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Abstract

Radial optic neurotomy (RON) has been proposed as a surgical treatment to alleviate the neurovascular compression and to
improve the venous outflow in patients with central retinal vein occlusion. Glaucoma is characterized by specific visual field
defects due to the loss of retinal ganglion cells and damage to the optic nerve head (ONH). One of the clinical hallmarks of
glaucomatous neuropathy is the excavation of the ONH. The aim of this work was to analyze the effect of RON in an
experimental model of glaucoma in rats induced by intracameral injections of chondroitin sulfate (CS). For this purpose,
Wistar rats were bilaterally injected with vehicle or CS in the eye anterior chamber, once a week, for 10 weeks. At 3 or 6
weeks of a treatment with vehicle or CS, RON was performed by a single incision in the edge of the neuro-retinal ring at the
nasal hemisphere of the optic disk in one eye, while the contralateral eye was submitted to a sham procedure.
Electroretinograms (ERGs) were registered under scotopic conditions and visual evoked potentials (VEPs) were registered
with skull-implanted electrodes. Retinal and optic nerve morphology was examined by optical microscopy. RON did not
affect the ocular hypertension induced by CS. In eyes injected with CS, a significant decrease of retinal (ERG a- and b-wave
amplitude) and visual pathway (VEP N2-P2 component amplitude) function was observed, whereas RON reduced these
functional alterations in hypertensive eyes. Moreover, a significant loss of cells in the ganglion cell layer, and Thy-1-, NeuN-
and Brn3a- positive cells was observed in eyes injected with CS, whereas RON significantly preserved these parameters. In
addition, RON preserved the optic nerve structure in eyes with chronic ocular hypertension. These results indicate that RON
reduces functional and histological alterations induced by experimental chronic ocular hypertension.
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Introduction

Glaucoma is a leading cause of blindness worldwide, charac-

terized by specific visual field defects due to the degeneration of

retinal ganglion cells (RGCs) and damage to the optic nerve head

(ONH). Elevated intraocular pressure (IOP) is the most important

risk factor for the development of glaucoma. However, the

underlying mechanisms that link elevated IOP to RGC death are

still not fully understood. An experimental model of pressure-

induced optic nerve damage would facilitate the understanding of

the cellular events leading to RGC death, and how they are

influenced by IOP and other risk factors. Recently, we have

developed a new model of glaucoma in rats through weekly

injections of chondrotin sulfate (CS) in the eye anterior chamber.

Acute or chronic intracameral injections of CS significantly

increase IOP as compared with vehicle-injected eyes [1].

Moreover, injections of CS for 6 or 10 (but not 3) weeks

significantly decrease electroretinographic activity as well as flash

visual evoked potentials (VEPs). After 10 weeks of ocular

hypertension induced by CS, a significant loss of RGCs and optic

nerve fibers occurs in CS-treated eyes [1]. These results indicate

that weekly intracameral injections of CS mimic central features of

human primary open-angle glaucoma. Thus, this model could be a

useful tool for understanding the pathogenic mechanisms involved

in glaucomatous neuropathy, as well as for the development of

new therapeutic strategies.

One of the clinical hallmarks of glaucomatous optic neuropathy

is the excavation of the ONH, which consists in a progressive

posterior displacement of the ONH surface and excavation of the

prelaminar tissues beneath the anterior most aspect of the scleral

canal, the anterior scleral ring [2,3]. A considerable body of

literature characterized the classic posterior bowing and compres-

sion of the lamina cribrosa and excavation of the scleral canal wall

beneath the opening in Bruch’s membrane in moderately and

severely damaged glaucomatous eyes [4,5]. Both plastic (perma-

nent) and hypercompliant deformations of the lamina cribrosa and

anterior scleral canal wall were described in young adult monkey

eyes with early experimental glaucoma [6] which have been

verified by three-dimensional reconstructions of serially sectioned

ONH and peripapillary sclera [7]. It was postulated that damage

to the ONH, the lamina cribrosa, and anterior scleral canal wall

connective tissue plays a key role in glaucomatous neuropathy

[8,9].

Central retinal vein occlusion (CRVO) is a compartment-like

syndrome resulting from increased pressure on the central retinal

vein (CRV) within the confined space of the scleral ring which
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results in tissue ischemia. In 2001, Opremcak and coworkers

proposed radial optic neurotomy (RON), in which a microvi-

treoretinal blade is used to cut the cribriform plate, the scleral ring,

and the adjacent sclera in a radial fashion, to alleviate the

constriction of the scleral outlet, as a new surgical option for

CRVO [10]. In this pilot study, the authors reported that 8 of 11

patients showed an average improvement in visual acuity of five

lines after a mean follow-up of 9 months, whereas only two

patients worsened [10]. In 2006, the same group reported 117

cases treated with RON, in which a gain of two or more lines was

observed for 78% of patients [11]. Improvements in visual acuity

by RON have been confirmed by other investigators [12–15].

However, it is still under debate, whether RON would be an

adequate treatment modality or a dangerous procedure with

potentially severe complications [16–19]. Recently, we have

shown that RON provokes only minor histological changes, and

transient functional alterations in normal Wistar rat eyes [20].

Since the connective tissues of the anterior scleral canal wall are

permanently deformed at early stages of glaucoma [6], and

considering that the ONH connective tissues are exposed to

substantial levels of IOP-related stress/strain [3,21,22], in the

present study, we tested the hypothesis that by alleviating the

constriction of the scleral outlet induced by ocular hypertension,

RON could prevent and/or reduce experimental glaucomatous

damage.

Results

Figure 1 depicts the average IOP from eyes submitted to RON

or sham procedure at 3 or 6 weeks of treatment with weekly

injections of vehicle or CS. IOP was significantly higher in CS-

than in vehicle-injected eyes, while sham operation or RON

performed at 3 or 6 weeks of treatment did not modify IOP in

both groups, at all the time points examined. No significant

differences in IOP values were observed between intact eyes and

eyes injected with vehicle and submitted to a sham procedure (data

not shown).

In order to assess the effect of RON on functional alterations

induced by chronic ocular hypertension, the functional state of

retinas from eyes weekly injected with vehicle or CS for 10 weeks

with or without RON was analyzed by scotopic electroretinogra-

phy. The average amplitude of scotopic electroretinogram (ERG)

a- and b- waves of rats injected with vehicle or CS for 10 weeks

and submitted to RON in one eye and a sham procedure in the

contralateral eye at 3 (left panel) or 6 (right panel) weeks of ocular

hypertension is depicted in Figure 2. In sham operated eyes,

weekly injections of CS for 10 weeks significantly decreased

scotopic ERG a- and b-wave amplitude. RON performed either 3

or 6 weeks after the onset of CS treatment significantly decreased

the ERG dysfunction, as shown in Figure 2. Representative

scotopic ERG traces from rats injected with vehicle or CS for 10

weeks with or without RON are also shown in Figure 2. To assess

the visual pathway function, flash VEPs were registered at 10

weeks of treatment with vehicle or CS in eyes submitted to sham

operation or RON. CS injections decreased the VEP N2-P2

component amplitude, while RON performed at 3 or 6 weeks of

ocular hypertension significantly preserved this parameter

(Figure 3). Representative VEP traces from all the groups are

also shown in Figure 3. No noteworthy changes in ERG a- and b-

wave, and VEP N2-P2 component latency were detected among

experimental groups.

The effect of RON on retinal histological alterations induced by

ocular hypertension was examined. A morphometric analysis of

retinal sections performed at 10 weeks of treatment with vehicle or

CS revealed no differences in the total retina, inner plexiform layer

(IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer

nuclear layer (ONL) thickness (data not shown), whereas a

decrease in the number of cells in the ganglion cell layer (GCL)

was observed in CS-treated eyes submitted to a sham procedure.

RON reduced GCL cell loss, as shown in Figure 4 and Table 1.

Thy-1, Brn3a and NeuN-positive cells in the retina from vehicle or

CS-injected eyes with or without RON were counted. A

statistically significant increase in the number of hematoxylin

and eosin (H&E) stained cells, and in Thy-1, Brn3a and NeuN-

positive cells in the GCL was observed in hypertensive eyes

submitted RON at 3 or 6 weeks of ocular hypertension, as

compared with hypertensive eyes submitted to a sham procedure

(Figure 4, Table 1).

The optic nerve (ON) from eyes treated with CS for 10 weeks

and submitted to sham procedure exhibited an overall loss of

staining uniformity and integrity, showing distention and distor-

tion that resulted in a departure from the circular morphology of

normal axons. RON performed at 3 or 6 weeks of ocular

hypertension significantly preserved ON structure (Figure 5). No

foci of hemorrhage, interstitial edema, and inflammatory cells

were observed in the ON from eyes submitted to RON. Moreover,

chronic injections of CS induced a significant decrease in the axon

number in sham operated eyes which was abrogated by RON

performed at 3 or 6 weeks of treatment (Figure 5).

Discussion

For the first time, the present results indicate that RON, which

showed no effect per se, decreased functional and histological

alterations induced by chronic ocular hypertension in the rat eye.

Notably, the retinal protection induced by RON was independent

from ocular hypertension, as shown by the fact that it did not

affect the increase in IOP induced by CS injections.

Human primary open angle glaucoma is a progressive optic

neuropathy. In the experimental model of glaucoma induced by

weekly injections of CS, we have identified different stages, that

show the following characteristics: i) 3 weeks of ocular hyperten-

sion: no changes in the ERG, VEPs, and retinal morphology (i.e.

asymptomatic ocular hypertension); ii) 6 weeks of ocular

hypertension: decrease in ERG and VEPs, without histological

changes (i.e. moderated glaucoma); and iii) 10 weeks of ocular

hypertension: further decrease in ERG and VEPs (vs. 6 weeks),

and loss of RGCs and optic nerve fibers (i.e. advanced
glaucoma) [1].

Although RON performed at 3 weeks of treatment conferred

significant neuroprotection in the experimental model of glaucoma

induced by CS, the translational relevance of this result is limited

by the fact that the surgery was performed at a time point in which

no functional or histological alterations were evident. Therefore,

additional experiments were performed to test whether RON

could not only prevent, but also reduce glaucomatous neuropathy

progression. For this purpose, RON was performed at 6 weeks of

treatment with CS, a time point characterized by significant

functional (but not histological) alterations. The present results

indicate that the delayed treatment (i.e. at 6 weeks of ocular

hypertension) also resulted in a significant protection against

experimental glaucomatous damage, both at functional and

histological level.

Soon after the proposal of RON as a potential treatment

modality for CRVO, a debate arose regarding whether the

incision of the scleral outlet is a reasonable or dangerous

procedure [23,24]. The potential risk of nerve fiber defects

resulting in visual field loss has especially been addressed by many

Radial Optic Neurotomy and Experimental Glaucoma
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Figure 1. IOP in eyes injected with vehicle or CS with or without RON. TonoPen measurements of IOP from eyes bilaterally injected with
vehicle or CS and submitted to a sham procedure or RON performed at 3 (left panel) or 6 (right panel) weeks of treatment with vehicle or CS. At all
time points examined, CS significantly increased IOP as compared with vehicle-injected eyes. RON did not modify this parameter in vehicle or CS-
injected eyes at any time point. Data are the mean 6 SEM (n = 10 eyes per group). **p,0.01 versus vehicle-injected eyes with sham procedure, by
Tukey’s test.
doi:10.1371/journal.pone.0034574.g001

Figure 2. Electroretinographic preservation in hypertensive eyes induced by RON. ERGs were registered after 10 weeks of treatment with
vehicle or CS in eyes submitted to sham operation or RON at 3 (left panel) or 6 weeks (right panel) of treatment. In sham operated eyes, CS induced a
significant decrease in ERG a- and b-wave amplitude, as compared with vehicle-injected eyes. In hypertensive eyes submitted to RON at 3 or 6 weeks
of ocular treatment with CS, a significant reduction of these alterations was observed. The lower panel shows representative scotopic ERG traces from
eyes injected with vehicle or CS with or without RON. Data are the mean 6 SEM (n = 10 eyes per group). **p,0.01 versus vehicle injected eyes with
sham operation (sham); a: p,0.05 versus CS-injected eyes with sham operation, by Tukey’s test.
doi:10.1371/journal.pone.0034574.g002
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authors [24,25]. Several surgical complications, such as laceration

of the central retinal artery (CRA), further reductions in retinal

blood flow, peripapillary retinal detachment from the RON site,

optic nerve fiber damage, visual field loss, and focal hemorrhagic

pigment epithelium detachment, as well as chorioretinal neovas-

cularization from the RON site were described [16,26–29].

Although the radial incision mode and site, as well as the use of

one-blunt-one-sharp-side microvitreoretinal blades specially de-

signed for RON should minimize vessel and nerve fiber injury,

these complications cannot be completely ruled out. We have

recently shown that in normal rat eyes, RON creates a defect in

the lamina cribrosa and surrounding scleral ring of the optic nerve,

without affecting the CRV and CRA, neither ocular functions

such as VEPs, and pupil light reflex, whereas a transient decrease

in ERG was observed in eyes submitted to RON [20]. Moreover,

no significant vitreous hemorrhage or other serious complications

were found in vehicle- or CS-injected eyes submitted to RON,

supporting that at least in rat eyes, RON is a safe procedure.

RON performed at 3 or 6 weeks of ocular hypertension

prevented and reduced respectively, the decrease in the ERG a-

and b-wave and flash VEP N2-P2 amplitude induced by weekly

injections of CS, which indicates that RON not only preserved the

retinal function, but also the activity of all cells in the pathway

from photoreceptors to visual cortex, including RGCs and their

axons.

Figure 3. Flash VEPs in eyes injected with vehicle or CS with or without RON. Animals were weekly injected with vehicle or CS for 10 weeks
and submitted to a sham operation or RON at 3 (upper panel) or 6 (lower panel) weeks of intracameral injections. A significant reduction in flash VEP
N2-P2 amplitude component was observed in eyes injected with CS with a sham procedure. RON significantly abrogated the effect of ocular
hypertension. No changes between vehicle- injected eyes with or without RON were observed. Representative VEPs traces are shown on the right
side. Data are mean 6 SEM (n = 10 eyes per group). **p,0.01 versus vehicle-injected eyes without RON (sham), b: p,0.01 versus CS-injected eyes
with sham procedure (sham), by Tukey’s test.
doi:10.1371/journal.pone.0034574.g003
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In addition to RGCs, the GCL is comprised of a number of

displaced amacrine cells. NeuN is a DNA-binding protein that

identifies most mature neuronal populations, which has been used

as a specific marker for RGCs [30,31,32]. However, since

according to other authors [33,34], NeuN does not distinguish

between RGCs and displaced amacrine cells, two other specific

markers of RGCs were included in the present study (Thy-1 and

Brn3a). Thy-1 is a surface glycoprotein uniquely expressed in

RGCs [35], and Brn3a is a POU domain transcription factor that

specifically is expressed in the nuclei of these cells [36]. In the

retina from eyes injected with CS and submitted to a sham

operation, a significant loss of RGCs was observed, as shown by

Thy-1 and Brn3a immunohistochemistry. Similar results were

obtained with NeuN immunolabeling, supporting that RON

significantly reduced the effect of ocular hypertension on RGC

(but not displaced amacrine cell) number. In addition, a significant

decrease in the axon number was evident in sham-operated

hypertensive eyes, whereas RON significantly preserved ON axon

number.

The precise mechanisms responsible for the retinal protection

against glaucomatous damage induced by RON remain to be

established. For the past 30 years, discussion has focused on how

RGC axons are damaged within the lamina cribrosa, and

controversy has centered on whether IOP (the mechanical

hypothesis) or ONH blood supply (the vascular hypothesis) is

responsible for ONH axonal damage in this disease. However,

consideration of the anatomy of the lamina cribrosa and

peripapillary sclera suggests that the classic mechanical and

vascular mechanisms of glaucomatous injury are inseparably

intertwined [37]. Moreover, local damage at the lamina has been

suggested to account for abnormal axonal transport in glaucoma

[38,39]. Burgoyne et al. [3] have proposed that the ONH is a

biomechanical structure; this paradigm assumes that IOP-related

stress (force/cross-sectional area) and strain (local deformation of

the tissues) are central determinants for the pathophysiology of the

ONH tissues and their blood supply, particularly at high levels of

IOP [37].

While the original rationale of RON was the relief of increased

tissue pressure within the optic nerve that results from occlusion of

the CRV, the present results suggest that relaxation of the scleral

ring of the prelaminar and laminar regions of the ONH may

alleviate the IOP-related connective tissue stress, which in turn,

Figure 4. Retinal histology examination after 10 weeks of ocular hypertension. A–E: Representative photomicrographs of retinal sections
stained with hematoxylin and eosin from a vehicle-injected sham operated eye at 3 weeks of intracameral treatment (A), a vehicle-injected eye
submitted to RON at 3 weeks of intracameral treatment (B) and a hypertensive eye without (C) or with RON performed at 3 (D) or 6 (E) weeks of
treatment with CS. Note the diminution of GCL cells in the eye injected with CS without RON. RON preserved this parameter. The other retinal layers
showed a normal appearance in all groups. Immunohistochemical detection of Thy-1 (F–J), Brn3a (K–O) or NeuN (P–T)-positive cells in the GCL from a
vehicle-injected eye submitted to a sham procedure or RON, a hypertensive eye without or with RON performed at 3 or 6 weeks of treatment. The
presences of all these markers were confined to the GCL in all experimental groups. A decrease in GCL cell number was observed in CS- injected eyes
with sham procedure as compared with vehicle-injected eyes (sham or RON), whereas RON, which showed no effect in vehicle-injected eyes,
preserved GCL cell count in CS-injected eyes. No differences were observed between CS-injected eyes submitted to a sham operation at 3 and 6
weeks of treatment (not shown). Scale bar: 100 mm. A representative (out of five per group) photograph of retina is shown. GCL, ganglion cell layer;
IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer.
doi:10.1371/journal.pone.0034574.g004
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could prevent the onset and reduce glaucomatous neuropathy,

presumably by counteracting ONH connective tissue damage,

maintaining nutritional and oxygen supply, and axoplasmic

transport at increased levels of IOP. In addition, since several

lines of evidence support that neuroinflammation and oxidative

stress can contribute to RGC death [40,41], the fact that RON

reduced RGC loss could suggest that this surgery could behave as

an anti-inflammatory and/or anti-oxidant therapy at retinal level,

an hypothesis that deserves to be examined.

A major weakness of the present results relies on the differences

between the rat and human eye. Although results from some

authors support that the lamina cribrosa in the rat eye is thin and

poorly developed [42], the rat eye was shown to be a good model

for ophthalmologic studies because its anatomy is similar to that of

the human eye. In fact, it was shown that the rat ONH possess an

identifiable lamina cribrosa with structural proteins nearly

identical to that of the primate [43,44]. In contrast, the rabbit,

chicken, and quail seem to be less adequate models to study the

lamina cribrosa, the major problem being the myelinization of the

axons penetrating through the sparsely developed lamina cribrosa

into the nerve fiber layer of the retina, changing profoundly the

situation of cell composition and mechanical reactivity in the

ONH region. In addition, the retina from these species is avascular

which probably has a major influence on the ONH blood supply

too [45]. Moreover, the vascular supply and the localization of the

central retinal vessels in rats should be taken into account when

comparing findings with the human situation.

Although care must be taken when extrapolating data generated

in rodents to humans, our data provide evidence which supports the

beneficial effects RON on retinal damage induced by chronic ocular

hypertension. Due significance should be given to the fact that the

ONH, a very delicate and crucial structure of the eye is being dealt

with surgically. However, developments in techniques and technol-

ogy could increase the margin of safety and efficacy of RON in

humans, raising the hope that in the future, benefits of RON against

glaucomatous damage could outweigh the risks of this procedure.

Materials and Methods

Ethics Statement
All animal procedures were in strict accordance with the ARVO

Statement for the Use of Animals in Ophthalmic and Vision

Research. The ethic committee of the School of Medicine,

University of Buenos Aires (Institutional Committee for the Care

and Use of Laboratory Animals, (CICUAL)) approved this study.

Animals
Male Wistar rats (average weight, 200640 g) were housed in a

standard animal room with food and water ad libitum under

controlled conditions of humidity and temperature (2162uC),

under a 12 h light: 12 h dark lighting schedule (lights on at

07.00 h). A total number of 60 animals were used for the

experiments, distributed as follows: for IOP, ERG and VEP

assessment: 10 animals bilaterally injected with vehicle (control)

and 10 animals bilaterally injected with CS submitted to sham

procedure or RON at 3 weeks of intracameral treatment, and the

same amount of animals submitted to RON or sham procedure at

6 weeks of intracameral treatment (total amount of animals for

these studies: 40). For retina and ON histology: 5 animals

bilaterally injected with vehicle (control) and 5 animals bilaterally

Table 1. Effect of RON on GCL cell count in vehicle or CS-injected eyes.

sham operation or RON at 3 weeks

number of cells in GCL/100 mm

vehicle CS

sham RON sham RON

H&E 9,760,7 9,060.6 6,160,7** 9,960,3b

Thy-1 4,160,1 4,060,2 2,160,1** 4,260,1b

NeuN 4,660,5 4,260,4 1,860,4** 3,560,1a

Brn3a 3,160,1 2,960,2 1,760.1** 3,060.2b

sham operation or RON at 6 weeks

number of cells in GCL/100 mm

vehicle CS

sham RON sham RON

H&E 9,560,6 9,260,5 5,060,2** 7,660,3*,b

Thy-1 4,060,3 3,860,3 2,060,2** 3,460,1b

NeuN 4,460,4 4,560,5 1,660,3** 3,260,1a

Brn3a 3,460,2 3,160,3 1,960,2** 3,060,3a

Cell count in the GCL/100 mm was evaluated by H&E staining and Thy-1, NeuN and Brn3a immunostaining after 10 weeks of treatment with vehicle or CS in eyes
submitted to sham operation or RON at 3 (upper panel) or 6 (lower panel) weeks of treatment. In sham operated eyes, CS induced a significant decrease in the GCL cell
and in Thy-1, NeuN and Brn3a positive ganglion cell number, whereas in hypertensive eyes submitted to RON at 3 or 6 weeks, a significant preservation of GCL cells was
observed. Data are the mean 6 SEM (n = 5 retinas per group);
*p,0.05,
**p,0.01 versus vehicle- injected eyes with sham operation (sham);
a: p,0.05,
b: p,0.01 versus CS-injected eyes with sham operation, by Tukey’s test.
doi:10.1371/journal.pone.0034574.t001
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injected with CS, with RON in one eye and sham procedure in the

contralateral eye performed at 3 weeks of intracameral treatment,

and the same amount of animals submitted RON in one eye and

sham procedure in the contralateral eye at 6 weeks of intracameral

treatment (total amount of animals for these studies: 20)

Intracameral injections
Rats were anesthetized with ketamine hydrochloride (150 mg/

kg) and xylazine hydrochloride (2 mg/kg) administered intraper-

itoneally. With a Hamilton syringe and a 30-gauge needle, under a

surgical microscope with coaxial light, 20 ml of CS (Sigma

Chemical Co., St. Louis, MO, catalog # C9819, 0.4 g/ml in

saline solution) were bilaterally injected into anesthetized rats, and

an equal volume of vehicle (saline solution) was bilaterally injected

in control rats. Eyes were focused under a surgical microscope

(model OMNI MDU XY; Carl Zeiss, Oberkochen, Germany)

with coaxial light. The needle moved through the corneoscleral

limbus to the anterior chamber with the bevel down. When the tip

of the bevel reached the anterior chamber, the liquid progressively

increased the chamber’s depth, separating the needle from the iris

and avoiding needle-lens contact. Applications were made slowly

but using a force sufficient to just empty the syringe content

(adjusted to 20 ml). Weekly injections were applied at the

corneoscleral limbus, beginning from hour 12 and changing the

site of the next injection from hour to hour, by rotating the head to

achieve better access to the limbus. Injections were performed

after application of one drop of 0.5% proparacaine hydrochloride

to each eye. Rats showing cataract and animals with phthisis bulbi

(less than 5% of animals) were excluded from the experiments. In

addition, almost all the animals developed localized corneal edema

at the site of the injection that lasted less than 24 h.

Radial Optic Neurotomy (RON)
Rats were anesthetized as already described. After 3 or 6 weeks of

treatment with vehicle or CS, animals were subjected to RON in

one eye, whereas the contralateral eye was subjected to a sham

procedure. RON was performed as follows: eyes were focused under

a binocular Colden surgical microscope with coaxial light for fundus

visualization and illumination. Using a 30-gauge dental cartridge

needle, a scleral puncture was made at 1 mm of the corneoscleral

limbus. A single incision at the nasal hemisphere of the optic disk

was performed in the edge of the neuro-retinal ring, cutting an equal

part of ON and parapapillary retina, avoiding damage to the central

retinal vessels. Care was taken to make the stab radial to the optic

disk and parallel to the nerve fiber pattern. The sham operated eyes

were submitted to a similar procedure (a scleral puncture was made

at 1 mm of the corneoscleral limbus), but without any incision.

IOP assessment
A tonometer (TonoPen XL; Mentor, Norwell, MA) was used to

assess IOP in conscious, unsedated rats, as previously described [1].

IOP determinations were weekly assessed by operators who were

blind with respect to the treatment applied to each eye. Animals

were wrapped in a small towel and held gently, with one operator

holding the animal and another making the readings. Five IOP

readings were obtained from each eye by using firm contact with the

cornea and omitting readings obtained as the instrument was

removed from the eye. Differences among reading were less than

10% (standard error). The mean of these readings was recorded as

the IOP for this eye. Mean values from each rat were averaged, and

the resultant mean value was used to compute the group mean IOP

6 SE. IOP measurements were performed at the same time each

day or week (between 11.00 and 12.00 h) to correct for diurnal

variations in IOP. IOP was assessed in both eyes of these animals

before injections and at 7-day intervals, afterwards.

Electroretinography
Electroretinographic activity was assessed as previously de-

scribed [1]. Briefly, after 6 h of dark adaptation, rats were

anesthetized under dim red illumination. Phenylephrine hydro-

chloride and tropicamide were used to dilate the pupils, and the

cornea was intermittently irrigated with balanced salt solution to

maintain the baseline recording and to prevent keratopathy. Rats

were placed facing the stimulus at a distance of 20 cm. All

recordings were completed within 20 min, and animals were kept

Figure 5. ON from a vehicle- or a CS-treated eye with or
without RON. (A) Healthy, intact control optic nerve. Note the
homogeneity of the staining. In vehicle-injected eyes, individual axons
were generally uniform in shape, rounded and packed together tightly
to form the fibers of the healthy nerve. In CS-treated eye with sham
procedure (B) a less stained area indicates a nerve alteration. Disease in
individual axons was characterized by axonal distention and distortion
that resulted in a departure from the circular morphology of normal
axons. In contrast, a conserved structure of the ON was observed in the
CS-treated eye with RON at 3 (C), or 6 weeks (D) of ocular hypertension.
Toluidine blue. Number of axons in eyes injected with vehicle or CS
with sham procedure or RON at 3 (E) or 6 (F) weeks of treatment. A
significant decrease in the axon number was observed in CS- injected
eyes without RON as compared with vehicle-injected eyes (sham),
whereas RON significantly preserved this parameter. Scale bar: 10 mm.
Data are mean 6 SEM (n = 5 eyes/group). **p,0.01 versus vehicle
injected eyes with sham procedure (sham), a: p,0.05 versus CS-injected
eyes without RON, by Tukey’s test.
doi:10.1371/journal.pone.0034574.g005
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warm during and after the procedure. A reference electrode was

placed through the ear, a grounding electrode was attached to the

tail, and a gold electrode was placed in contact with the central

cornea. A 15 W red light was used to enable accurate electrode

placement. This maneuver did not significantly affect dark

adaptation and was switched off during the electrophysiological

recordings. ERGs were recorded from both eyes simultaneously

and ten responses to flashes of unattenuated white light (5 ms,

0.2 Hz) from a photic stimulator (light-emitting diodes) set at

maximum brightness (6 cd s/m2 without filter) were amplified,

filtered (1.5-Hz low-pass filter, 1000 high-pass filter, notch

activated) and averaged (Akonic BIO-PC, Argentina). The a-wave

was measured as the difference in amplitude between the

recording at onset and the trough of the negative deflection and

the b-wave amplitude was measured from the trough of the a-wave

to the peak of the b-wave. Runs were repeated 3 times with 5 min-

intervals to confirm consistency. Mean values from each eye were

averaged, and the resultant mean value was used to compute the

group means a- and b-wave amplitude 6 SEM. The mean peak

latencies and peak-to-peak amplitudes of the responses from each

group of rats were compared.

Flash visual evoked potentials
For VEP recording, two stainless steel electrodes were surgically

placed 4 mm lateral to the interhemispheric fissure and 5,6 mm

behind bregma (active electrode), as previously described [1].

Reference electrodes were placed 2 mm lateral to the midline and

2 mm before bregma. A ground electrode was placed in the

animal tail. Both electrodes were isolated and fixed with dental

acrylic and the skin was sutured with nylon 5/0. VEPs were

assessed 7 days after electrode implantation, as follows: after 6 h of

dark adaptation, rats were anaesthetized, pupils were dilated and

the cornea was intermittently irrigated as previously described,

under dim red illumination. All recordings were completed within

20 min of the induction of anesthesia and animals were kept warm

during and after the procedure. Each eye was registered

individually, occluding the contralateral eye, and a 70 stimuli

average was registered. Eyes were stimulated with unattenuated

white light (1 Hz) from a photic stimulator (light-emitting diodes)

set at maximum brightness were amplified, filtered (0.5-Hz low-

pass filter, 100 high-pass filter, notch activated) and averaged

(Akonic BIO-PC, Akonic, Argentina). The amplitude between the

N2 deflection and the P2 peak was assessed, and the N2 latency

was measured from de onset to the second negative peak.

Histological analysis
Eyes were enucleated after anesthetic overdose and immersed

immediately in a fixative containing 4% paraformaldehyde in

0.1 M phosphate buffer (pH 7.2) for 1 h. The nictitans membrane

was maintained in each eye to facilitate orientation. The cornea

and lens were carefully removed, and the posterior portions were

fixed for an additional 12 h- period in the same fixative. A cross

section of the optic nerve from vehicle and CS-treated eyes was

removed 1.5 mm posterior to the globe and postfixed in 1%

osmium tetroxide in phosphate buffer. Nerves were processed into

epoxy resin, sectioned at 1 mm, and stained with 1% toluidine

blue. Eyecups were dehydrated in an alcohol series, and

embedded in paraffin. Sections (5 mm thick) were cut along the

horizontal meridian through the ONH and stained with H&E.

Immunohistochemical studies
Antigen retrieval was performed by heating (90uC) slices for

30 min in citrate buffer and then preincubated with 2% normal

horse serum, 0.1% bovine serum albumin, and 0.4% Triton X-

100 in 0.01 M phosphate-buffered saline for 1 h. The sections

were then incubated overnight at 4uC with a mouse monoclonal

anti-NeuN antibody (1:120; Millipore, Temecula, CA, USA), or a

goat anti-Brn3a (1:500 Millipore, Temecula, CA, USA) antibody.

An anti-mouse and anti-goat secondary antibody conjugated to

Alexa Fluor 568 (1:500; Molecular Probes, Grand Island, NY,

USA) were used. After immunostaining, the sections were

mounted with antifade medium with the fluorescent nuclear stain

DAPI (Vector Laboratories, Burlingame, CA, USA). For Thy-1

level assessment, endogenous peroxidase activity was blocked with

0.3% H2O2 in phosphate- buffered saline (PBS) for 20 min, and

the sections were then incubated overnight at 4uC with a mouse

monoclonal anti-Thy-1 antibody (1:500 Millipore, Temecula, CA,

USA). Thy-1 positive signal was developed with the labeled

streptavidin-biotin (LSAB2H System HRP Dakocytomation, Dako,

Carpinteria, CA, USA) reagent kit, according to manufacturer’s

instructions. Some sections were treated without the primary

antibodies to confirm specificity. An Olympus BX50 microscope

(Olympus, Tokyo, Japan) was used for microscopic observations.

Comparative digital images from different samples were grabbed

using identical time exposition, brightness, and contrast settings.

Image analysis
Microscopic images were digitally captured with a Nikon

Eclipse E400 microscope (illumination: 6-V halogen lamp, 20 W,

equipped with a stabilized light source) attached to a digital

camera (Coolpix s10; Nikon). The digitalized images were

transferred to a Scion Image for Windows analysis system (Scion

Corporation Beta 4.0.2).

Retinal morphometry was evaluated as previously described [1].

Three sections were randomly selected from each eye. Nine

microscopic images at 1 mm from the temporal edge of the optic

disc were digitally analyzed. The light microscope was adjusted to

level 4 and a 406 CF E achromat objective was used. The

thickness (in mm) of the IPL, INL, OPL, ONL, and total retina was

measured. The number of cells in the GCL was expressed as cells

per 100 mm. For each eye, results obtained from three separate

sections were averaged and the mean of 5 eyes was recorded as the

representative value for each group. The morphometric analysis

was performed by observers masked to the protocol used in each

eye.

Optic nerve morphometry
ON axon counting was performed as previously described [1].

Images were captured with a 1006 achromat objective from 5

spaced nerve regions, converted to 8-bits grey scale and a manual

threshold value, first determined by visual examination, was

constantly applied. Finally, images were converted to a binary

form. The number of axons counted in 5 images from each nerve

was approximately 10% of the total optic nerve area. The

counting process was performed by observers masked to the

protocol used in each nerve.

Statistical analysis
Statistical analysis of results was made by a two-way analysis of

variance (ANOVA) followed by Tukey’s test, as stated.
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