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Prior computational and imaging studies described changes in flow patterns for patients

with Marfan syndrome, but studies are lacking for related populations. This pilot study

addresses this void by characterizing wall shear stress (WSS) indices for patients with

Loeys-Dietz and undifferentiated connective tissue diseases. Using aortic valve-based

velocity profiles from magnetic resonance imaging as input to patient-specific fluid

structure interaction (FSI) models, we determined local flow patterns throughout the

aorta for four patients with various connective tissue diseases (Loeys-Dietz with the

native aorta, connective tissue disease of unclear etiology with native aorta in female

and male patients, and an untreated patient with Marfan syndrome, as well as twin

patients with Marfan syndrome who underwent valve-sparing root replacement). FSI

simulations used physiological boundary conditions and material properties to replicate

available measurements. Time-averaged WSS (TAWSS) and oscillatory shear index

(OSI) results are presented with localized comparison to age- and gender-matched

control participants. Ascending aortic dimensions were greater in almost all patients with

connective tissue diseases relative to their respective control. Differences in TAWSS and

OSI were driven by local morphological differences and cardiac output. For example, the

model for one twin had a more pronounced proximal descending aorta in the vicinity of

the ductus ligamentum that impacted WSS indices relative to the other. We are optimistic

that the results of this study can serve as a foundation for larger future studies on the

connective tissue disorders presented in this article.
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INTRODUCTION

Blood flow patterns in the aortic arch and descending thoracic
aorta (dAo) are unique when compared with other portions
of the arterial vasculature. For example, helical flow is present
within the aortic arch under normal conditions and is thought
to influence flow patterns at the origins of the carotid and
subclavian arteries (1). Characterizing any deviations from these
normal flow patterns may be important for optimal operative
interventions involving the thoracic aorta with the goal of
decreasing the likelihood of later, long-term aortic pathology. For
instance, transient periods of turbulence during systole (due to
modest differences in local vessel geometry from thoracic aortic
diseases or surgery) could cause downstream flow disturbances.
Such disturbances have been associated with local dilation (2, 3)
and can subsequently impact indices of wall shear stress (WSS;
defined as the tangential force per unit area exerted on a vessel
wall as a result of flowing blood). AbnormalWSS has been related
to pathology in the thoracic aorta. In a study of 10 middle-
aged adults with preexisting plaques, areas of low time-averaged
WSS (TAWSS) were found in a rotating pattern progressing
down the dAo and correlated with areas of atherosclerosis (4).
Excessively highWSS can also be deleterious by initiating platelet
aggregation (5).

Marfan syndrome is one type of connective tissue disorder
that impacts several tissues/organs, including the cardiovascular
system, where it can lead to thoracic aortic aneurysms (6).
Prior research indicates that thoracic aortic aneurysms are the
leading cause of death for patients with Marfan syndrome (7).
Despite the uniqueness and importance of flow patterns in
the thoracic aorta, there are few studies characterizing local
blood flow patterns for connective tissue diseases beyondMarfan
syndrome (8). To date, most computational studies of patients
with Marfan syndrome have employed rigid computational
fluid dynamics (CFD) models, which have the potential to
reveal detailed spatiotemporal quantification of hemodynamic
indices, including WSS, based on magnetic resonance imaging
(MRI) and blood pressure (BP) data (9–19). A recent report
quantified several indices by CFD, including WSS, for patients
with Marfan syndrome before and after surgery to implement
personalized external aortic root support (20). Some local
differences were noted after surgery, but values were largely
similar. This investigation builds from this prior work by
conducting fluid structure interaction (FSI) modeling that
includes local wall deformation of the aorta for patients with
Loeys-Dietz, connective tissue disease of unclear etiology, and
native (i.e., untreated) Marfan syndrome, as well as fraternal
(i.e., dichorionic) twin patients with Marfan syndrome who
underwent valve sparing root repair. All results are interpreted
relative to those from age- and gender-matched control patients.
The approaches employed for this study assigned local tissue
properties as well as physiological inflow profiles and outlet
boundary conditions to replicate clinical measurements. With
these advancements, we aim to more accurately replicate the
physiological conditions for patients with these connective tissue
anomalies, and therefore help to further reveal differences in
WSS and related indices vs. control participants. Thus, this pilot

investigation may aid future long-term studies of morbidity
related to aortic vascular disease.

METHODS

Magnetic Resonance Imaging
Following Children’s Wisconsin Institutional Review Board
approval, MRI was performed for patients with connective
tissue anomalies. MRI data from control participants with ages,
genders, and Reynolds numbers aiming to closely match these
patients were also obtained. Prior to protocol enrollment, verbal
and written information was provided, and informed consent
was obtained from participants. Details of the patients and
control participants are shown in Table 1 (10 men and two
women aged 18–55 years). Patients had various connective
tissue diseases (Loeys-Dietz with native aorta; connective tissue
disease of unclear etiology with native aorta in female and male
patients; and an untreated patient with Marfan syndrome). All
imaging was conducted as part of clinically ordered sessions or
ongoing research.

Gadolinium-enhanced (0.4 ml/kg; gadodiamide,
Omniscan R©, GE Healthcare, Waukesha, WI, USA) MR
angiography (MRA) was performed with a breath-held 3D
fast gradient echo sequence using a 1.5T Symphony R© scanner
(Siemens Healthcare, Erlangen, Germany). Slice thickness was
2.0mm, with 56–60 sagittal slices per volume. A 384 × 192
acquisition matrix (reconstructed to 384 × 256) was used with a
field of view (FoV) of 25 × 42 cm2 (spatial resolution of 0.65 ×

1.64mm). Other parameters included a repetition time (TR) of
4.3ms, echo time (TE) of 1.4ms, and a flip angle of 25◦.

Time-resolved, velocity-encoded two-dimensional anatomic
and through-plane phase-contrast MRI (PC-MRI) was
performed orthogonally in the ascending aorta (AscAo)
near the main pulmonary artery, in the dAo at the level of the
diaphragm, and orthogonal to the arch origins of the head and
neck vessels. An additional PC-MRI scan was obtained through
the aortic valve for all patients, and when possible for control
participants. The data were used to create spatiotemporally
varying computational model inlets delineated by the patient’s
aortic valve as previously described in detail (21, 22) and briefly
summarized in the boundary conditions section below. Heart
rates ranged from 82 to 92 bpm (with R-R ranging from 652
to 732ms); 25 images were reconstructed for the average R-R
interval. Imaging parameters included TR, TE, and flip angle
of 46ms, 3.8ms, and 30◦, respectively. The FoV was 30 ×

22.5 cm2 with an acquisition matrix of 256 × 192 and a slice
thickness of 7mm, resulting in a voxel size of 1.17mm ×

1.17mm × 7mm. Subjects breathed freely during PC-MRI
acquisition, and data were retrospectively gated to the cardiac
cycle. After scanning, supine, bilateral upper and lower extremity
BP assessment was performed using a Dinamap BP system
(GE Healthcare, Waukesha, WI, USA). Cardiac indexes, aortic
dimensions, and mean Reynolds numbers are provided in
Table 1. Dimensions are taken from the computational models
created using MRA data according to the details below, which
we understand to generally be a diastolic representation of
vessel morphology.
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TABLE 1 | Hemodynamic indices, diagnosis, and aortic dimensions.

Connective

tissue

disorder

Age Gender Diagnosis Operation Cardiac

index

(L/min/m2)

AscAo

diameter

(mm)

dAo

diameter

(mm)

AscAo/dAo

diameter

ratio

Difference in

AscAo/dAo

diameter vs.

control (%)

Reynolds

number

(dimension-

less)

Loeys Dietz 55 M Genetic-TGFBR 2

mutation

n/a 3.0 35.0 21.4 1.63 29.3 923

Control 57 M - - 2.5 32.2 25.5 1.26 - 910

Unknown

etiology-male

38 M Phenotypic diagnosis;

Genetic-negative for

FBN-1, TGFBR1,

TGFBR 2

n/a 3.1 28.9 19.0 1.52 17.4 1,380

Control 32 M - - 4.5 26.9 20.7 1.30 - 1,520

Unknown

etiology-

female

24 F Genetic-negative for

FBN1, FBN1 del,

TGFBR1, TGFBR2,

MYLK, MYH11, ACTA

2

n/a 3.2 32.9 18.1 1.82 20.7 1,130

Control 23 F - - 2.0 22.0 14.6 1.51 - 823

Marfan

syndrome–

twin

A

22 M Genetic-FBN1 exon 30

mutation

Valve

sparing

root

replacement

2.9 28.0 17.9 1.56 24.0 1,190

Control 26 M - - 2.5 26.3 20.9 1.26 - 1,190

Marfan

syndrome–

twin

B

22 M Genetic-FBN1 exon 30

mutation

Valve

sparing

root

replacement

3.3 26.8 16.2 1.65 13.5 1,350

Control 24 M - - 3.5 28.8 19.8 1.46 - 1,550

Marfan

syndrome-

native

18 M Phenotypic diagnosis n/a 6.0 22.8 16.2 1.41 10.6 2,710

Control 18 M - - 3.2 25.1 19.7 1.28 - 1,520

Reynolds number calculations assume a blood density of 1.06 g/cm3 and dynamic viscosity of 4 cP.

Computational Model Construction
Computational versions of the aorta and arteries of the head and
neck were created from MRA imaging data using Simvascular
(Simtk.org) software as discussed previously (15). Models were
discretized using a commercially available, automatic mesh
generation program (MeshSim, Simmetrix, Clifton Park, NY,
USA). Meshes contained ∼4 million tetrahedral elements,
and localized refinement was performed until results were
independent of the mesh as discussed elsewhere (12) using
an adaptive technique (23, 24) to deposit more elements near
the luminal surface and in anatomical regions prone to flow
disruption (14).

Inlet Boundary Conditions
PC-MRI data were used to calculate time-resolved volumetric
blood flow as previously described (16, 25). A time-varying plug
flow inlet based on the measured AscAo flow was created, but
with a restricted cross section determined from time-varying
PC-MRI magnitude data at the level of the valve (21). A
normal trileaflet valve was assumed for control participants

and confirmed using the imaging data mentioned above,
when possible.

Outlet Boundary Conditions and Wall
Deformation
Flow from the innominate, left common carotid artery, left
subclavian artery, and dAo were used together with BP data to
prescribe physiological outflow boundary conditions using three-
element Windkessel approximations (26). The three-element
Windkessel accounts for vessels distal to computational model
branches using three parameters with physiological meaning,
namely, characteristic resistance (Rc), capacitance (C), and distal
resistance (Rd). The total arterial capacitance (TAC) for each
patient was determined from inflow and BP data, assuming a
characteristic to total resistance ratio of 6% (27). The TAC was
then distributed among outlets according to their blood flow
distributions (28). The terminal resistance (Rt = Rc + Rd) was
then calculated from mean BP and PC-MRI flow measurements
and distributed between the remaining resistance parameters
by adjusting Rc to Rt ratios (6–10%) for each outlet using the
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pulse pressure method, (29, 30) thereby replicating measured
BP. An augmented-Lagrangian formulation (31) for constraining
velocity profiles at model outlets was used to mitigate instabilities
often occurring during flow deceleration and diastole. Vessel
deformability (32) was included in FSI simulations as discussed
elsewhere (15). Briefly, a wall thickness of 0.15 cm (33) was
implemented from literature for all models and the Young’s
modulus was then adjusted iteratively until the AscAo mean
luminal displacement was within 5% of the values obtained from
PC-MRI magnitude measurements.

Computational Simulations
Simulations were performed using a novel stabilized finite
element method to solve the conservation of mass (continuity),
balance of fluid momentum (Navier-Stokes), and vessel wall
elastodynamics equations (32). Simulations were run for 4–
6 cardiac cycles until the flow rate and BP fields yielded
periodic solutions.

Blood flow velocity, BP, and wall displacement were visualized
using ParaView (Kitware, Clifton Park, NY, USA). TAWSS (34)
and the oscillatory shear index (OSI) (25) was then calculated
as previously described. Low TAWSS is generally thought to
promote atherogenesis, as is elevated OSI, an index of directional
changes in WSS. Low OSI indicates WSS is unidirectional, while
a value of 0.5 is indicative of bidirectional WSS with a time-
average value of zero. These indices were quantified in several
ways. Values for TAWSS and OSI were extracted longitudinally
along the inner and outer curvatures of the thoracic aorta, as well
as along its anatomic right, and left sides as described previously
(14, 35). This was done because prior imaging studies found
that local values for these indices were statistically different from
circumferential averages (36), thereby motivating the need to
report detailed local WSS maps in computational studies. To
visualize these indices locally, the surface of each vessel was
unwrapped and mapped into a θ , l rectangular domain, where
θ and l are the circumferential and longitudinal coordinates of
each point on the vessel wall (37). Data presented represent an
average of nearest-neighbor values in 2% increments along the
length of the aorta. This distance was made consistent between
patients and control participants using dimensional information
from imaging data, and then normalized from 0 to 1. TAWSS
values from 0 to 50 dyn/cm2 are particularly interesting from the
perspective of the vascular response to hemodynamics and are
also highlighted in histograms (2 dyn/cm2 bins) for values within
this range. Histograms are also provided for the full range of OSI,
0–0.5 (0.2 unit bins) (22, 38).

RESULTS

Fluid structure interaction simulations for all patients, and their
respective controls, yielded the TAWSS and OSI results shown
in Figures 1, 3, respectively. The size of the models shown
is relative to each other using the descending aortic outlet
dimension as reference. A summary of dimensions following
model construction is also provided inTable 1. In nearly all cases,
the AscAo dimension was greater in patients than the respective
control participant. Conversely, with the exception of the female

patient having connective tissue disease of unknown etiology, the
dAo dimension was of smaller caliber compared to the age- and
gender-matched control participant. The ratio of AscAo to dAo
for patients was consequently 10.6–29.3% larger than AscAo:dAo
ratio for control participants.

Patient With Loeys-Dietz Disease
The patient with Loeys-Dietz disease and corresponding control
had the lowest overall distributions of TAWSS due primarily
to the large AscAo dimensions in the setting of normal range
cardiac output values (e.g., Loeys-Dietz = 3.0 L/min/m2; control
= 2.5 L/min/m2). The histogram of TAWSS values shown in
Figure 2 reveals the similarity in distributions between the Loeys-
Dietz and control models. The smaller caliber of the dAo relative
to the AscAo in the patient with Loeys-Dietz disease relative
to its control (mentioned above) also results in slightly higher
distributions of TAWSS along the last half of the thoracic aorta
quantified (distances from∼0.5 to 1.0).

There were modest differences in OSI for the patient with
Loeys-Dietz disease relative to the control participant (Figure 3).
The histogram (Figure 4) shows similar amounts of elevated
OSI values >0.4 for both models. The histogram from the
patient with Loeys-Dietz disease showed that less of the luminal
surface was exposed to elevated OSI (0.2–0.4) shown to be
atherogenic in prior reports. The difference in OSI values within
this region corresponded to the transverse arch of the control
patient (Figure 3), which also seems to have slight out-of-plane
morphology in this region compared to the more traditional arch
of the patient with Loeys-Dietz disease. These differences can
also be seen in the longitudinal plots (e.g., right, outer, and left
surfaces at distances of∼0.4–0.6).

Patients With Connective Tissue Disease
of Unknown Etiology
The TAWSS histogram for the male patient with connective
tissue disease of unknown etiology reveals a greater portion
of the aorta and its branches were exposed to lower TAWSS,
particularly in the ascending aorta, relative to control (Figure 2).
This is clearly shown in longitudinal TAWSS plots along the outer
and left luminal surfaces. Vascular dimensions and morphology
were similar for both models, suggesting that these differences
may primarily be due to a higher cardiac index for the control
participant (e.g., 3.1 L/min/m2 for the patient with connective
tissue disease vs. 4.5 L/min/m2 vs. for the control).

The ascending aorta of the male patient with connective
tissue disease of unknown etiology was exposed to a greater
area of elevated OSI values in the range of ∼0.1–0.4 (Figure 3
and histogram of Figure 4), which occurred along nearly the
full length of the left luminal surface and lasted 50–70% of the
distance for the right and outer luminal surfaces (Figure 4).

The female patient with connective tissue disease of unknown
etiology experienced higher TAWSS along the transverse arch
and dAo (Figure 1). This is reflected in all longitudinal plots
(Figure 2). This finding appears to correspond to a larger
AscAo/dAo ratio for the patient compared to the control.

The larger caliber ascending aorta and its branches for
the female patient with connective tissue disease of unknown
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FIGURE 1 | Time-averaged wall shear stress (TAWSS) distributions for the six patients with the various connective tissue diseases studied (top row) and age- and

gender-matched control participants to which each was compared (bottom row). The size of the models displaying the TAWSS results shown is relative to each other

using the descending aortic outlet dimensions. Data in Figures 2, 4 are presented along the length of the aorta. This distance was made consistent between patients

and control participants using dimensional information from imaging data and then normalized from 0 to 1 as shown beside the model and TAWSS from the leftmost

control participant.

etiology resulted in a greater area of potentially deleterious OSI
values in this region (Figure 3) and more area exposed to the full
range of OSI compared to the corresponding control participant.
Elevated OSI values were most pronounced along the left luminal
surface (Figure 4).

Patients With Marfan Syndrome
TAWSS for the native (i.e., uncorrected) patient with Marfan
syndrome was extremely high relative to the corresponding
control participant primarily due to a cardiac index exceeding
normal conditions (6.0 L/min/m2 vs. 3.2 L/min/m2 for the
control). The distributions of OSI values were somewhat similar
for values > 0.2. By qualitative assessment, the AscAo of the
native patient with Marfan syndrome had a greater area exposed
to lower OSI (Figure 3), primarily along the inner and left
luminal surfaces (Figure 4). Of note, the native patient with
Marfan syndrome had the highest Reynolds number of all
patients or participants studied (Table 1), and the value suggests
flow was not laminar in the aorta of this patient, likely leading to
spatial differences in OSI within the AscAo.

The twin patients with Marfan syndrome, who previously
underwent aortic root replacement, had similar TAWSS
distributions. The computational model labeled as Twin B for
this study had a more dilated proximal descending aorta in the
vicinity of the ductus ligamentum, which impacted indices of
WSS. Differences between the computational models of each
twin and their respective control model were mainly a function
of cardiac index. TAWSS was generally lower in the dAo of

both twins after surgery compared to their respective controls
(Figure 1). This was most pronounced along the left luminal
surface of the AscAo (Figure 2).

Distributions (Figure 3) and histograms (Figure 4) of OSI
values for the twin patients with Marfan syndrome, who
previously underwent aortic root replacement, were also
similar with morphological differences in the vicinity of the
ductus ligamentum mostly impacting the luminal surface at a
normalized distance of ∼0.4–0.6. This area was not replaced in
either subject and reflects their native aortic properties.

DISCUSSION

Blood flow patterns in the aortic arch and dAo are unique
compared with other portions of the arterial vasculature. This is
evident when considering the Reynolds number, a dimensionless
index used to characterize fluid flow (2). Specifically, Reynolds
number describes the ratio of convective inertial forces to viscous
forces. In general, Reynolds number values <2,200 constitute
laminar flow where adjacent layers of fluid move in layers
without mixing, while those >2,200 may be characterized as
transitional or turbulent depending on specific details of the
local flow domain. Under normal conditions, the thoracic aorta
experiences Reynolds numbers on the order of 1,500 (mean)
as a result of its large caliber and high blood flow rates. These
Reynolds number values indicate blood flow is generally laminar
throughout the cardiac cycle, but there are undoubtedly portions
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FIGURE 2 | Local quantification of TAWSS results. The top row shows histograms (2 dyn/cm2 bins) of the area (cm2) from each model surface exposed to TAWSS

values from 0 to 50 dyn/cm2 (connective tissue disease = solid bars; age- and gender-matched controls = hollow bars). Longitudinal TAWSS distributions along the

outer, anatomic right, anatomic left, and inner curvatures of the aorta are also shown in subsequent rows for the patients with various connective tissue disease

(dashed lines) vs. their associated age- and gender-matched controls (solid lines). Low TAWSS is generally thought to promote atherogenesis, so skewing of

histogram results toward lower values could be interpreted as less ideal, as could overall lower values of TAWSS along the aortic surfaces.

of the cardiac cycle during which blood flow transiently becomes
transitional and/or turbulent. Characterizing any deviations from
these normal flow patterns may be important for optimal
operative interventions for the thoracic aorta with the aim being
to decrease the likelihood of later, long-term aortic pathology. For
example, transient periods of turbulence during systole (due to
modest differences in local vessel geometry from thoracic aortic
diseases or surgery) could cause downstream disturbances.

This investigation builds upon prior work by conducting
FSI, in contrast to rigid CFD, with modeling that includes
local wall deformation of the aorta for patients with Loeys-
Dietz, connective tissue disease of unclear etiology, and native
(i.e., untreated) Marfan syndrome, as well as twin patients
with Marfan syndrome who underwent valve sparing aortic
root repair. We matched changes in dimension by PC-MRI
measurements by assigning local tissue properties and iterating
Young’s modulus until the deformationmatched that observed in
vivo. Physiological inflow profiles are uniquely implemented by
imposing a restricted cross-sectional flow determined from time-
varying PC-MRI magnitude data at the level of the valve (21)

and outlet boundary conditions for PC-MRI data are added to
reflect clinical measurements (14, 15). Our goal with these model
improvements was to more accurately replicate the physiological
conditions for patients with these connective tissue anomalies,
and therefore reveal differences in WSS and OSI vs. age- and
gender-matched control participants in a pilot study.

In nearly all cases, the AscAo dimension was greater
in patients with connective tissues diseases relative to their
respective control. With the exception of the female patient
with connective tissue disease of unknown etiology, the dAo
dimension was of smaller caliber when compared to the
corresponding control. Differences in TAWSS and OSI were
driven by these local morphological differences and cardiac
output. Unfortunately, it is difficult to speculate on the cause
of smaller dAo dimensions in most patients relative to controls
given the small sample size and heterogeneity. This finding
should be validated in larger studies with groups of patients
having similar genetic anomalies.

A unique presentation of the results of this study centers
on the twin patients with Marfan syndrome who previously
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FIGURE 3 | Distributions of oscillatory shear index (OSI) for the six patients with the various connective tissue diseases studied (top row) and age- and

gender-matched control participants to which each was compared (bottom row). The size of the models displaying the OSI results shown is relative to each other

using the descending aortic outlet dimensions.

underwent aortic root replacement. The computational model
labeled as Twin B for this study had a more pronounced
proximal descending aorta in the vicinity of the ductus
ligamentum that impacted indices of WSS relative to Twin
A. As with the other patients studied here, differences
between the computational results of each twin and their
respective control were mainly a function of cardiac index.
Nonetheless, TAWSS was generally lower in the AscAo of
both twins after surgery compared to their respective controls
(Figure 1). Interpretation of these findings prompted review
of literature that may be applicable. With twin gestation,
there is a higher incidence of congenital heart disease. For
monozygotic twins (65% with one chorion), the incidence
of congenital heart malformations may be six times that for
a singleton. For monozygotic twins, twin-twin transfusion
syndrome may play a role in the development of CHD (39).
The twins in our cohort were fraternal twins (i.e., dichorionic)
inheriting the gene mutation for Marfan syndrome. Marfan
syndrome is almost exclusively inherited in an autosomal-
dominant manner, although rare case reports have described
recessive fibrillin 1 gene (FBN1) mutations (40). For these
dichorionic twins, twin-twin transfusion does not explain the
CHD, but rather genetic inheritance explains their clinical
course. In other dichorionic twins with congenital heart
diseases such a coarctation of the aorta, altered fetal-placental
hemodynamics sometimes resulting from fetal growth restriction

can contribute to the development of their congenital heart
disease (41).

The results of this study build from and extend existing
simulation results for these patient populations. For example,
previous work has independently quantified stress and strain
fields (42) for three patients with Marfan syndrome before and
after surgery to implement personalized external aortic root
support, as well as aortic flow patterns and resulting distributions
of WSS using imposed flow and pressure waveforms allowing
for qualitative comparison of velocity patterns to PC-MRI (20).
Although the fluid flow version of the study used rigid wall
CFD, the results are generally consistent with this study in
that models created from data before personalized external
aortic root support had larger AscAo diameters, leading to
more flow disturbances (20). More recent work reported the
ratio of circumferential to longitudinal WSS in idealized models
informed by the data of patient with Marfan syndrome with
stable or dilating aneurysms (43). To the best of our knowledge,
there is a paucity of studies characterizing altered blood flow
patterns for patients with connective tissue anomalies beyond
Marfan syndrome. Despite the scarcity of such studies, there is
a 2015 report that quantified aortic dimensions and indices of
aortic stiffness in patients with connective tissue disorders using
MRI (8). While the finding of elevated stiffness in patients with
connective tissue disorders from this study suggests that rigid
CFD models may be appropriate for this patient population,
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FIGURE 4 | Local quantification of oscillatory shear index (OSI) results. The top row shows histograms (0.2 unit bins) of the area (cm2 ) from each model surface

exposed to OSI values from 0 to 0.5 (connective tissue disease = solid bars; age- and gender-matched controls = hollow bars). Longitudinal OSI distributions along

the outer, anatomic right, anatomic left, and inner curvatures of the aorta are also shown in subsequent rows for the patients with various connective tissue disease

(dashed lines) vs. their associated age- and gender-matched controls (solid lines). Higher OSI values are generally thought to promote atherogenesis, so skewing of

histogram results toward higher values could be interpreted as less ideal, as could overall higher values of OSI along the outer, anatomic right, anatomic left, and inner

curvatures of the aorta.

it also points to the importance of accurately replicating
deformation in patients with connective tissue disorders, who
may not yet have experienced an increase in stiffness and
associated adverse changes in WSS indices.

The results of this study should be considered relative
to several potential limitations. Our investigation studied
alterations in WSS indices locally in the proximal thoracic aorta
and its branches given the hallmark capacitive function for this
region of the arterial vasculature. There is evidence, however,
that connective tissue disorders such as Marfan syndrome may
also impact central aortic flow dynamics by virtue of altered
distal resistance vessels (44). Although our outlet boundary
conditions do account for downstream vascular resistance, the
impact of changes in resistance vessel due to each connective
tissue disease was not explicitly included in the outflow boundary
conditions imposed for this study. To date, it is not known
which specific, or combination of, WSS indices are directly
linked to vascular pathologies for patients with connective tissue

diseases. The influence of each index likely also depends on
the patient population and its predominant pathology (e.g.,
stiffening, neointimal hyperplasia, and aneurysm rupture) (4, 45,
46). The small sample size for each connective tissue disease does
undoubtedly present a limitation to extrapolating the results to
the full population of patients with Loeys-Dietz, patients with
connective tissue disease of unclear etiology, and those with
Marfan syndrome (native and status post valve sparing root
replacement). The cardiac index for the native (i.e., uncorrected)
patient with Marfan syndrome was higher than expected based
on elevated heart rate and hyperdynamic left ventricular ejection
fraction. It is also possible that this patient had some anxiety
during the MRI session. The goal of this study was to remain
patient specific in terms of boundary conditions. However, when
considering the results of this study, it may be interesting to
conduct an idealized parameter-based study to quantify the
impact of morphology and cardiac output independently. Such
work is planned for the future. The Lagrangian multiplier
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approach implemented for constraining outlet velocity profiles
can be replaced in future work by a backflow stabilization
treatment that is thought to be less intrusive to the flow field,
computationally inexpensive, and has been implemented in
Simvascular (47). While this study did impose a plug velocity
profile at model inlets, it was restricted by the time-varying
cross section determined from PC-MRI using novel methods
previously developed in our lab (21). Upon implementation of
these methods, we quantified the impact of valve morphology
on aortic hemodynamics and identified regions most influenced
by the inlet, including the ascending aorta that has previously
been a site of dilation for patients with Marfan syndrome as a
result of local flow patterns. Besides this approach, computational
studies of the thoracic aorta to date have typically introduced
blood flow in one of two ways. In one approach, PC-MRI is used
to temporally sample the velocity profile downstream of the valve
and input this measured profile directly into the model. While
not directly including the valve, its impact can be manifested
in the data that is obtained, but this requires appropriate
through- and in-plane velocity encoding to adequately resolve
flow features being input into the CFD model. This approach
may be difficult to implement within the constraints of a clinical
setting as it can require specialized sequences not routinely
implemented and obtains data that are more detailed than
those commonly used in clinical diagnosis. One alternative
approach has been to construct CFD models with their inlet
beginning just distal to the aortic sinuses, impose the blood
flow waveform measured downstream as an assumed velocity
profile at the model inlet, and allow the curvature of the arch
to influence resulting flow patterns (14). While this technique
does not use the complete spatial velocity information, it does
not require specialized sequences, minimizes the introduction of
noise at the model inflow due to inadequate velocity encoding,
and allows for improved temporal resolution compared to 3-
component PC-MRI (48). The methods of Wendell et al. used
in this study (21) allow for more accurate representation of
the impact of the aortic valve on computational studies of
the thoracic aorta while still using data obtained as part of a
routine clinical imaging session. The patients with connective
tissue disorders of unknown etiology were suspected to have
hereditary (or genetic) aortopathy, but negative testing for known
genetic variants. The yield for current gene panels for thoracic
aortic disease is only ∼30%, even in patients with high clinical
suspicion. Hence, unfortunately, it is a common situation in
our clinic to have suspected genetic etiology but a negative
gene panel. This may be interpreted as not yet identifying the
applicable gene(s) in that individual/family. We often pursue
whole-exome sequencing in such patients, but even then the
results often do not identify a causative genetic variant. This is a
limitation that we are working to mitigate in the future as having
complete genetic data for future cohorts would greatly enhance
our understanding of the results presented for larger populations
of patients.

CONCLUSION

The methods employed represent some of the most advanced
vascular modeling tools available such as deformable walls,
dynamically varying valvular area at the inlet of the model,
physiological boundary conditions, and the use of age- and
gender-matched controls. Despite some potential limitations
outlined above in implementing these tools, the lack of
computational modeling data for those patients with connective
tissue diseases makes the current pilot data interesting and
relevant. We are optimistic that the results of this study can serve
as a foundation for larger future studies with the connective tissue
disorders presented here.
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