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Background. Previous studies have shown that RNAN6-methyladenosine (m6A) plays an important role in the construction of the
tumor microenvironment (TME). However, how m6A plays a role in the TME of clear cell renal cell carcinoma remains unclear.
Methods. Based on 23 m6Amodulators, we applied consensus cluster analysis to explore the different m6Amodification profiles of
ccRCC.-eCIBERSORTmethod was employed to reveal the correlation between TME immune cell infiltration and different m6A
modification patterns. A m6A score was constructed using a principal component analysis algorithm to assess and quantify the
m6A modification patterns of individual tumors. Results. -ree distinct m6A modification patterns of ccRCC were identified. -e
characteristics of TME cell infiltration in these three patterns were consistent with immune rejection phenotype, immune
inflammation phenotype, and immune desert phenotype. In particular, when m6A scores were high, TME was characterized by
immune cell infiltration and patient survival was higher (p< 0.05). When m6A scores were low, TME was characterized by
immunosuppression and patient survival was lower (p< 0.05). -e immunotherapy cohort confirmed that patients with higher
m6A scores had significant therapeutic advantages and clinical benefits. Conclusions. -e m6A modification plays an important
role in the formation of TME. -e m6A scoring system allows the identification of m6A modification patterns in individual
tumors, discriminates the immune infiltrative features of TME, and provides more effective prognostic indicators and treatment
strategies for immunotherapy.

1. Introduction

Renal cell carcinoma is the most common tumor of the
urinary system, and the most common histologic subtype is
clear cell renal cell carcinoma (ccRCC) accounting for ap-
proximately 80%–90% of cases [1, 2]. Studies have shown
that approximately 100,000 people die from renal cell car-
cinoma each year worldwide, and the incidence is increasing
every year [3]. Notably, the prognosis of advanced clear cell
renal cell carcinoma is poor, but the 5-year survival rate of
early-stage patients is relatively favorable, reaching 90% [4].
-erefore, a new method for early diagnosis and better
treatment of ccRCC is urgently needed to further improve
the survival rate and survival time of patients.

-e tumor microenvironment (TME) refers to the in-
ternal and external environment, in which tumors occur,

grow, metastasize, and tumor cells reside. It includes not
only the tumor cells but also their surrounding fibroblasts,
immune and inflammatory cells, glial cells, and various other
cells, and the extracellular matrix (ECM), microvasculature,
tumor-infiltrating immune cells (TIC), and biomolecules
infiltrating in the nearby area [5, 6]. TME plays an important
role in tumor progression, tumor metastasis, and tumor
drug resistance [7, 8]. A number of studies have pointed out
the close association of TME with the development and
prognosis of ccRCC [9].

-e m6A is one of the most common modifications of
RNA [10], which has been shown to have a wide range of
effects on splicing, transport, localization, stability, and
translation efficiency of precursor or mature mRNAs, spe-
cifically including RNA stabilization [11], translation [12],
strange splicing [13, 14], and nuclear export [15]. In the post-
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transcriptional regulation of the transcriptome, m6A is
known as a key regulator that intervenes and controls en-
docytosis.-em6A structure and function are mediated by a
combination of methylation transferase (writer), demeth-
ylase (eraser), and methylation reading protein (reader). -e
main role of the m6A writer is to catalyze the m6A modi-
fication of adenosine on mRNA, including METTL3,
METTL14, METTL16, RBM15, VIRMA, WTAP, and
ZC3H13 [16]. -e m6A eraser mainly serves to demethylate
the bases that have undergone m6A modification, including
FTO and ALKHB5[17, 18]. -e reader, also known as m6A-
binding protein, includes YTHDF1, YTHDF2, YTHDC1,
YTHDC2, IGFBP1, IGFBP2, IGF2BP3, RBMX, and
HNRNPC, which is mainly responsible for binding to m6A
sites and exerting specific regulatory effects on the modified
RNA [19]. Notably, m6A modification during tumor de-
velopment enables TME remodeling, affecting immune cell
survival, proliferation, polarization, migration, and function.
-ese processes help to protect tumor cells from clearance,
inhibit cell death, and promote proliferation to further aid
tumor cell proliferation and immune escape [20–24].

In particular, there is a correlation between the infiltration
of immune cells in TME and m6A modification [25]. For
example, METTL3 activates dendritic cells and initiates ac-
tivation of cytotoxic T lymphocytes by increasing m6A levels
of CD40, CD80, and TLR4 [26]; METTL3 overexpression
promotes gastric cancer progression (GC) and liver metas-
tasis through angiogenic and glycolytic pathways [27]. -ese
studies suggest that m6A-regulated post-transcriptional
modifications in TME interfere with immune cell infiltration.

Based on the above background, this study aimed to
investigate the characteristics of immune cell infiltration in
TME mediated by multiple m6A regulators, deepen the
understanding of post-transcriptional modifications inter-
fering with TME immune regulation, and further confirm
the interaction between m6A modifications and TME in
tumorigenesis and progression.

In this study, we analyzed genomic information from
569 patients with clear cell renal cell carcinoma, compre-
hensively assessed m6A modification patterns, and regressed
the correlation between m6A modification patterns and the
characteristics of TME cell infiltration. After combining the
m6A features in TME, we found three distinct m6A modi-
fication patterns and high concordance with immune re-
jection phenotype, immunoinflammatory phenotype, and
immune inert phenotype, respectively. -is further confirms
that m6A modifications play a significant role in shaping the
TME profile. To further validate the relationship between
m6A features and clinical phenotypes, we developed a
scoring system to quantify the m6A modification pattern in
individual patients and initially achieved to discriminate the
immune response phenotype of tumors by m6A scoring.

2. Methods

2.1. Source and Preprocessing of Renal Clear Cell Carcinoma
Dataset. As shown in Figure 1, two cohorts of the Com-
prehensive Gene Expression (GEO) and -e Cancer Ge-
nome Atlas (TCGA) databases, GSE29609 and TCGA-KIRC

(Cancer Genome Atlas-Kidney Renal Clear Cell Carci-
noma), were used in this study, with all cases containing
survival information. We use the GSE29609 microarray data
of Affymetrix Human Genome U133 Plus 2.0 Array and
directly download the normalized matrix file. For TCGA-
KIRC, we downloaded the transcriptome data (FPKM value)
and clinical annotations from the genome data sharing
(GDC, https://portal.gdc.cancer.gov/). -en, we use the
“limma” R package to convert the FPKM value to a million
parts per million (TPM) value. Next, we combined the
mRNA expression matrices of our two cohorts and used the
“limma” and “sva” packages to correct for batch effects
caused by nonbiotech deviations. We downloaded simple
nucleotide variation data from the TCGA database to further
analyze copy number variation (CNV).

2.2. Unsupervised Clustering of 23 m6A Regulators. We se-
lected 23 recognized m6A regulators, including 8 writers
(METTL3, METL14, METL16, RBM15, RBM15B, WTAP,
VIRMA, and ZC3H13), 2 erasers (ALKBH5 and FTO), and
13 readers (YTHDC1, YTHDC2, YTHDF1, YTHBDF3DF2,
IGFBP2, IGFBP3, HNRNPA2B1, HNRNPC, FMR1,
LRPPRC, and RBMX). We extracted the m6A-related gene
expression matrix of the combined sample through the
“limma” package based on 23 m6A regulatory factors. We
use unsupervised cluster analysis to classify all patients and
determine different m6A modification patterns based on the
expression differences of 23 m6A regulatory factors for
further analysis. In sample clustering, the Euclidean distance
is selected as the clustering statistics, and the K-means
clustering method is used to achieve the clustering purpose.
We used the “ConsensusClusterPlus” package to do the
above and repeated it by 1,000 times to ensure the stability of
the clustering.

2.3. Genomic Variation Analysis (GSVA) and Functional
Annotation. We use the “GSVA” package to perform GSVA
enrichment analysis to study the changes in biological
processes under m6A modification. GSVA is a nonpara-
metric and unsupervised method. GSVA analyzed the
“c2.cp.kegg” downloaded from the “MSigDB data-
base.v6.2.symbols” gene set. -e difference is significant
when the adjusted p value is less than 0.05. -e first 20 paths
are selected to pull the path heatmap. -ese analyses were
completed by the following packages: “limma,” “GSEABase,”
“GSVA,” and “pheatmap.”.

2.4. Estimation of TME Cell Infiltration. -e relative abun-
dance of each cell infiltration in the sample was quantified by
the ssGSEA (single-sample gene-set enrichment analysis)
algorithm. We obtained genes related to TME-infiltrating
immune cells from Charoentong’s study, including activated
B cell, CD4 T cell, CD8 T cell, type 17 T helper cell, eo-
sinophil monocyte, and so on. -e relative abundance of
each immune cell in sample TME was evaluated by ssGSEA
score. -e differential immune-infiltrating cells were shown
by box diagram. -e above analysis is performed by R
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software. -e above analysis was performed by “reshape2,”
“ggpubr,” “limma,” “GSEABase,” and “GSVA” packages.

2.5. Screening of Differentially Expressed Genes (DEGs) with
Differentm6AModification Patterns. In order to identify the
different m6A modification patterns of DEGs, we use the
empirical Bayes method of the “limma” package to deter-
mine DEGs, calculate the expression level and p value of
DEGs, and adjust p< 0.001 as the significance standard of
DEGs. We use Gene Ontology (GO) data and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) to analyze the
differential pathways of cell composition (CC), biological
process (BP), molecular function (MF), and DEG, respec-
tively. -e threshold used in screening GO and KEGG was
set as p< 0.05.

2.6. Generation of m6A Gene Signature. We built a scoring
system to quantify the m6A modification pattern of a single
ccRCC patient through the m6A gene signature, which we
call m6Ascore. -e specific process is as follows.

First of all, we used univariate Cox regression analysis of
the DEGs screened above to screen out the DEGs that are
significant for prognosis. Next, we conduct an unsupervised
cluster analysis of DEGs with significant prognosis in order
to divide the patients into several groups for further analysis.
In the sample clustering, the Euclidean distance is selected as
the clustering statistics, and the K-means clustering method
is used to achieve the clustering purpose. In addition, we also
used principal component analysis (PCA) to construct the

m6A gene signature for DEGs with significant prognosis. We
choose the first and second principal components as the
signature score, and they are not related to each other. We
use the following formula to define the m6Ascore:

m6Ascore �  PC1i + PC2i( , (1)

where i represents the expression of m6A-related genes.

2.7. �e Role of m6A Score. In order to prove the clinical
guidance of grouping according to m6A score, we analyzed
the relationship betweenm6A score and immune-infiltrating
cells, clinical stage, patient age, tumor grade, m6A modifi-
cation pattern, m6A gene cluster classification, and immu-
notherapy-related genes. p< 0.05 is considered statistically
different.

2.8. Statistical Analysis. When analyzing differences be-
tween groups, a one-way analysis of variance was used for
parametric tests, and the Kruskal-Wallis test was used for
nonparametric tests. Spearman’s correlation analysis was
used to calculate the correlation between m6A scores and
TMB. -e Kaplan-Meier method was used to draw the
survival curve, and then, the log-rank test was used to de-
termine the significance of the difference. -e samples were
scored by the PCA method and then combined with the
patient’s survival information, the best cutoff value was
determined by the “survminer” R software package and
divided into two groups (highm6A score group and lowm6A

Two cohorts including 555 samples enrolled in this work Consensus clustering algorithm for m6A phenotype-related genes

PCA algorithm for quantifying m6A modification patterns

m6Ascore

Validate the classification value for m6A modification patterns

Correlate m6Ascore with TME infiltration characterization

Correlate m6Ascore with tumor somatic mutation

Explore the m6Ascore in the role of anti-PD-1/L1 immunotherapy

Unsupervised clustering for identifying m6A modification patterns

Estimation of TME infiltration cells

Correlate the m6A modification patterns with TME infiltration
characterization

Immune-excluded phenotype
Immune-inflamed phenotype

Immune-desert phenotype

Identification of m6A phenotype-related genes

m6Acluster A
m6Acluster B
m6Acluster C

m6Acluster A
m6Acluster B
m6Acluster C

Figure 1: -e flow chart of our study of identifying hallmark genes and candidate agents.
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score group). Univariate and multivariate Cox regression
models were used to calculate hazard ratios (HRs) and in-
dependent prognostic factors for m6A regulatory genes and
m6A phenotype-related genes. -e “RCircos” R package
draws a circle diagram of the 23 chromosomal mutation
positions of the 23 m6A regulatory factors. -e waterfall is
drawn by the “maftools” package. -e block diagram is
drawn by the “ggpubr” package. All p-values are bilateral,
and p< 0.05 is statistically significant. All data processing is
completed by R 4.0.5 software.

3. Results

3.1.GeneticVariation ofm6ARegulatory Factor inRenalClear
Cell Carcinoma. In this study, we used 23 m6A regulators to
assess the m6A signature of TME. First, we summarized the
copy number variation and the incidence of somatic mu-
tations in 23 m6A regulators in clear cell renal cell carci-
noma. In 336 samples, 24 m6A regulators were mutated with
a mutation frequency of 7.14%, with mutations mainly
occurring in YTHDC2, ZC3H13, YTHDC1, WTAP, and
LRPPRC (Figure 2(a)). -e study of the frequency of CNV
changes showed that 23 regulators had changes in CNV.
Among them, the copy number of regulator YTHDC2 in-
creased, while the copy numbers of RBM15B, IGFBP2,
YTHDF2, WTAP, METL14, and ZC3H13 decreased
(Figure 2(b)). Meanwhile, the location of CNV changes in
the m6A regulator on the chromosome is shown in
Figure 2(d).

To determine whether the above gene mutations affect
the expression of them6A regulator in patients with clear cell
renal cell carcinoma, we also investigated the differences in
the expression of m6A regulators between normal and clear
cell renal cell carcinoma patients and found that CNV
changes may be important for the disruption of m6A reg-
ulator factor expression. Compared with normal kidney
tissue, the expression of m6A CNV amplification regulator
YTHDC2 in clear cell renal cell carcinoma tissue was sig-
nificantly increased (p< 0.05). -e expression of CNV-de-
ficient m6A regulators IGFBP2 and ZC3H13 clear cell renal
cell carcinoma was significantly reduced (Figure 2(c)). -is
indicates that there are differences in the gene expression
levels of m6A regulatory factors in normal kidney tissue and
clear cell renal cell carcinoma tissue. At the same time, we
conducted a survival analysis on the high and low expression
of each regulator in ccRCC, and the results showed that the
difference in expression of the 20 regulators had a significant
impact on the prognosis of ccRCC (Figures S1A-T).
-erefore, we believe that the imbalance in the expression of
m6A regulatory factors may play an important role in the
occurrence and development of clear cell renal cell
carcinoma.

3.2. Exploring the 23 Modulator-Mediated m6A Methylation
Modification Patterns. -ere were two cohorts GSE 29609
and TCGA-KIRC in this study. -eir basic information and
clinical features are shown in Table S1. -e m6A regulator
network depicts a comprehensive map of m6A regulator

interactions, regulator connections, and their impact on the
prognosis of ccRCC patients (Figure 3(g) and Table S2). We
separately analyzed the gene expression differences between
the mutant genes of the three regulatory factors YTHDC2,
WTAP, and LRPPRC with higher mutation frequency and
the wild-type genes. Among them, compared with the
mutant YTHDC2 subgroup, the wild-type YTHDC2 sub-
group has a higher level of gene expression of the regulatory
factor FMR1. In contrast, the gene expression level of
regulator METL16 was higher in the mutant WTAP sub-
group compared to the wild-type WTAP subgroup. Simi-
larly, the regulatory factor IGFBP2 was significantly
upregulated in LRPPRC mutants (Figures 3(h)–3(n)). -is
indicates that not only the expression of m6A regulators in
the same functional category is correlated but also between
writers, erasers, and readers.

-e above results indicate that the crosstalk between
writer, reader, and erase regulators may form different m6A
modification patterns between different tumors, and it also
plays a key role in the formation of TME cell infiltration
characteristics.

According to the expression of 23 m6A regulatory fac-
tors, the R package “ConensusClusterPlus” was used to
qualitatively classify the m6A modification patterns, and
finally, three different modification patterns were identified
through unsupervised clustering (Figures 3(a)–3(d)). We
refer to these patterns as m6A clusters A, B, and C
(Figure 3(e) and Table S3). We found that most regulatory
factors are highly expressed in the m6A cluster-A modifi-
cation mode, low in the m6A cluster-B modification mode,
andmoderately expressed in the m6A cluster-Cmodification
mode.

-en, we analyzed the survival of the three modification
modes and found that ccRCC patients showed a particularly
significant survival advantage in the m6A cluster-A modi-
fication mode, while the m6A cluster-C modification mode
had the worst prognosis (Figure 3(f)).

3.3. Infiltration Characteristics of TME Cells in Different m6A
Modes. In order to explore whether there are differences in
biological behavior between different m6A modification
modes, we performed GSVA enrichment analysis
(Figures 4(a) and 4(b)). As shown in the figure, m6A cluster-
A has rich oncogenic activation pathways, m6A cluster-B is
rich in metabolic pathways, and m6A cluster-C is rich in
interstitial activation pathways.

Subsequent TME cell ssGSVA differential analysis
showed (Figure 4(c) and Table S4) that in m6A cluster-A,
activated B cells, activated CD4+ T cells, activated CD8
T cells, activated dendritic cells, etc. were significantly re-
duced, but at the same time, this type also shows the best
survival advantage.-em6A cluster-C has a large number of
immune cell infiltration.

Usually, we divide the characteristics of TME infiltration
into three categories, namely, immunoinflammatory phe-
notype, immune rejection phenotype, and immune desert
phenotype. -e immunoinflammatory phenotype is char-
acterized by the presence of a large number of CD4 and CD8
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T cells in the tumor parenchyma, usually accompanied by
myeloid cells and monocytes; the immune rejection phe-
notype has obvious immune rejection reactions, charac-
terized by the presence of more immune cells, but these

immune cells can only stay in the matrix surrounding the
tumor cell nest and cannot penetrate the tumor tissue; the
immune desert phenotype refers to the absence of immune
cell infiltration, which is characterized by the lack of T cells
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Figure 2: (a)-emutation frequency of 23m6A regulatory factors in 336 patients with clear cell renal cell carcinoma from the TCGA-STAD
cohort. Each column represents an individual patient.-e bar graph above shows TMB, and the numbers on the right indicate the mutation
frequency of each regulator. -e bar graph on the right shows the proportions of each variant type. -e stacked bar chart below shows the
conversion rate in each sample. (b) Frequency of CNV changes in m6A modulators in the GSE29609 cohort. -e height of the column
represents the frequency of change. Delete frequency, blue dot; zoom in frequency, red dot. (c)-e expression of 23 m6A expression factors
between normal tissues and clear cell renal cell carcinoma tissues. Tumor, red; normal, blue. -e upper and lower ends of the box represent
the interquartile range of values. -e line in the box represents the median value, and the red or blue dots represent outliers. -e asterisk
represents the statistical p value (∗p< 0.05; ∗∗p< 0.01; and ∗∗∗p< 0.001) (d)-e position of the CNV change in the m6A regulatory factor on
the 23 chromosomes of the GSE29609 cohort.
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(g) Interaction between m6A regulatory factors in clear cell renal cell carcinoma. -e size of the circle represents the influence of each
adjusting factor on the prognosis, and the numerical ranges calculated by the log-rank test are p< 0.001, p< 0.01, p< 0.05, and p< 0.1,
respectively. -e purple dots in the circle are prognostic risk factors; the green dots in the circle are prognostic protective factors. -e lines
connecting the regulators show their interaction, and the thickness shows the relative strength between the regulators. Negative correlations
are marked in blue, and positive correlations are marked in red. Writers, erasers, and readers are marked in gray, red, and orange.
(h–j) Correlation between the regulators.
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in the tumor tissue or matrix. We usually think that the
immune desert phenotype and immune rejection phenotype
are both noninflammatory tumors.

-erefore, we classified the m6A modification patterns
with different TME characteristics into three types. Among
them, A is the immune desert phenotype, characterized by
the lack of immune cell infiltration; B is the immune re-
jection phenotype, characterized by a certain degree of

immune cell infiltration with immunosuppressive effects;
and C is the immunoinflammatory phenotype, characterized
by a large infiltration of immune CD4+and CD8+ T cells.

-en, we performed principal component analysis on
the transcriptome profile of the m6A modification pattern,
and the results showed that there are significant differences
between the m6A cluster A, m6A cluster B, and m6A cluster
C transcriptomes (Figure 4(d)).
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Figure 4: (a-b) GSVA enrichment analysis shows the activation status of biological pathways in different m6A modification modes.
Heatmaps are used to visualize these biological processes. Red represents activated pathways, and blue represents inhibited pathways. -e
clear cell renal cell carcinoma cohort was used as sample annotation. A m6A cluster A and m6A cluster B; B m6A cluster B and m6A cluster
C. (c)-e abundance of each TME-infiltrating cell in the three m6A modification modes.-e upper and lower ends of the box represent the
interquartile range of values. -e lines in the boxes represent the median value, and the black dots represent the outliers. -e asterisk
represents the statistical p value (∗p< 0.05; ∗∗p< 0.01; and ∗∗∗p< 0.001). (d) -e principal component analysis of the transcriptome profile
of the three m6A modification patterns shows significant differences in the transcriptome among different modification patterns.
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3.4. Generation of m6A Gene Cluster and Gene Function
Analysis of DEGs. We used the limma software package to
identify 1,152 DEGs (Figure 5(g)) associated with the m6A
phenotype to study the potential biological behavior of each
m6A modification mode in one step (Table S5). -e clus-
terProfiler software package is used for the GO and KEGG
enrichment analysis of DEG.

-e results indicate that these genes are highly related to
biological processes that are significantly related to m6A
modification and immunity (Figures 5(a) and 5(b)). For
example, GO enrichment analysis is performed on DEGs,
and the results of significant enrichment are shown in
Table S6. DEGs show the enrichment of biological pro-
cesses, indicating that m6A is modified in CC, BP, and MF,
such as cell substrate linkage and mRNA catabolism
(Figure 5(a)). Using KEGG to analyze the differential
pathways of DEGs, the results showed that the ERbB
signaling pathway, p53 signaling pathway, mTOR signaling
pathway, and mRNA monitoring pathway were enhanced
(Figure 5(b)).

In order to further verify this regulatory mechanism, we
performed an unsupervised cluster analysis of the
1,152 m6A phenotype-related genes obtained, hoping to
divide patients into different genomic subtypes. We dis-
covered three different m6A modified genome phenotypes
through an unsupervised clustering algorithm
(Figures 5(c)–5(f )) and named these three clusters as m6A
gene clusters A, B, and C (Figure 5(h)). We found that the
surviving patients were mainly concentrated in m6A gene
cluster A (Figure 5(h)). At the same time, the survival curve
shows that the three modified genome phenotypes are
significantly related to the survival rate of patients
(Figure 5(i)). Among 555 patients with clear cell renal cell
carcinoma, the number of A gene clusters is the largest, 296
cases, which should be related to the better prognosis of
patients with this gene cluster. -e prognosis of patients
with B gene cluster (129 cases) and C gene cluster (139
cases) was poor (Figure 5(i)). In the three m6A gene
clusters, significant differences in the expression of m6A
regulatory factors were observed. Most genes are highly
expressed in the A gene cluster, the B gene cluster is low,
and the C gene cluster is in the middle (Figure 5(j)).

3.5. Relationship between m6A Score and m6A-Related
Phenotypes. From the above, we can find that the methyl-
ation modification of m6A plays an important role in the
formation of the uniqueness of the TME landscape. How-
ever, the above analysis is based on the patient population
and cannot accurately predict the m6A methylation modi-
fication pattern of individual patients. Due to the complexity
of m6A modification patterns and individual heterogeneity,
we constructed a scoring system to quantify the m6A
modification patterns of individuals with clear cell renal cell
carcinoma, which we call m6Acore, and the m6A score was
constructed according to the m6A modification pattern of
DEGs by the PCA Table S7.

We use the Sankey chart to show the changes in the
attributes of a single patient (Figure 6(c)). We found that

most patients with m6A cluster-A were genotyped as m6A
gene cluster A and had a higher m6Ascore, andmost patients
survived. We found that most genotypes of m6A cluster-B
patients are m6A gene clusters A and B, with high m6Acore,
and most patients survived. We found that most genotypes
of m6A cluster-C patients were m6A gene cluster C, with a
low m6Acore, and most patients died.

-e Kruskal-Wallis test showed that there are significant
differences in the m6A value between the m6A gene clusters.
Gene cluster C has the lowest median score, and gene cluster
B has the highest median score (Figures 6(h)–6(i)).

We use the survminer software package to determine the
best cutoff value, divide patients into low m6A value group
and high m6A value group according to m6A value, and
predict the prognosis of high and low groups. -e results of
the Kruskal-Wallis test showed that patients with high m6A
scores showed a significant survival benefit (Figure 6(d)).
-en, we used the maftools software package to analyze the
difference in mutation distribution in the population with
low m6A value and high m6A value in the TCGA-KIRC
cohort. As shown in Figures 6(a) and 6(b), the high m6A
value group showed a broader tumor mutation burden than
the low m6A value group. Survival analysis showed that
ccRCC patients with high TMB had a better prognosis
(Figure 6(f)). -e subgroup with low TBM and high m6A
score had the best prognosis, while the subgroup with high
TBM and low m6A score had the worst prognosis
(Figure 6(g)). We speculate that this is because patients with
low TMB have better clinical effects in immunotherapy.

We studied the correlation between immune cells and
m6A scores and found that most immune cells are negatively
correlated with m6A scores (Figure 6(e)), such as activated
CD4 T cells and activated CD8 T cells. In contrast, the m6A
score is positively correlated with activated CD8 T cells,
CD56 bright natural killer cells, CD56 dim natural killer
cells, monocytes, and type 17 T helper cells.

3.6. Clinical Application of m6A Score and the Role of m6A
Modification Mode in Anti-PD-1/L1 Immunotherapy.
First, we use the violin chart to show the distribution and
difference of the scores of patients in the m6A high and low
groups (Figure 5(j)). We found that the distribution of the
scores of patients in the high- and low-score groups was
different, but the median was about the same. Subsequently,
we used the m6A score to study the clinical characteristics of
KIRC. It was found that patients in the m6A high-level group
of all ages had significantly better survival rates than those in
the m6A low group, as were the clinical stages and tumor
grades, such as M0 stage, M1 stage, N0 stage, and T3-T4
stage (Figures 7(a)–7(f)).

Based on two immunotherapy cohorts, we investigated
whether m6A modification signals can predict patient re-
sponse to immune checkpoint blockade therapy. We found
whether they receive anti-PD-1/L1 immunotherapy and
anti-CTLa4 immunotherapy alone or receive combined
immunotherapy at the same time, and patients in high
groups can obtain greater clinical benefits (Figures 7(k)–
7(n)).
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4. Discussion

Immune cells recruited during tumor development are
remodeled by aberrantly functioning TME, affecting
immune cell survival, proliferation, differentiation, mi-
gration, and function. -ese processes help to protect
tumor cells from clearance, inhibit cell death, and pro-
mote proliferation to further aid tumor cell migration and
metastasis. Most of the current studies have focused on
immunomodulation of tumors [28], focusing on
addressing the sustained suppression of adaptive immune
responses by TME [29]. Encouragingly, previous studies
have demonstrated a strong association between m6A
methylation and tumor immunotherapy; for example,
studies have reported a broad regulatory mechanism of
m6A on the tumor microenvironment in gastric cancer
[25]. However, the role of m6A modification models in
regulating tumor immunity in ccRCC has not been fully
elucidated, and it is unclear whether the overall m6A-

associated regulators in TME can lead to a series of
transformations in “tumor immunity.”

A limitation of previous studies on TME may be that
they have focused on trends in only a few immune cells. For
example, baseline levels of CD4+/CD8+ Tcells, macrophage
M1, and NK cells, and baseline levels of inflammatory cy-
tokines in tumor invasion have been associated with im-
mune responses [29–31]. In contrast, most studies targeting
m6A modulators in TME have also focused on a single TME
cell type (macrophages and CD8 T cells) or a single m6A
modulator, which has led to the characterization of TME
immune cell infiltration mediated by the combined effects of
multiple m6A modulators not being adequately studied [25].
-erefore, it is important to investigate the role of the m6A
modification patterns in ccRCC TME cell infiltration.

In this study, we used 23 m6A regulators to reveal three
different m6A modification patterns. -ese three types of
TME cell infiltration were markedly different. Class A was
characterized by immunosuppression and corresponded to
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Figure 5: (a-b) Function annotation, m6A-related genes using GO enrichment analysis, and KEGG enrichment analysis. -e color depth of
the bubble chart represents the number of enriched genes, and the size of the bubble chart represents the proportion of gene expression.
Unsupervised clustering of overlapping m6A phenotype-related genes in the C clear cell renal cell carcinoma cohort to classify patients into
different genomic subtypes, respectively, is called m6A gene clusters A-C. Survival status, clinical stage, age, m6A clusters, and gene clusters
were used as patient annotations. (c–f) Using unsupervised cluster analysis to show that ccRCC can be divided into three different genotypes
(k� 3). (g) A total of 1,152 DEGs were obtained from the three types. (h)-ree different m6Amodified genome phenotypes were discovered
through an unsupervised clustering algorithm, and these three clusters were named m6A gene clusters A, B, and C. (i) Kaplan-Meier curve
showed that the m6A modified genome phenotype was significantly correlated with the overall survival of 555 patients in the clear cell renal
cell carcinoma cohort, including 296 gene cluster A 120 gene cluster B and 139 gene cluster C (p< 0.0001, log-rank test). (j) -e expression
of 23 m6A regulatory factors in 3 gene clusters. -e upper and lower ends of the box represent the interquartile range of values. -e line in
the box represents the median value, and the red or yellow dots represent the outliers. -e asterisk represents the statistical p value
(∗p< 0.05; ∗∗p< 0.01; and ∗∗∗p< 0.001). One-way analysis of variance is used to test the statistical differences between the three gene
clusters.
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Figure 6: (a-b) Waterfall plots of tumor somatic mutations established by those with high m6A score (a) and low m6A score (b). Each
column represents a single patient. -e bar graph above shows TMB, and the numbers on the right indicate the mutation frequency of each
gene.-e bar graph on the right shows the proportion of each variant type. (c)-e Sankey diagram shows the changes in m6A clusters, gene
clusters, m6A score, and survival status. (d) Survival analysis of low (62 cases) and high (493 cases) m6A score patient groups in the TCGA-
KIRC cohort, using Kaplan-Meier curve (HR, 1.81 (1.26–2.62); p< 0.001, log-rank test). (e) Spearman’s correlation analysis was used to
analyze the correlation between m6A score and immune cells in the clear cell renal cell carcinoma cohort. Negative correlations are marked
in blue, and positive correlations are marked in red. (f ) Using the Kaplan-Meier curve to analyze the survival rate of patients with low (254
cases) and high (74 cases) tumor mutations in the clear cell renal cell carcinoma cohort (HR, 1.81 (1.26–2.62); p< 0.001, log-level test).
(g) Kaplan-Meier curve is used to analyze survival by m6A score and TMB score. H high; L low. (h-i) Differences in m6A score between the
three gene clusters and the three types in the clear cell renal cell carcinoma cohort. -e Kruskal-Wallis test was used to compare the
statistical differences between the three gene clusters (p< 0.001).
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Figure 7: Continued.
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the immune desert phenotype. Class B was characterized by
natural immunity and stromal activation and corresponded
to the immune rejection phenotype. Class C was charac-
terized by adaptive immune activation and corresponded to
the immunoinflammatory phenotype.

Overall, the immunoinflammatory phenotype is referred
to as a “hot” tumor, which is characterized by a large in-
filtration of immune cells in the TME [32–34], while con-
versely the immune rejection phenotype and the immune
desert phenotype are considered as “cold” tumors. Although
the immune rejection phenotype also shows a large number
of immune cells, the immune cells cannot penetrate the
parenchyma of the tumor cells remaining in the stroma
surrounding the tumor cell nests [35–37]. Previous studies
of gastric cancer have shown that the immunoinflammatory
phenotype has the best prognosis [25], but this time we came
to a different conclusion for clear cell renal cell carcinoma. In
our study, we found a better prognosis for ccRCC patients
with m6A cluster A characterized by immune desert be-
havior. Because the immune desert phenotype has the
strongest degree of immune tolerance and immunosup-
pression and lacks activated T cells [38], the immunosup-
pressive TME will accordingly change. An abnormal TME
will strongly reshape the local immune cell level, thus af-
fecting tumor cell survival, proliferation, differentiation/
immune cell polarization, migration, and function. -ese
processes can inhibit tumor cell death, promote tumor cell
proliferation, and further support tumor migration and
metastasis [39, 40]. All of the above studies suggest that the
TME and immune characteristics of each tumor are dif-
ferent, so this may explain the better prognosis of the m6A
cluster with immune desert type in ccRCC patients. Also,
combined with the infiltration characteristics of TME cells in
each cluster, we can confirm the correctness of the m6A
score to determine the immunophenotypic classification.

Several studies have identified subtypes of ccRCC based
on genomic analysis [41–43] and improved individualized
treatment strategies for ccRCC based on different subtypes.

However, genotyping based on differential gene expression
associated with m6A has not been elucidated. In this study,
we have demonstrated that mRNA transcriptome differ-
ences in different m6A modification patterns are signifi-
cantly correlated with multiple immune-related biological
pathways and that these differential genes are likely to result
from m6A-related post-transcriptional modifications. Based
on GO and KEGG analysis of these m6A signature genes, we
found that differentially expressed genes were significantly
associated with immune activation, which further demon-
strates the importance of m6A modifications in the for-
mation of different TME immune cell infiltration profiles.

To promote the significance of m6A features of TME in
clinical diagnosis and treatment, we established a m6A scoring
system to assess the m6A modification pattern in individual
ccRCC patients. -rough the evaluation, we found that m6A
modification patterns characterized by immune rejection
phenotype and immune desert phenotype had higher m6A
scores and correspondingly better prognosis.

-is study also noted that m6A modification in TME
may affect the therapeutic effect of immune checkpoint
blockade. -erefore, we investigated the immunotherapy of
ccRCC. We found that in two cohorts receiving anti-PD-1
and anti-PD-L1 immunotherapy, the m6A score had pre-
dictive value for whether patients could receive immuno-
therapy. Furthermore, the m6A score can also be used to
assess the clinicopathological characteristics of patients,
such as tumor grade and clinical stage.

Of course, there remain some shortcomings in our study.
First, our data were all from the TCGA database and the GEO
database, and the sample size was not large enough, which
may lead to bias in the results. Meanwhile, due to technical
limitations, this study only started from the overall m6A
regulators in the tumor TME for comprehensive scoring and
did not analyze the impact of tumor driving or tumor sup-
pression brought by the main targets of m6Amodifications in
it. Our overall m6A scoring mechanism may have limitations
and may not be applicable for other types of samples, so the
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Figure 7: (a–f) Kaplan-Meier curve is used to show the difference in survival rate between the high group and low group in age and clinical
stage (p< 0.05 is meaningful). (g–i) -e difference in the expression levels of the three immune markers in the high- and low-score groups
(p< 0.1 is meaningful). (j)-e distribution of scoring scores between the high and low groups in ccRCC, and the difference between the high
and low groups, and the black bars represent the median. (k–n) No anti-PD-1/L1 immunotherapy and anti-CTLa4 immunotherapy, anti-
PD-1/L1 immunotherapy alone, anti-CTLa4 immunotherapy alone, anti-PD-1/L1 immunotherapy and anti-PD-1/L1 immunotherapy, and
anti-PD-1/L1 immunotherapy alone were separately received. -e different efficacy of CTLa4 immunotherapy in the high- and low-score
groups when the two combined immunotherapy is combined, and the black bars represent the median.
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generalization of the conclusions in this study needs to be
performed with caution. We will then examine one or two
m6A regulators in more depth to explore how the antitumor
effects of these regulators are regulated by numerous tumor
suppressors and how they act in a highly coordinatedmanner.
-e findings of this study provide an ideal resource for a
comprehensive analysis of m6A regulators and immune
regulation, bringing to light that the characterization of TME
mediated by multiple m6A regulators will help improve our
understanding of cancer immunity. For further external
validation, future multicenter, large sample, prospective
double-blind trials are necessary to carry out.

5. Conclusions

In conclusion, the m6A score can comprehensively evaluate
the modification patterns of m6A methylation in ccRCC
patients and the corresponding characteristics of TME
immune cell infiltration. Similarly, the m6A score can be
used to assess m6A genotyping, clinical characteristics, and
OS of ccRCC patients. More importantly, we can predict the
clinical benefits of new immune checkpoint-blocking
strategies (PD-1/L1 and CTLA4) based on the m6A score,
and discover more effective immune targets, thereby im-
proving the immunotherapy effect of ccRCC, and help to
develop new immunotherapy drugs.
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