the equation (Equation (6)):

Drink = tvDrink + (dose − mean(dose))× dVddose + ηDrink (6)

where mean(dose) refers to the average of the 5 administered doses, which is 10.5 mg/kg/24 h.
The final model, which described the absorption and disposition of enrofloxacin

following drinking water administration while taking variability in water uptake into
account, is coined a DBPK model.

The validity (internal) of the final model was assessed by plotting stratified visual
predictive checks (VPCs) for each distinct dataset (IV, PO sparse, PO rich and the different
doses administered via the drinking water). The 95% confidence intervals of the 10th,
50th and 90th percentiles of the simulated PK profiles were matched with corresponding
percentiles of the observed data.

4.4. Simulation and Probability of Target Attainment Analysis

Next, a virtual population was generated by MCS in Phoenix (50 replicates of the PK
dataset containing 211 birds) with different PK profiles after drinking water supplemented
with different doses.

The free plasma concentration–time profiles were simulated for up to 80 h (with
increments of 1 h), using the 5 doses that were administered in the in vivo experiment (2.5,
5, 10, 15 and 20 mg/kg/24 h) and 4 additional ones (7.5, 12.5, 30 and 50 mg/kg/24 h).
Protein binding of enrofloxacin in broilers is reported to be 20% [28,31]. Several areas under
the curve (0–24 h, 0–48 h, 0–72 h and 48–72 h) were calculated from the simulated curves
with NCA. Summary statistics and the different quantiles (ranging from 1 to 99) were
determined using the Phoenix statistical tool. The PTA of the different doses was calculated
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using the PK/PD-breakpoint AUC(24 h)/MIC ≥ 125 h [12–15] for a range of MIC values
(0.0625—2 µg/mL). A PTA of 90% was considered effective, in alignment with the PK/PD
cut-off determination by the EUCAST Veterinary Subcommittee (VetCAST) [41,42]. The
AUC of 48 to 72 h was chosen since it is assumed that during this time frame steady-state
is achieved [63]. Since the free concentrations are investigated, the AUC(48–72 h)/MIC
≥ 125 h target can be converted into an fAUC (48–72 h)/MIC target by multiplying the
former with the free fraction [64], which is approximately 0.8. This results in an fAUC
(48–72 h)/MIC index of 100 h.

5. Conclusions

In conclusion, this study introduces the novel concept of the DBPK model and de-
scribes a novel approach for the PK modelling and dose optimization of antimicrobial
agents administered via drinking water in the veterinary sector. Based on the conservative
PK/PD index of AUC(0–24h)/MIC of 125 h, the dose of 12.5 mg/kg per day is effica-
cious in treating colibacillosis caused by strains without acquired resistance mechanisms
(MIC = ECOFF), whereas the currently registered dose (10 mg/kg per day) reaches a PTA
of 66%. However, more research is needed to develop mathematical models characterizing
the full time-course of the PK/PD processes, thereby providing more accurate predictions
of antimicrobial efficacy and PK/PD indices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10050604/s1, File S1: Table with secondary PK parameters of enrofloxacin in
broilers and their associated standard error (SE), coefficient of variation (CV%) and 95% confidence
intervals, File S2: Scatterplots of observed concentrations vs. IPRED, File S3: Scatterplots of observed
concentrations vs. PRED; File S4: Scatterplots of CWRES vs. time post administration, File S5: Table
of selected quantiles of the PTA analysis of the different doses for a range of MIC values, File S6:
Table of the sampling design of the sparsely sampled enrofloxacin PO administration trial.
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