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A correlate of protection (CoP) is a measured adaptive immune response to vaccination or infection that is associated with protec-
tion against disease. However, the degree to which a CoP can serve as a surrogate end point for vaccine efficacy should depend on the 
robustness of this association. While cholera toxin is a dominant target of the human antibody response to Vibrio cholerae infection, 
antitoxin responses are not associated with long-term immunity, and are not effective CoPs for cholera. Instead, protection appears 
to be mediated by functional antibodies that target the O-polysaccharide coated V. cholerae outer membrane. Vibriocidal antibodies, 
which are complement-dependent bactericidal antibodies, remain the most accepted CoP for cholera and are used as surrogate end 
points in some vaccine studies. However, the association between vibriocidal antibody titers and immunity is not absolute, and they 
are unlikely to reflect a mechanistic correlate of protection against cholera.
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Experts and regulatory bodies have proposed varied nomencla-
ture to define correlates of protection (CoP; Table 1) [1–3]. In 
general, CoPs are measures of adaptive immunity (often anti-
body titers) that are associated with protection against either 
infection or disease and acquired by immunization and/or nat-
ural infection [4, 5].

Most discussion of CoPs has focused on their use as surro-
gate end points for vaccine efficacy in clinical trials. However, 
there are no universally accepted standards that dictate the 
level of evidence required for CoPs to serve as trial end points. 
As a result, the acceptance of CoPs as proxies for vaccine ef-
ficacy by regulatory agencies, such as the US Food and Drug 
Administration and World Health Organization, depends on 
several factors.

For example, in the case of very rare infectious diseases, CoPs 
may be the only practical means to approximate vaccine effi-
cacy. CoPs may also serve as surrogate end points in bridging 
studies for vaccines that have well-established efficacy. For ex-
ample, CoPs can be used to compare minor changes in vaccine 
formulation, dosing regimens, and to make approximate com-
parisons of vaccine efficacy across in different populations. In 
contrast, an extremely high level of evidence linking a CoP with 
immunity, ideally including a clear mechanistic association, 
should be required for CoPs when used as surrogate end points 
for efficacy in first-of-kind vaccine trials. In addition, the use 

of CoPs as a surrogate clinical end point for vaccine efficacy to 
reduce the sample size required may not be beneficial when a 
large number of trial participants is needed to evaluate vaccine 
safety and rare adverse events [1].

In addition to their use as surrogate end points for vaccine 
trials, the identification of CoPs can serve other objectives. 
For some diseases, like hepatitis B or rabies, high-risk or po-
tentially exposed individuals lacking evidence of protective im-
munity based on well-established cutoffs can be identified for 
additional vaccines or interventions [2]. Identifying CoPs for 
infectious diseases also can advance our understanding of the 
mechanisms of immunity and provide fundamental insights 
into host-pathogen interactions.

COPS FOR CHOLERA

Oral cholera vaccines (OCVs) are increasingly being used and 
are a pillar of the World Health Organization’s strategy to re-
duce the burden of cholera by 90% by 2030 [6]. During the 15 
years prior to the creation of a global cholera vaccine stockpile 
in 2012, only 1.5 million OCV doses were deployed, and in 2018 
the number of doses used increased to over 17 million doses per 
year [7]. The benefits of vaccination include direct and indi-
rect protection. A meta-analysis of 13 clinical trials and obser-
vational studies found that the average 2-dose efficacy of killed 
OCVs was 58% (95% confidence interval [CI], 42%–62%) [8]. 
Furthermore, in a large OCV trial in Bangladesh, in areas where 
vaccine coverage was >50%, there was an approximately 5-fold 
reduction in cholera incidence in placebo recipients compared 
to areas where coverage was <28% [9], demonstrating signifi-
cant herd immunity in this setting.

Despite their benefits, current cholera vaccines are imperfect. 
Improving on their approximately 60% level of direct protec-
tion would be ideal. This is especially true in young children 
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in whom direct protection from current OCVs is limited [10]. 
In addition, understanding the optimal delivery and dosing of 
OCVs are urgent practical questions. At a translational level, 
the identification of robust CoPs for cholera would help answer 
questions regarding the ideal formulation and dosing strategy 
for OCVs.

PROTECTIVE IMMUNITY AGAINST CHOLERA

Immunity Following Infection

Infection with V. cholerae O1 results in protection against subse-
quent disease. Human challenge studies, referred to also as con-
trolled human infection models, in US volunteers demonstrate 
that a single episode of controlled classical V. cholerae O1 infec-
tion results in protection against reinfection for at least 3 years 
[11]. These models are corroborated by observations in cholera-
endemic areas. For example, from 1991 to 2000, in an endemic 
area of Bangladesh, an episode of cholera conferred 65% pro-
tection (95% CI, 37%–81%) against subsequent hospitalization 
relative to age-matched controls. Infection with serotype Ogawa 
conferred homologous protection, while infection with serotype 
Inaba was associated with protection against both serotypes [12].

In individuals with no prior exposure, innate immunity pro-
vides a first line of defense against V. cholerae. Bacteria must 
survive passage through the acidic environment of the stomach, 
and then organisms must penetrate the mucus layer of the small 
intestine to reach the crypts [13]. These steps provide innate re-
sistance to infection, and account for the high inoculum (ap-
proximately 108–11) of bacteria required to cause infection [14]. 
However, once through this bottleneck, V. cholerae colonizes the 
crypt epithelium, multiplies, aggregates, and produces cholera 
toxin. In response, mucosal host defense proteins and oxidases 
are expressed at the epithelial surface, and cytokine-signaling 
pathways recruit immune cells to the lamina propria, including 
lymphocytes and neutrophils [15, 16]. These responses are likely 
central in shaping the adaptive immune response [17], and may 
be involved in clearing infection, but they are not sufficient to 
prevent disease. Almost all immunologically naive individuals 
who ingest enough bacteria will acquire disease. Similarly, as 
little as 5 µg of toxin delivered to the intestinal mucosa repro-
duces the symptoms of cholera [18]. These findings underscore 
the requirement for adaptive immunity in protection against 
cholera.

Antibody-Mediated Immunity to Cholera

Antibodies have been a major focus of past research on adaptive 
immunity to cholera, and measures of circulating antibodies are 
the basis of most established CoPs [4]. Understanding the anti-
genic repertoire of infection is important in the identification of 
optimal CoPs. Interestingly, despite the thousands of proteins, 
sugars, and lipids made by V. cholerae, just a few antigens dom-
inate the human B-cell response to cholera. In fact, when we 
evaluated a panel of antibodies produced by clonally expanded 
plasmablasts at the single cell/single antibody level, over 75% of 
these antibodies targeted 1 of 2 antigens: either cholera toxin or 
the O1-polysaccharide [19].

Although the focused repertoire of dominant antigens is an 
advantage in our understanding of immunity against cholera, 
the physical site of V. cholerae infection presents a formidable 
obstacle. Because V. cholerae is noninvasive, the secretion of 
antibodies into the intestinal lumen is a functional require-
ment for protection. While measures of circulating antibody 
responses are the basis of most established CoPs, mucosal an-
tibody responses at the small intestinal surface are not easily 
measured and are not practical surrogate markers in clinical 
studies [20].

Cholera Toxin Responses

Although antitoxin responses dominate the B-cell response to 
cholera, and antibodies are capable of neutralizing cholera toxin, 
these responses do not result in long-term protection against 
subsequent disease. Enteral immunization with cholera toxoid 
results in short-term decreases in diarrheal volume following 
challenge, but not significant protection [21]. Similarly, adding 
recombinant cholera toxin B-cell subunit (the receptor binding 
domain of the toxin) to killed whole-cell vaccines affords only 
a slight increase in protection, which lasts a few months after 
vaccination [22]. This may be because once V. cholerae colon-
izes the surface of the small intestine and begins to produce 
cholera toxin it is too late to mobilize neutralizing antibodies 
to the site of infection. Not surprisingly, serum levels of cholera 
toxin-specific immunoglobulin G (IgG) antibodies are a poor 
CoP for cholera [23–25]. Although high levels of serum cholera 
toxin IgA levels are a marker of protection in household con-
tacts of individuals with cholera, these antibodies are very short 
lived after infection [24]. Similarly, the presence of circulating 
cholera toxin-specific memory B cells is not associated with 
protection after infection or vaccination. These finding are con-
sistent with the observation of short-lived cholera toxin-derived 
protective immunity.

O1 Polysaccharide and Functional CoPs

In contrast, antibodies directed against the V. cholerae 
O1-polysaccharide do appear to play a role in protection against 
subsequent cholera. This is underscored by an important ob-
servation: while many serogroups of V. cholerae exist in the 

Table 1.  Terminology to Describe Correlates of Protection (CoPs) [2, 3]

Term Definition 

CoP Immune response to vaccination or infection that 
is statistically related to protection against 
infection

Absolute CoP Specific threshold level of a response at which 
there is a universal association with protection

Mechanistic CoP A CoP that is causally responsible for protection

Nonmechanistic CoP A CoP that is not causally responsible for protec-
tion
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environment, cholera is almost exclusively caused by a lineage 
of V. cholerae O1. However, when V. cholerae O139 emerged as 
a major cause of cholera from 1993 to 2002, through a single 
horizontal transfer of the rfb locus, previous infection with V. 
cholerae O1 did not confer protection against O139 [26], sug-
gesting immunity is serogroup specific (although a caveat is 
that the capsule produced by the O139 strain could also ob-
scure other cell surface targets). But while protective antibody 
responses likely target the O-polysaccharide, how they do this 
remains a key question for identifying optimal CoPs for cholera.

One problem is that not all measures of O1-antibodies ap-
pear to be equal CoPs for cholera. For example, increasing 
amounts of circulating IgA, IgM, and IgG antibodies that target 
the O1-polysaccharide are all highly correlated and associated 
with protection in household contacts of patients with cholera 
in Bangladesh [27]. However, the serum vibriocidal antibody 
titer, a measure of functional O1 antibodies, is a more robust 
biomarker of recent infection and a more robust CoP than the 
titer of circulating IgA, IgM, and IgG antibodies against the O1 
antigen [27, 28].

This is likely because function of an antibody is not only de-
termined by its antigen-binding domain, but also by structural 
interactions with the host innate immune system. These inter-
actions are determined by the “tail” or Fc-region of the anti-
body. Fc-based interactions are determined by the anitbody 
isotype, subclass, and further determined by posttranslational 
modifications such as glycosylation [29]. Not surprisingly 
then, the serum vibriocidal antibody titer, which measures the 
concentration of antibodies that are capable of complement-
dependent bactericidal activity and is mostly comprised of 
O1-antigen–binding IgM antibodies, is a more robust CoP than 
serum or fecal IgA, IgG, and IgM antibodies against V. cholerae 
[23, 24]. To restate this, while vibriocidal antibodies can be al-
most entirely depleted by removing antibodies that target the 
O1 polysaccharide [30, 31], the vibriocidal titer remains a more 
robust measure of protection than measures of total anti-O1 
polysaccharide antibodies, likely because this measure also ac-
counts for other determinants of antibody function.

THE LIMITATIONS OF VIBRIOCIDAL ANTIBODY 
TITERS AND IDENTIFYING BETTER COPS FOR 
CHOLERA

As a result of its consistent association with protection, the 
vibriocidal antibody remains the most accepted CoP for cholera 
[23, 24, 32, 33]. Vibriocidal antibody responses have been util-
ized repeatedly as a primary end point in clinical bridging 
studies, which have had important regulatory implications [34–
39]. But for good reason, major agencies like the Food and Drug 
Administration continues to require clinical trials measuring 
vaccine efficacy for new cholera vaccine formulations. And 
while vibriocidal antibody titers remain the best-established 
CoP for cholera, the lack of a mechanistic connection between 

the vibriocidal titer and protection is notable. There is no 
threshold vibriocidal titer at which 100% protection against 
cholera is observed [40], and complement-dependent bacteri-
cidal activity is unlikely to be a mechanism of protection against 
V. cholerae given the lack of evidence of the activation of the 
terminal components of the complement cascade at the small 
intestinal surface.

One possible approach to identify better CoPs for cholera is 
to consider the mechanisms by which antibodies could block 
colonization. For example, anti-O1 polysaccharide antibodies 
can agglutinate V. cholerae and dramatically inhibit motility 
even at subagglutinating concentrations, resulting in protection 
against cholera in animal models [41–43] V. cholerae also in-
duces neutrophil efflux into the lumen and organisms can be 
cleared by NETosis in animal models [44]. It is also conceivable 
that antibodies may trap motile V. cholerae by anchoring them 
in the intestinal mucous [13].

Another, less-targeted approach to identifying better CoPs 
for cholera is to evaluate as many functional and nonfunctional 
antibody measures as possible to ask, when all possible markers 
of immunity are considered which ones are the most robust 
CoPs? This systems-serology approach [45] allows for an evalu-
ation of antibody responses to a large number of antigens simul-
taneously and enables a holistic examination of the biophysical 
properties of antigen-specific antibodies such as glycan profiles, 
FcR-binding, antibody avidity, and resulting antigen-specific ef-
fector antibody functions [45]. An advantage of this approach is 
that it is less biased by mechanistic assumptions than a targeted 
evaluation.

A systems serology approach is also advantageous in assessing 
the relative contributions of multiple CoPs (or cocorrelates). 
Employing a principal component analysis or other machine 
learning methods can identify markers or combination of 
markers are best at distinguishing between protected and sus-
ceptible individuals. This in turn could lead to the identification 
of new CoPs that provide unexpected mechanistic insights into 
how antibodies might protect against cholera [45–47]. When 
using this approach to identify better CoPs against cholera, 
our initial findings underscore the value of this method. While 
many markers are in fact associated with protection, more work 
is needed to determine which CoPs stand out above the crowd 
in differentiating susceptible from protected individuals.

EARLY COPS AND LATE COPS

The ideal CoP would perfectly distinguish protected from sus-
ceptible individuals at all time points after infection or vaccina-
tion. However, without a direct window to the small intestine, 
we are unlikely to find a perfect CoP for cholera. This is espe-
cially true when we are looking at serum antibody levels, and 
even if we could easily measure mucosal antibody levels in the 
small intestine there is good reason to believe that these would 
also not be an ideal longer-term CoP.
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This is because there is evidence that immunity to cholera is 
maintained by the anamnestic immune responses of memory 
B cells. Memory B cells can rapidly differentiate into antibody-
secreting cells upon exposure and are important in maintaining 
long-term immunity, but these cells are more difficult to 
measure than circulating or fecal antibody titers. In fact, the 
presence of circulating V. cholerae O1-polysaccharide–specific 
memory B cells is associated with protection against cholera 
even in individuals who have low antibody titers [48, 49]. 
Notably, in vaccinees who are challenged with live V. cholerae, 
vibriocidal antibody responses at day 10 after vaccination per-
form very well as a CoP at both day 10 and day 90 challenge, 
but vibriocidal antibody levels at day 90 are a poor CoP at day 
90 compared to the presence of detectable O1-polysaccharide 
memory B cells at that late time point [49]. In addition, early 
(day 10) vibriocidal antibody responses were strongly predic-
tive of a subsequent memory B-cell responses in this cohort 
[49]. This shows that with CoPs, the time at which the immune 
response is measured relative to the time at which protection is 
realized is a key consideration, although early CoPs are more 
practical proxy measures of vaccine efficacy in clinical trials 
than late measures.

CONCLUSIONS

The vibriocidal antibody remains the current best accepted CoP 
for cholera. However, it not an absolute CoP, and it is unlikely 
there is a mechanistic association between the vibriocidal an-
tibody response and protective immunity. Instead, it appears 
that an early vibriocidal antibody response against cholera 
is strongly predictive of the ability to generate a functional 
O1-antibody response that is maintained over a longer period 
of time, perhaps in the memory B-cell compartment. While a 
better mechanistic understanding of protection against cholera 
may lead to better CoPs, a systems-serology approach to iden-
tify the best CoPs may also lead to a better mechanistic un-
derstanding of immunity to cholera. Regardless of how we get 
there, the identification of better CoPs for cholera will help us to 
use existing cholera vaccines more effectively and advance the 
next generation of cholera vaccines.
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