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BICORN: An R package for 
integrative inference of de novo cis-
regulatory modules
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Jianhua Xuan1✉

Genome-wide transcription factor (TF) binding signal analyses reveal co-localization of TF binding 
sites based on inferred cis-regulatory modules (CRMs). CRMs play a key role in understanding the 
cooperation of multiple TFs under specific conditions. However, the functions of CRMs and their effects 
on nearby gene transcription are highly dynamic and context-specific and therefore are challenging to 
characterize. BICORN (Bayesian Inference of COoperative Regulatory Network) builds a hierarchical 
Bayesian model and infers context-specific CRMs based on TF-gene binding events and gene expression 
data for a particular cell type. BICORN automatically searches for a list of candidate CRMs based on the 
input TF bindings at regulatory regions associated with genes of interest. Applying Gibbs sampling, 
BICORN iteratively estimates model parameters of CRMs, TF activities, and corresponding regulation 
on gene transcription, which it models as a sparse network of functional CRMs regulating target genes. 
The BICORN package is implemented in R (version 3.4 or later) and is publicly available on the CRAN 
server at https://cran.r-project.org/web/packages/BICORN/index.html.

Transcription factor (TF)-DNA binding profiles are widely available since the rapid development of epigenetic 
biotechnologies1,2. TFs regulate gene expression by binding at regulatory non-coding area (promoters or enhanc-
ers) and thereby recruiting RNA polymerase II and co-factors required for gene transcription3. A cis-regulatory 
module (CRM) is defined as a stretch of DNA with binding sites of multiple TFs and has been frequently observed 
at active promoter or enhancer regions4,5. Jointly modelling associations of multiple TFs at regulatory regions 
helps to uncover synergy among TFs and their regulatory effects on gene transcription6.

TF-associations (as CRMs) can be identified from genome-wide binding sites of individual TFs, their 
co-binding events, and their effects on gene transcription7–9. A major limitation of existing packages for inferring 
genome-wide de novo CRMs10,11 is that they do not integrate with gene expression data and thus, cannot predict 
the regulatory effects of CRMs on genes. Conventional TF-gene regulatory network inference tools12–14 fail in this 
regard either because they focus on individual TF-gene interactions rather than on multiple TFs associations. 
Among those tools focusing on the regulatory potential of multiple TFs, most only report strong regulators for 
each gene in order to avoid overfitting—which leads to incomplete regulatory network reconstruction.

To address these issues, here we describe BICORN (Bayesian Inference of COoperative Regulatory Network), 
a tool for functional CRM inference. Given TF-gene binding observations, BICORN first identifies a list of candi-
date CRMs, each with a unique combination of TFs. Next, for each CRM, target gene expression is modeled as a 
log-linear combination of TF activities and gene regulation strengths. Using Gibbs sampling, BICORN iteratively 
estimates TF activity, TF-gene regulatory strengths, and the posterior distribution of corresponding CRM models. 
Notably, for TFs in each CRM, their regulation strengths on a target gene are modeled jointly, so that sampling is 
based on the CRM’s overall regulatory effect on target gene transcription. For each CRM, a small number of TFs 
are jointly represented so that overfitting effects are largely alleviated and both strong and weak regulators (if any) 
on each gene are captured. (BICORN is named after a mythical beast composed of a combination of creatures, 
because it models CRMs composed of a combination of TFs.).
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To support our hypothesis that TFs often regulate gene expression synergistically by forming CRMs rather 
than independently, we applied BICORN to multiple simulated and publicly available benchmark data sets. The 
accuracy and robustness of BICORN is indeed higher than that of conventional regulatory network inference 
tools. We further used BICORN to infer CRMs from diverse cell types and found that, for the same cell type 
(i.e. breast cancer MCF-7 cells), TFs function and associate differently at enhancers than at promoters and have 
associations that differ among different cell types. Therefore, BICORN-inferred CRMs are accurate and cell 
type-specific. We implemented BICORN in a R package and made it publicly available on the CRAN server at 
https://cran.r-project.org/web/packages/BICORN/index.html.

Methods
BICORN input.  BICORN requires two inputs: TF-gene binding events and gene expression data from the 
same context (Fig. 1A). Binary TF-gene binding input is used because it is the signal format most commonly 
used by different resources. For example, many databases (i.e., TRANSFACT) provided candidate target genes for 
a query TF; using ChIP-seq data, peaks of each TF can be aligned to enhancer or promoter regions and further 
associated with genes; for ATAC-seq data, TF motif enrichment scanning at accessible chromatin regions with 
gene annotation is a straightforward way to identify genes targeted by enriched TFs15.

To infer CRMs, BICORN identifies a list of candidate CRMs (in total K) for T given TFs. To account for prior 
binding knowledge, BICORN defines a candidate CRM matrix B with K rows and T columns. Each row 

∈ ...k K{1, 2, , } is a unique vector ...b b b[ , , , ]k k k T,1 ,2 ,  including binary binding states bk t,  (1 or 0). To account 
for ‘background’ genes not regulated by any CRMs, an all-zero vector ...b b b[ , , , ]T0,1 0,2 0,  is included in B. For 
gene n, BICORN defines a CRM index variable cn ( ∈ ...c K{1, 2, , }n ) pointing to a row in B, denoting the CRM 
regulating expression of gene n.

For gene expression data, RNA-seq data (transcripts per million (TPM) values) are preferred16 and microarray 
data can also be used with proper normalization. Given M expression profiles (samples) of N genes, we defined a 
gene expression matrix Y′ with each unit ′y n m,  ( ∈ ...n N{1, 2, , }, ∈ ...m M{1, 2, , }) representing the expres-
sion value of gene n under sample m.

BICORN algorithm.  Log-linear model.  Gene expression are usually measured and studied with respect to 
a reference level. Thus, for gene n, we approximate its expression ′y n m,  by modeling the relationship between 
protein activities of TFs regulating gene n and the variation of gene expression under sample m from its baseline 
expression ′r n, using a log-linear model17,18 as follows:
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In time-course gene expression data, the baseline expression ′r n refers to the expression value under time ‘0’; 
in steady-state data, ′r n can be approximated using the mean expression across all samples and conditions. ac t,n

 

Figure 1.  The workflow of BICORN. (A) For a particular cell type or tissue, given TF-gene binding events 
observed at promoter or enhancer regions and target gene expression data, (B) BICORN iteratively estimates TF 
activity (TFA), regulation strength (RS) and cis-regulatory modules (CRMs) using Gibbs sampling. (C) Based 
on the sampling statistics, a ranked list of CRMs (TF-associations) is obtained with target genes inferred for 
each. (D) Meanwhile, a TF-gene regulatory network is created so that TFs and their associations functioning 
under different situations (i.e., promoter vs. enhancer) can be compared.
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represents the regulation effect of the binding event bc t,n
 of TF t in module cn. The regulation is effective when TF 

t physically binds to promoter or enhancer regions associated with the gene n. xt,m represents the proteomic 
response (or activity) of TF t in sample m. The following equation can be derived from Eq. (1) after taking the 
logarithm:

y a b x rlog( ) log( ) log( )
(2)n m

t
c t c t t m n, , , ,n n∑′ = ′ + ′ .

We define = ′y ylog( )n m n m, , , x xlog( )t m t m, ,= ′ , r rlog( )n n= ′  and add en m,  to denote the noise in the gene 
expression data. Then, we derive the following log-linear model:

∑= + + .y a b x r e
(3)n m

t
c t c t t m n n m, , , , ,n n

The log linear model has been used previously to describe the relationship between promoter activity and 
transcription factor activities17. In particular, the value of ac t,n

 is determined by the Hill coefficients and the TF 
binding affinity to the promoter region18. Model parameters of xt m, , ac t,n

 and bc t,n
 are dependent with each other. 

By estimating all model parameters we can eventually identify module cn.
When multiple TFs are jointly studied, unlike many existing tools that only report strong regulators for each 

gene19–21, which leads to an incomplete reconstruction of the true regulatory network, BICORN lowers the model 
overfitting effects as follows: it introduces an index variable cn linking a candidate CRM (a row in matrix b) to 
gene n. Regulation strengths ac t,n

 of all TFs in cn are jointly estimated, including both strong and weak regulators 
(if any). Since the number of TFs in each cn is relatively small (usually less than six), in every evaluation the over-
fitting effects are largely alleviated. After evaluating all candidate modules for gene n and repeating this process 
for every gene, in the end, a regulatory network with both strong and weak bindings is reconstructed. BICORN 
uses a hierarchical Bayesian framework to model dependencies between variables, which are robustly estimated 
using Gibbs sampling.

A hierarchical Bayesian framework.  Model variables included regulation strength matrix = aA [ ]c t,n
, TF activity 

matrix = xX [ ]t m, , module index vector = cC [ ]n , residual baseline expression vector = rR [ ]n  and gene expres-
sion noise matrix = eE [ ]n m, . Given the log value of gene expression in matrix = yY [ ]n m,  and prior TF-gene 
binding events in matrix = 



bB c t,n
, we proposed the herachical Bayesian framework shown in Fig. 2 to model 

dependencies between variables.
Based on this model, we define a posterior probability as:
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To estimate these variables using Bayesian inference, we made proper prior distribution assumptions on each. 
The binary binding state b is defined by the CRM index variable c, which corresponds to a row of the CRM matrix 
B. We assume a uniform prior on c ( =P c K( ) 1/ ). The regulation strength variable a can be either positive (a TF 
activates gene expression) or negative (a TF suppresses gene expression) and is conditioned on b: If =b 1, we 

Figure 2.  A hierarchical Bayesian framework for gene regulation modelling. CRM variables define the binding 
states of each gene. For each binding event, the regulation strength is either positive or negative to denoting 
gene activation or depression by the binding TF, respectively. Meanwhile, through TF-gene regulation, the TF 
activity is directly connected to target gene expression, along with residual baseline expression and noise.
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assume a zero-mean prior Gaussian distribution on a as σ| = =P a b N( 1) (0, )a hyper,
2  by assuming that in the 

whole regulatory network, regulation strengths a can be either positive or negative without informative prior; if 
=b 0, there is no functioning regulatory relationship between the pair TF and gene so we set =a 0.

As the mRNA expression of a TF can be either up-regulated or down-regulated with respect to the baseline 
expression, its proteomic response can also be positive or negative compared to the baseline activity. Therefore, 
we model TF activity as a Gaussian random process and each variable x follows a Gaussian distribution with prior 

σ=P x N( ) (0, )x hyper,
2 .

Variable r represents the baseline expression and is invariant across samples. The baseline expression arocess 
genes vary a lot. To infer model parameters jointly for all genes, gene expression data is log-transformed and then 
normalized with mean expression of each gene to zero. Theoritically, the baseline expression of each gene is zero. 
However, in real data process, the normalzaition process may not be perfect so we use variable r to denote the 
baseline expression residual. The gene expression noise e varies across samples. We assumed zero-mean Gaussian 
priors on both r and e as P r N( ) (0, )r hyper,

2σ=  and P e N( ) (0, )e
2σ= .

In this model, σx hyper,
2 , σa hyper,

2  and σr hyper,
2  are hyperparameters whereas the noise level σe

2 is a variable because 
the gene expression data quality varies case by case. To ensure the convergence of Gibbs Sampling, we assume the 
conjugate prior of Gaussian——the inverse Gamma distribution on σe

2: P inverseGamma( ) ( , )e
2σ α β= , with 

hyperparameters α and β. Hyperparameter selection is discussed in Supplementary Methods.

Gibbs Sampling.  Using Gibbs sampling, BICORN iteratively learns the marginal distribution of each variable to 
approximate the joint posterior distribution. The uncertainty of the observed gene expression measure yn m,  is due 
to noise, which, conditioned on the other variables, is estimated as: = − ∑ −e y a b x rn m n m t c t c t t m n, , , , ,n n

. As en m,  is 
a Gaussian distributed variable, the conditional probability P y a c x r( , , , , )n m n t n t m n, , ,

2σε  in Eq. (2) is a Gaussian 
distribution. Given that we assume Gaussian priors on TF activity x, regulation strength a, and baseline expres-
sion residual r, the marginal distribution of each variable is also Gaussian. Therefore, we sample these variables 
according to their posterior Gaussian distributions as follows:

µ σ∼ ′ ′x N( , ), (5)t m x x,
2

µ σ∼ ′ ′a N( , ), (6)n t a a,
2

µ σ∼ ′ ′r N( , ), (7)n r r
2

where the posterior Gaussian distribution parameters xµ′ , σ′x
2, µ′a, σ′a

2, µ′r and σ′r
2 are updated after each round of 

sampling, as described in Supplementary Methods. The CRM variable cn is sampled according to the posterior 
probability:
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The overall performance of sampled variables is controlled by the noise variance σε
2, which, after each round 

of sampling over the other variables, is updated by sampling according to the conditional probability:

σ α β′ ′~ Gammainverse ( , ), (9)e
2

where α′ and β′ are the posterior inverse Gamma distribution parameters and updated after each round of sam-
pling. The detailed calculation of each parameter is described in Supplementary Methods.

Using Gibbs sampling, BICORN iteratively estimated regulation strength, TF activity and CRMs (Fig. 1B). To 
initiate the sampling process, for each gene, based on its prior binding events and candidate module matrix, we 
randomly select a module whose binding events are all observed at the regulatory region of the current genes. We 
then randomly generate initial values of regulation strengths according to the prior Gaussian distribution. 
Similarly, for TF activities, we generate their initial Gaussian-distributed activities. The initial baseline expression 
residual can then be obtained using = ∑ − ∑r y a b x M( )/n m n m t c t c t t m, , , ,n n

 to ensure that the gene expression noise 
has a zero mean. We run Gibbs sampling to generate samples of each variable iteratively. As a carefully designed 
MCMC process, the sampling process should converge from different initial states to the final steady state. 
Therefore, we monitor the convergence of each variable based on the ratio of the within-sequence-variance and 
the between-sequence-variance for multiple sampling sequences, each starting from a different initial state22. 
When the sampler begins to converge to the stationary distribution, this ratio would be around 1. We monitor the 
sampling convergence for TF activities and regulation strengths. Once both of these converge, we accumulate 
samples on CRMs for each gene.

BICORN output.  The gene sampling frequencies for individual CRMs represent the posterior probabilities 
of regulation. Using a threshold probability (i.e. 0.85) as a cutoff, genes for each CRM are identified and further 
CRMs are ranked by the number of target genes each regulates (Fig. 1C). Meanwhile, for each TF, its sampling 
frequency (summed over all CRMs containing this TF) represents the posterior probability of TF-gene regulation 
(Fig. 1D).

https://doi.org/10.1038/s41598-020-63043-2


5Scientific Reports |         (2020) 10:7960  | https://doi.org/10.1038/s41598-020-63043-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Results
BICORN accurately infers CRMs, genes and regulatory networks.  We tested and compared the 
performance of BICORN and those of integrative Bayesian tools BNCA23 and COGRIM12 on simulated data. 
We simulated ten different TF-gene binding networks including 160 genes and 20 TFs, each with 80 true target 
genes. Each gene was regulated by a CRM with 2 ~ 6 TFs. Regulation strengths were generated as zero-mean and 
one-standard deviation Gaussian random variables with a high score (>2 or < −2) for strong regulators and a low 
but non-zero score for weak regulators. TF activities were simulated for 20 TFs using Gaussian random processes 
with zero-mean and one-standard deviation. Given the simulated network and variable values, a gene expression 
dataset was simulated using the log-linear model as in Eq. (1). We added 30% false positive interactions to each 
simulated network and used the perturbed bindings as prior TF-gene binding events. We also added zero-mean 
Gaussian distributed noise to the simulated gene expression data with a variance of 0.5 (signal-to-noise ratio 
3 dB).

We first calculated precision and recall of each method on CRM identification. As shown in Fig. 3A, achieving 
the same precision performance around 0.75, BICORN correctly identified CRMs for more genes, with a recall of 
0.66, compared to the recall values of ~0.1 for both BNCA and COGRIMN. BICORN also identified more target 
genes. In many situations, given data of TF-gene regulation and gene expression, genes are major targets for iden-
tification. Here, a target gene was correctly identified when at least one of its upstream regulators was captured. 
We simulated more scenarios by adding different levels (10% ~ 40%) of false positive interactions to the prior 
binding networks. As shown in Fig. 3B, BICORN exhibited superior performance.

(A) (B)

METHOD Precision Recall 

BICORN 0.768 0.663

BNCA 0.730 0.100 

COGRIM 0.725 0.090 
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Figure 3.  Performances of BICORN and competing methods on simulated and benchmark datasets.  
(A) Precision-recall performances on CRM identification using simulated data. (B) AUC performances on 
target gene prediction using simulated data. (C) F-measure performances on TF-gene regulatory network 
identification using DREAM 4 in silico benchmark data. Central values of the box plot represent the median, 
the box extends from quantile 25 to the 75 percentiles, and whiskers extend to the maximum and minimum 
values no further than 1.5 times the interquartile range from the hinge.
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To further evaluate the performance of BICORN on regulatory network inference (recovering TF-gene bind-
ing events), we downloaded benchmark networks and training time course gene expression data from the Synapse 
platform (https://www.synapse.org/, Synapse ID: syn3049712), which were used for DREAM challenge 424. There 
were 5 different benchmark regulatory networks and 50 time-course gene expression datasets (10 for each net-
work). The network was very sparse with a median of two TFs regulating each gene. To evaluate the robustness of 
BICORN on regulatory network inference, we perturbed prior binding observations by introducing 5% to 50% 
false negative interactions (a ‘true’ TF-gene interaction in the benchmark network but ‘missed’ by the prior bind-
ing matrix) or 5% to 100% false positive interactions. The F-measure (2*precision*recall/(precision+recall)) of 
BICORN is shown in Supplementary Fig. S1. When the rate of false negative interactions is under 15% or the rate 
of false positive interactions is under 30%, BICORN can achieve an average F-measure higher than 0.9.

We further compared the performance of BICORN to that of existing methods. Besides the above mentioned 
Bayesian methods, we included additional competing methods including CRNET20, LASSO19, NARROMI25 
and GENIE326. CRNET and LASSO are integrative methods using prior TF-gene bindings and gene expres-
sion. NARROMI and GENIE3 are inferring gene regulatory networks using gene expression data only. Specific 
for NARROMI and GENIE3, for a fair compare we checked their accuracy respectively using all the originally 
inferred bindings or inferred bindings with prior observations only, in which the prior knowledge was intro-
duced to the model. We randomly perturbed benchmark networks by adding 15% false negative connections 
and 30% false positive connections and used the perturbed network as input. F-measure of each method under 
default setting was recorded. BICORN performed better than all selected competing methods and overperformed 
NARROMI and GENIE3 with prior TF-gene bindings provided (Fig. 3C).

CRM at promoters and enhancers of breast cancer cells.  The chromatin states of enhancers and pro-
moters exhibit different histone markers27. Using BICORN, we further investigated these differences by studying 
CRMs at enhancers and promoters and comparing functional TFs at these regions. We applied BICORN to data 
acquired from breast cancer MCF-7 cells: 39 TFs ChIP-seq profiles from ENCODE (https://www.encodeproject.
org/) and two 17b-E2 treated MCF-7 RNA-seq datasets from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/, with accession numbers GSE62789 and GSE51403). The GSE62789 dataset included ten samples measured 
within 24 hours (hrs) of 10 nM 17b-E2 treatment. The GSE51403 dataset included seven samples measured under 
vehicle condition and another seven samples measured after 24 hrs treatment of 10 nM 17b-E2. We collected 
differentially expressed genes as reported in the original publications28,29 and identified 235 common E2 active 
genes for further exploration. To test the robustness of CRMs predicted by BICORN, we respectively applied 
BICORN to the above two relevant gene expression datasets and characterized genes showing significant differ-
ential expression in both datasets.

Promoter analysis.  We annotated peaks of each TF using GREAT30 and selected peaks falling in promoter 
regions (+/1k bps around transcription start sites). Based on the binding events (annotated peaks) of 39 TFs on 
235 active genes, BICORN identified 73 candidate CRMs. Further integrating the prior TF-gene binding events 
with each of the above mentioned target gene expression dataset, BICORN finally inferred 549 reliable CRM-gene 
interactions (sampling frequency> 0.85) for the GSE62789 dataset and 545 interactions for the GSE51403 data-
set, with an overlap of 466 (86%) CRM-gene interactions covering 32 TFs and 113 target genes. Learned distri-
butions of model parameters are shown in Supplementary Fig. S2, in which the posterior regulatory strengths, 
TF activities and residuals of baseline expression all follow Gaussian distributions. Focusing on those common 
interactions, CRMs were sorted based on the number of target genes regulated by each and the top 20 CRMs 
were listed in Fig. 4A. Moreover, all TFs were sorted using TF-gene interactions, as shown in Fig. 4B. We found 
that MBD3 frequently interacted with other TFs, for example POLR2A, at promoter regions. As a member of the 
nucleosome remodeling and deacetylation (NuRD) complex, MBD3 was demonstrated to be enriched at active 
promoters31 and to influence the association of POLR2A at transcription start sites32.

Enhancer analysis.  To associate TF bindings at enhancer regions with target genes, we downloaded MCF-
7-specific enhancer-like regions and ChIA-PET data from the ENCODE database. TF peaks were first aligned 
to enhancer regions and then looping to genes using ChIP-PET chromatin interactions. Distal binding events of 
the 39 TFs, 1857 enhancers and 235 target genes were collected, based on which BICORN identified 56 candi-
date CRMs. Integrating the distal TF binding events associated with genes and target gene expression together, 
BICORN finally identified 822 distal CRM-gene interactions using the GSE62789 dataset and 816 interactions 
using the GSE51403 dataset, with 630 (77%) common CRM-gene interactions covering 22 TFs and 99 target 
genes. Learned distributions of model parameters are shown in Supplementary Fig. S2, in which the posterior 
regulatory strengths, TF activities and residuals of baseline expression all follow Gaussian distributions. The top 
20 CRMs and sorted TFs were shown in Fig. 4C,D, respectively. Among these, E2F1 actively binds at enhancer 
regions and interacts with factors including EP300, a well-known enhancer factor33. The loss of E2F1 did not 
change expression of known E2F target genes, suggesting that perhaps E2F1-specific regulatory regions are dis-
tinct from known E2F target promoters34. Indeed, in our analysis, E2F1 is active enriched in enhancer regions and 
associates with several other TFs by forming multiple CRMs, but much less active at promoter regions.

Comparing functional TF bindings at promoter and enhancer regions we found that, in general, active TFs at 
promoter and enhancer regions differ in this breast cancer study (Fig. S1). HSF1, cJUN, EGR1, GABPA, FOXM1, 
MBD3 and GATA3 had intensive bindings at gene promoters but almost none at enhancers. Another six TFs 
including E2F1, FOSL2, ELF1, HDAC2, CEBPB and FOXA1 were highly active at enhancers with few functional 
bindings at promoters. Only four TFs functioned at both regions but either individual enrichment or associ-
ations among each other were quite different between enhancers and promoters. Therefore, CRMs should be 
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studied separately at promoters and enhancers to reveal a complete map of regulatory signals mediating gene 
transcription.

Functional CRMs identification of diverse cell types.  To demonstrate BICORN’s broad applicability, 
we applied it to six other cell types: K562, GM12878, HepG2, A549, SK-N-SH and HCT116. For each cell type, 
TF ChIP-seq profiles were downloaded from the ENCODE database and a matched gene expression data set was 
downloaded from the GEO database, as summarized in Table 1. Detailed data processing process as well as the 
number of enhancers, genes and modules studied for each case can be found from Supplementary Results.

0 5 0 5 0 5 0 5

(A) (B)

(C)      (D) 

Figure 4.  TFs functional at promoter or enhancer regions of E2 responsive target genes in breast cancer MCF-7 
cells. (A) BICORN identified top 20 CRMs functioning at promoter regions; (B) strong (green), weak (light 
green) and little-active (grey) TFs at promoter regions; (C) BICORN identified top 20 CRMs functioning at 
enhancer regions; (D) strong (purple), weak (light purple) and little-active (grey) TFs at enhancer regions.
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TFs functionally activate/suppress the regulatory activity of the region that they bind to. For each cell type, 
we validated the cell type-specificity of BICORN inferred TF modules by checking their regression performance 
to the matched promoter or enhancer activities. Cell type-specific promoter or enhancer activities for regions 
studied by BICORN were downloaded from the FANTOM5 database35. For each cell type, we built a logistic 
regression model using 70% active/inactive promoter or enhancer regions with BICORN inferred CRMs or with 
randomly permuted CRMs. Active/inactive promoter or enhancer region selection is described in Supplementary 
Results. AUROC (area under receiver operating characteristic curve) is calculated to evaluate the prediction 
performance of the built model on the 30% hold-out regions (Fig. 5A for promoter and Fig. 5B for enhancer). In 
all studied cases, the performance of BICORN inferred CRMs is significantly higher than that of the permuted 
CRMs (Wilcoxon rank sum test p-value <1e-9). Numbers of active/inactive promoter and enhancers in each cell 
type and the significance p-value of each case can be found in Supplementary Table S1.

Further examination of CRMs predicted by BICORN revealed strong and consistent cell-type specificity to 
existing literatures. At promoters, CTCF-RAD21 was previously reported to be functional around transcription 
start sites of genes specific to K562 cells with evidence suggesting that RAD21 contributes to stable CTCF bind-
ings36. SOX13-SOX5 was identified from HepG2 promoter study. Both transcription factors are from SOX family 
and SOX13 complements SOX5 functionally37. In A549 cells, the association between E2F6 and MAX was top 
ranked by BICORN. MAX is a member of the E2F6 complex, which usually binds to E2F-resposive promoters, 
and is involved in gene repression38. In SK-N-SH cells, one of the top-ranked CRMs included three transcription 
factors: CTCF, RAD21, and SMC3. CTCF and the cohesin complex, consisting of the core subunits SMC3 and 
RAD21, were found to colocalize extensively throughout mammalian genomes39. In HCT116 cells, the CRM of 
FOSL1-JUND was identified. To regulate gene transcription, FOSL1 requires a dimerization partner, which is 
often a member of the JUN family40.

At enhancers, NRF1-RFX1 was the top-ranked CRM in K562 cells with RFX1 exhibiting RNA polymerase II 
distal enhancer sequence-specific binding41. In another blood cell type, GM12878, ELF1-ZEB1 was highly ranked 
with two B-cell specific transcription factors: MTA2-TBX21, which was predicted to be active at its enhancers, 
and with MTA2 occupancy on enhancers demonstrated in42. At HepG2 enhancers, BICORN found a strong 
association between SUZ12 and ZNF143–two PRC2 epigenomic signatures, whose association with enhancers 

Cell line

Number 
of TFs 
(ENCODE 
database)

Gene 
expression 
data (GEO 
database) Promoter Enhancer

K562 203 GSE1036 ✓ ✓

GM12878 122 GSE51709 ✓ ✓

HepG2 108 GSE6869 ✓ ✓

A549 52 GSE69667 ✓

SK-N-SH 28 GSE9169 ✓

HCT116 20 GSE14103 ✓ ✓

Table 1.  Prior bindings and gene expression data used for CRM inference.

(A) (B)

Figure 5.  Prediction performance on cell type-specific promoter or enhancer activities using BICORN inferred 
CRMs. (A) promoter prediction for seven cell types; (B) enhancer prediction for five cell types. Central values of 
the box plot represent the median, the box extends from quantile 25 to the 75 percentiles, and whiskers extend 
to the maximum and minimum values no further than 1.5 times the interquartile range from the hinge.
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was previously reported43. In HCT116 cells, BICORN identified POLR2A-YY1, which generally occupies active 
enhancers and promoters across cell types and plays structural roles in enhancer-promoter loops44.

Discussion
Identifying high-order TF associations (as CRMs) and how these affect the gene transcription process is an open 
challenge. Conventional regulatory network analysis cannot tell how TFs associate with each other to regulate 
specific genes. This challenge is also hard to address experimentally as the simultaneous knockdown of more 
than one protein is not trivial. Our tool, BICORN, addresses a critical need: it enables to efficiently identify 
context-specific CRMs among hundreds of TFs. BICORN does this by integrating (proximal or distal) TF-gene 
binding events and target gene expression data and builds a hierarchical Bayesian framework to estimate values 
of all modelled variables. We have applied BICORN to both simulated and real data and have demonstrated its 
robustness and efficiency on module inference. BICORN is a general tool and can be readily applied to data gen-
erated from any cell type, tissue or organism. BICORN is freely available as open-source software.
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