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The infant brain shows rapid neural network development that considerably influences
cognitive and behavioral abilities in later life. Reportedly, this neural development
process can be indexed by estimating neural signal complexity. However, the precise
developmental trajectory of brain signal complexity during infancy remains elusive. This
study was conducted to ascertain the trajectory of magnetoencephalography (MEG)
signal complexity from 2 months to 3 years of age in five infants using multiscale
entropy (MSE), which captures signal complexity at multiple temporal scales. Analyses
revealed scale-dependent developmental trajectories. Specifically, signal complexity
predominantly increased from 5 to 15 months of age at higher temporal scales, whereas
the complexity at lower temporal scales was constant across age, except in one infant
who showed decreased complexity. Despite a small sample size limiting this study’s
power, this is the first report of a longitudinal investigation of changes in brain signal
complexity during early infancy and is unique in its application of MSE analysis of
longitudinal MEG data during infancy. The results of this pilot study may serve to further
our understanding of the longitudinal changes in the neural dynamics of the developing
infant brain.

Keywords: infant development, magnetoencephalography (MEG), multiscale entropy, complexity, longitudinal
change

INTRODUCTION

Infancy is a period of remarkable neural development in the brain that is reflected by increasing
cognitive and behavioral capacities for external circumstances or internal changes in later life (Cao
et al., 2017). Recent advances in neuroimaging devices and analysis techniques have been used
to visualize the development of brain functions. The human brain is a complex system that is
characterized by its astonishing signal variability, which operates over a wide range of temporal
and spatial scales. This brain signal variability facilitates learning and optimal environmental
adaptation to the changing demands of a dynamic environment (Faisal et al., 2008). This
complexity also conveys important information about neural system dynamics and their alterations
(reviewed in Stam, 2005; Garrett et al., 2013; Takahashi, 2013).

Abbreviations: MEG, magnetoencephalography.
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An entropy-based approach, multiscale entropy (MSE)
analysis, has been proposed to estimate the physiological signal
complexity on multiple temporal scales using coarse-graining
procedures (Costa et al., 2005). This extension to multiple time
scales enables the capture of long-range temporal correlations in a
time series. MSE has been successfully applied in the investigation
of developmental changes in brain signal complexity from
infancy through adolescence and into adulthood (McIntosh et al.,
2008; Lippe et al., 2009; Polizzotto et al., 2015; Takahashi et al.,
2016). However, no study has explored the longitudinal changes
in brain signal complexity during the early stages of development
despite the significant importance of examining within-subject
developmental trajectories (Giedd et al., 1999; Sowell et al.,
2004; Shaw et al., 2008). This is due to the large variance in
the developmental pattern during infancy (Landa et al., 2012),
a period in which developmental disorders frequently emerge
(Bolton et al., 2012; Lemcke et al., 2013).

We characterized the trajectory of brain signal complexity
of typically developing infants, aged 5 to 36 months, using
MSE applied to MEG. MEG is suited for measuring the infant
brain because it offers a non-invasive and quiet environment
during measurement. Additionally, MEG allows the mother to
accompany the infant to provide encouragement and comfort, as
well as enabling her to decide whether the experiment should be
paused or continued. Furthermore, in the assessment of signal
complexity, MEG can directly measure brain magnetic fields in
the cortex with high temporal resolution (Kikuchi et al., 2011;
Yoshimura et al., 2012; Takahashi et al., 2016).

METHODS

Data for the present study were obtained from an ongoing
longitudinal study of infants. In this study, we analyzed five
infants (one female and four males) who were 36 months of
age at the time of analysis. They were recruited from Kanazawa
University at 1 month old, and follow-up examinations and MEG
experiments were conducted once a month (ideally every month).
Participants had no history of developmental problems at the
time of the latest measurement.

All mothers agreed to their infant’s participation in the
study and had full knowledge of the experimental nature of
the research. Written informed consent was obtained prior to
participation. The study was approved by the Ethics Committee
of the Kanazawa University Hospital, and all procedures were
performed in accordance with the Declaration of Helsinki.

EXPERIMENTAL PROCEDURE

Magnetoencephalography data were recorded using a 151-
channel Superconducting Quantum Interference Device
(SQUID) whole-head coaxial gradiometer MEG system for
children (PQ 1151 R; Yokogawa/KIT, Kanazawa, Japan) installed
at the MEG Center of Ricoh Company, Ltd. (Kanazawa, Japan).
During recording, the participant lay supine on a bed in a
magnetically shielded room (Daido Steel, Nagoya, Japan) with

his or her head inside the MEG system helmet. The infant’s
mother and one research member remained in the shielded
room to keep the infant comfortable and encourage the infant
to maintain a steady body position when necessary. The infants
were carefully monitored using a video monitoring system to
assess their compliance with the instructions and to record
any notable artifacts, such as head motion, inappropriate head
position. Before recording, infants or their mother selected a
video program according to their preference from a number
of video programs (e.g., popular Japanese animations and TV
programs). All infants viewed silent video programs projected
onto a screen throughout the recording session to promote a
consistent state and attention. MEG recordings were conducted
every month when possible.

DATA ANALYSIS

Magnetic fields were sampled at 2000 Hz per channel (bandpass
filter 0.16–200 Hz). Offline analysis was performed using
a BrainVision Analyzer 2 (Brain Products GmbH, Gilching,
Germany) and MATLAB (the MathWorks Inc., Natick, MA,
United States). The raw MEG data were resampled at 500 Hz
with 1.5–60-Hz bandpass and 60-Hz notch filters. MEG data were
segmented for 5 s (2500 data points: 5 s × 500 Hz). Artifacts
such as eye movements, blinks, cardiac activities, and muscle
activities were visually identified and excluded from analyses. The
children’s head movements were video monitored throughout
the session. At the epoch selection stage, clear head motion
artifacts were eliminated by confirmation of head motion in
the videos at the time of the MEG artifacts by an MEG expert
who was blinded to the identity of the subjects. Contaminated
data were also eliminated by an MEG expert who was blinded
to the identity of the subjects. A minimum of 50 segments
were recorded for each subject. Finally, we randomly selected
50 segments (i.e., a 250 s recording period) from all artifact-free
segments of each recording. For each subject, MSE values were
calculated separately for each of the selected segments and were
then averaged into a single value as the mean MSE.

MSE ANALYSIS

Multiscale entropy analysis quantifies the complexity of a time
series using different time scales (Costa et al., 2002). For the
extension to multiple time scales, the original MEG time series
{x1, x2, . . ., xN} is coarse-grained to {y1(τ), y2(τ), . . ., yN/τ (τ)} by
the temporal scale τ with non-overlapping windows as follows.

yj (τ) = (1/τ)
jτ∑

i = (j−1)τ+1

xi, 1 ≤ j ≤ N/τ.

The complexity of each scale can be measured through the
calculation of sample entropy (SampEn), which assesses the
predictability of a time series. The SampEn was calculated for
each series {y1(τ), y2(τ), . . ., yN/τ(τ)}. The SampEn is the negative
of the logarithmic conditional probability that two sequences of
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m consecutive data points that are mutually similar (within a
given tolerance r) will remain similar at the next point (m + 1)
in the dataset (N), where m is the space of the dimension and
r is the effective filter for measuring the consistency of a time
series (Richman and Moorman, 2000). Considering the MEG
time series {x1, x2, . . ., xN} as observations of a stochastic variable
x, the dynamic SampEn is defined as

hsample (r, m, N) = − loge [Cm+1 (r) / Cm (r)],

where Cm (r) = {number of pairs (i, j) with |zmi − zmj | < r,
i 6= j}/{number of all probable pairs, i.e., (N − m + 1) (N − m)}.
Therein, z = y (τ); zm is a vector of an m sample time series of
(N − m) length, and |zmi − zmj | denotes the distance between
points zmi and zmj . In this study, we used m = 2 and r = 0.2.
SampEn values were computed for 1–20 scales that correspond
to 2–40 ms (Temporal scales in ms = tau ∗ 1000 ms/sampling
frequency).

POWER SPECTRAL ANALYSIS

Along with MSE calculations, spectral power analysis was
performed for each epoch that was used for the MSE calculation
as a comparative MSE analysis. We calculated the spectral density
(amplitude) using a fast Fourier transform. A Hamming window
was applied to each epoch for spectral power analysis.

SURROGATE ANALYSIS

We derived surrogate data using a Fourier transformation to the
MEG data to detect non-linearity in the MEG data (Vakorin and
McIntosh, 2012; Grandy et al., 2016). Specifically, the time-series
of each epoch was Fourier transformed, and then its phase was
randomized and applied to an inverse Fourier transform. Using
10 types of seeds for randomization, we derived 10 surrogate
data per epoch and then calculated an average value among their
SampEn values of surrogate data. We compared the SampEn
values for the original time series to the SampEn values for the
surrogate data.

RESULTS

Figure 1 shows the averaged (across all sensors into a single value)
developmental trajectory of the spectral power (Figure 1, upper
panels) and MSE (Figure 1, lower panels) across five infants
aged from 5 to 36 months old. All infants demonstrated an
increase in the MSE value with age. The Jonckheere-Terpstra
test was used to test for an age-related trend in MSE values,
and statistically significant age-related trends were identified
for coarse time scales (31–40 ms, scales: 16–20) (TJT = 459.0,
standard error = 34.8, z = 5.6, p < 0.001). Figure 2 shows
the averaged developmental trajectory in each time scale bin
(Figure 2A) and the topography of MSE values across different
ages (Figure 2B). A more detailed examination of our results
revealed that the remarkable increase in MSE identified for

longer time scales (31–40 ms, scale: 16–20) was predominantly
observed at ages up to 15 months and was found across brain
regions (Figure 2). After 15 months of age, this increase tended
to slow. However, the power spectral analysis also showed an
increase in power in the theta and alpha bands. This increase
was more prominent after 15 months of age, while the MSE
change was more prominent during the earlier infancy periods.
Regarding the shorter time scales (2–10 ms, scale: 1–5), the
developmental trajectory of MSE varied across subjects. For
instance, some infants showed constant MSE values across
development, whereas one infant showed a gradual decrease
(Figure 1, bottom panels).

In the surrogate analysis, we found region- and scale-specific
entropy alterations in the surrogate data, which may suggest
an inherent non-linearity in the MEG data (data not shown).
Specifically, in the surrogate data, the SampEn increased near the
frontal and temporo-occipital regions. Interestingly, this region-
specific SampEn alteration was more prominent for smaller
temporal scales (less than 20 ms) and was frequently identified
during early infancy (5–10 months of age).

DISCUSSION

The neurodevelopmental trajectory of infancy has received much
attention because infancy is a critical period of brain development
in which cognitive and behavioral abilities are enhanced (Cao
et al., 2017) and neurodevelopmental disorders, such as autism
spectrum disorder (ASD), are predicted to develop. This is the
first longitudinal investigation of how brain signal complexity,
which represents neural system dynamics, changes during
infancy. The analysis revealed scale-dependent developmental
trajectories of MEG signal complexity. Specifically, we found
an increase in signal complexity for longer time scales, whereas
the changes in complexity varied across infants for shorter time
scales.

Many studies have investigated age-related signal complexity
changes from late childhood into adulthood. Polizzotto et al.
(2015) examined the MSE of resting-state EEG results in healthy
subjects aged 8–22 years old. They reported an age-related
increase in entropy in lower scales and a decrease in entropy for
higher scales. McIntosh et al. (2008) calculated MSE changes in
EEG during a face recognition visual memory task in children
(8–15 years old) and young adults (20–33 years old). They
found an age-related increase in EEG complexity that was
significantly correlated with the accuracy of task performance.
This observation was replicated by the same group using MEG
(Misic et al., 2010), confirming the characteristic shape of the
MSE curve and its prominent task-dependent increase during
development. We have also demonstrated an age-related increase
in MEG signal complexity. However, enhanced complexity was
identified in children with ASD, particularly in earlier childhood
(Takahashi et al., 2016). Compared to the changes that occur
during the period from childhood to adolescence, brain signal
complexity during infancy has been addressed by few studies.
Lippe et al. (2009) investigated EEG signal complexity in response
to visual and auditory stimulation in children ranging from
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FIGURE 1 | Array plot showing the developmental trajectory of spectral power (top panels) and MSE (bottom panels) for each infant and their average (X-axis, age,
months; Y-axis, frequency and time scales).

FIGURE 2 | (A) Each line shows the trajectory of the averaged MSE value across different time scales in 8 age bins (1–5, 6–10, 11–15, 16–20, 21–25, 26–30,
31–35, and 36–40 months of age). (B) Topography of the MSE value at a coarse time scale of 40 ms (scale = 20) across 7 age bins (5, 10, 15, 20, 25, 30, and 35
months of age).

1 month to 5 years of age. They found a task-dependent increase
in EEG complexity with aging. However, these studies were based
on a cross-sectional study design. Despite the small number of
subjects, a unique aspect of this study is that we longitudinally
investigated the development of MEG complexity during infancy.

In these contexts, our study provides the longitudinal
underpinnings for the concept of significant shifts in brain
signal complexity with aging (Garrett et al., 2013). Notably, for
higher scales, we captured a robust developmental MSE profile
across infants and across MEG sessions despite conditional

inconsistencies (i.e., selected videos, emotions, or physical
conditions), which may indicate the potential usefulness of MSE
as a reliable and clinically useful trait biomarker of the infant
brain. For instance, we have demonstrated a linear age-related
increase in complexity at higher scales across 40–110 month-
old children (Takahashi et al., 2016). Additionally, enhanced
brain signal variability was observed in children with ASD, which
was conformed for younger children. On the other hand, Bosl
et al. (2011) examined resting-state EEG complexity by MSE in
typically developing infants and infants with a high risk of ASD
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across the ages of 6–24 months, and they found consistently
lower EEG complexity at higher scales in the high-risk group,
particularly at 9–12 months of age. These inconsistent results may
be attributed to the different age ranges of these two previous
studies on children with ASD.

Considering biological background, the observed rapid
increase in MEG complexity in the high time scale (i.e., lower
frequency range) at approximately 5–15 months old might
demonstrate the development of long-range network-related
cognitive processing. Given that long-range communication
between multiple brain areas is driven by slow waves (i.e., theta
and beta waves) (Wang, 2010), MEG complexity in a high
time scale (i.e., lower frequency range) may be useful and a
non-invasive biomarker of brain maturation in infants. Pujol
et al. (2006) assessed myelination from birth to 3 years of
age in children’s brains using three-dimensional MRI imaging.
Intriguingly, this volumetric study demonstrated that a period
of rapid myelination started after the 5th month and reached
the mature appearance by the 18th month, and the study
revealed the relationship with vocabulary acquisition in children.
This period of rapid myelination is almost the same as the
period in which we observed a rapid change in the present
study.

However, contrary to the developmental trajectory for higher
scales, the developmental trajectory of MSE for lower scales
is diverse across infants, and the reason for this difference
remains unclear. Lippe et al. (2009) reported a rapid increase
in complexity at lower scales, especially during the early
stage of infancy (1–2 months old vs. 2–8 months old) that
is followed by a gradual increase. This may suggest the
possibility that complexity at lower scales (corresponding to
≤16 ms) saturates by 8 months of age. This may partially
explain our finding of a constant complexity value across
age after 5 months of age at lower scales. Theoretically,
SampEn at finer (i.e., lower) time scales is based on wider
frequencies, whereas coarser (i.e., higher) time scales are based
on narrower frequencies (i.e., high frequency is filtered out).
Signal variabilities in different frequencies must be reflected by
differences in time scale. Therefore, a frequency-specific role
in the differentiation of cognitive processing (Fries, 2015) and
differences in maturational speed (Uhlhaas et al., 2009) may
underlie these contradictory findings between the results from
high and low time scales.

Surrogate analysis showed a region- and scale-specific increase
in surrogate data compared to that in MSE from original data,
which may suggest an inherent non-linearity in the MEG data.
Furthermore, the developmental trajectory of the spectral power
and MSE differed. Specifically, an increase in the power spectral
seemed to be prominent after 12 months of age, whereas an

increase in MSE emerged from early infancy until 15 months of
age. Therefore, we assume that the enhancement in MSE with
development may be associated with non-linear processes and
may be independent of spectral power. In addition, as the outputs
of neuronal networks are produced by interactions due to both
local dense interconnectivity and sparse long-range excitatory
projections (Friston et al., 1995), the resulting dynamics could be
expected to operate at multiple scales.

Some potential limitations of the present study must be
considered. First, despite frequent MEG recording, we were
only able to follow five infants, which precluded statistical
evaluation. Second, we did not correct for cognitive behavioral
or psychological assessments, which might strengthen our
claims. Third, the confounding influence of head motion
cannot be excluded from potentially influencing the MSE
results. Finally, as a technical consideration, the recent
advent of cortical source localization techniques was not
applied due to difficulties in performing MRI on infants.
Although several limitations must be considered, our
findings for the examination of MEG signal variability
using MSE may add another dimension to the previously
identified neural dynamics of development and may provide
useful biomarkers for typically and abnormally developing
brains.
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