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Abstract: Lipid droplets (LDs) are highly conserved and dynamic intracellular organelles. Their
functions are not limited to serving as neutral lipid reservoirs; they also participate in non-energy
storage functions, such as cell lipid metabolism, protection from cell stresses, maintaining protein
homeostasis, and regulating nuclear function. During a Zika virus (ZIKV) infection, the viruses hijack
the LDs to provide energy and lipid sources for viral replication. The co-localization of ZIKV capsid
(C) protein with LDs supports its role as a virus replication platform and a key compartment for
promoting the generation of progeny virus particles. However, in view of the multiple functions of
LDs, their role in ZIKV infection needs further elucidation. Here, we review the basic mechanism of
LD biogenesis and biological functions and discuss how ZIKV infection utilizes these effects of LDs
to facilitate virus replication, along with the future application strategy of developing new antiviral
drugs based on the interaction of ZIKV with LDs.
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1. Introduction

Zika virus (ZIKV) is a mosquito (Aedes)-borne human pathogen that spreads via human
bodily fluids. The viral infection causes fever, rash, headache, joint and muscle pain, conjunc-
tivitis, severe eye lesions, newborn microcephaly, and Guillain–Barré syndrome [1–6]. The
virus has been transmitted and has spread rapidly in the Americas, especially in Brazil [7]; the
World Health Organization (WHO) declared it a global public health concern for public health
on 1 February 2016. The viral infection is also likely to spread to many uninfected countries
and regions due to the widespread distribution of the Aedes that transmits it, the frequent in-
ternational trade activities, and rising tourism [8]. In addition, no vaccines or specific antiviral
therapy have been approved to prevent or treat its infection. Nevertheless, researchers have
been actively developing effective prevention and control strategies in response to the severe
threat of ZIKV infection, which is a vital research goal.

ZIKV belongs to the genus Flavivirus and the family Flaviviridae [9], which also in-
cludes viruses such as the dengue virus (DENV) and West Nile virus (WNV). Its genome is
a single-stranded positive RNA with a length of about 11 kb, which encodes a single open
reading frame and translates into a multi-protein precursor. This polyprotein is usually
processed by the virus and host protease into three structural proteins, including the capsid
©, the pre-membrane (prM), and the envelope (E). The polyprotein is also processed into
seven non-structural (NS) proteins, namely, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and
NS5, which participates in viral replication, pathogenesis, and host antiviral reactions
(Figure 1) [6,10]. Lipidomics and transcriptomics analysis on the different ZIKV-infected
mosquito cells, small glial cells, primary retinal pigmented epithelial (RPE) cells, or serum
from patients indicate that the viral infection significantly regulates lipid metabolism, caus-
ing changes in a large number of lipids in cells. The changes in lipids include those to
glycerophospholipids, such as phosphatidylcholine (PC) and phosphatidylserine, sphin-
golipids, such as ceramide and sphingomyelin, plasmalogens, and lysophospholipids, such
as lysophosphatidylcholine [11–14]. These lipids may participate in the critical processes of
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ZIKV infection, such as genome replication and virion biogenesis. The envelope of ZIKV
has been reported from the membranes of the host cells, while the association of the virus
with the remodeling of lipid metabolism demonstrates that its successful infection depends
on the host lipid metabolism.
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Most of ZIKV’s structural and NS proteins possess transmembrane domains, allowing
them to have specific locations on cellular organelles [9,10,15,16]. Other ZIKV proteins with-
out transmembrane sequences, such as NS1, are also associated with the cell membrane [17],
indicating that viral proliferation during the infection is closely related to the membranes
of plasma and other cellular organelles to which the viral proteins bind. For example,
the endoplasmic reticulum (ER) plays an essential role in ZIKV infection by undergoing
substantial rearrangement after viral infection in cells such as C6/36 in mosquitoes, Vero,
human hepatic cells (Huh7), and human neural progenitor cells (hNPCs) in mammals. The
ER remodeling is related to virus infection because viral replication sites, assembly, and
budding occur in the vicinity of the ER region [18–20]. The NS3 protease also needs the
activation of the co-factor NS2B that anchors onto the ER membrane [21]. The NS2A protein
is located in the peroxisome; its transient expression changes the organelle’s morphology
and distribution, verifying the role of peroxisomes in ZIKV infection [16]. The analysis
of the serum from patients infected with ZIKV showed that the levels of several types of
phosphatidylethanolamine (PE) increased, and the synthesis of plasmalogens depended
on functional peroxisome, which further supports the role of the lipids during ZIKV infec-
tion [13]. In addition, lipids are stored in cells as lipid droplets (LDs), in which the majority
of the ZIKV C protein is found. This association is eliminated by substituting specific amino
acids in the C-protein [22]. Although the consequences of this association have not yet been
deciphered, it may be important for virion biogenesis, as described for hepatitis C virus
(HCV) and DENV infections [23,24].

2. Basics of Lipid Droplets

Cellular LDs are highly conservative and dynamic intracellular organelles that are
common in animals, plants, fungi, and bacteria [25,26] and fulfill a variety of functions,
including storing neutral lipids in cells.

2.1. LDs Composition

The mature LDs mainly consist of a hydrophobic core composed of neutral lipids and
a monolayer surface composed of phospholipids (Figure 2A). The hydrophobic core of LDs
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contains more than 100 different types of neutral lipids [27–30], which, in adipose and liver
cells, are mainly composed of triacylglycerol (TAG) and cholesterol or sterol ester (SE). The
phospholipid monolayer wrapping the hydrophobic core also has a unique composition of
fatty acids (FAs) [31]. For LDs in mammalian cells, PC is the main component, accounting for
approximately 60% of the phospholipid monolayer membrane. The changes in the ratios of
phospholipids in the membrane affect the synthesis, maturity, and degradation of LDs [32,33].

The surface of LDs has several integration and peripheral proteins, which are divided
into class I and class II proteins. Class II proteins are mainly from the PAT family, which
is composed of five proteins in humans, namely, perilipin (also known as perilipin 1 or
PLIN1), adipose-differentiation related protein (ADRP, also known as PLIN2), the 47 kDa
tail interaction protein (TIP47, also named PLIN3), PLIN4. and PLIN5 [34–37]. These LD
surface-bound proteins stabilize LDs and regulate the access of lipase and other enzymes
to the neutral lipids in LDs. They also accumulate and control the size and interaction of
LDs with other cellular organelles and the accessibility to lipolysis. In addition to PLINs,
other LD proteins include enzymes participating in TAG and phospholipid synthesis or
lipid transport.

LDs are mostly spherical and range from 50 to 200 µm in size. The specific LD size
depends mainly on the state and type of the cells [36,38,39]. The underlining mechanism of
LD regulation mainly involves cellular TAG contents or LDs fusion pathways. The latter
determines the size of the LDs in mammary epithelial cells (MECs), as shown through
live-cell imaging using a confocal fluorescence microscope. The degree of LDs fusion
depends on the composition of phospholipids in the cell membrane and is enhanced by
increased PE content, which also increases the size of LDs [40]. However, whether the
mechanism of LDs, as regulated by the fusion pathway, has broad adaptability in different
cell types requires further investigation on a more experimental basis.

2.2. Lipid Droplet Biogenesis

Several studies have been conducted in the past few decades to elucidate LD biogenesis
(Figure 2B) [41–44]. Traditionally, LDs were only present in the cytoplasm of eukaryotic cells
and were known as cytoplasm LDs (cLDs). It was believed that LDs originated from the ER,
where the enzymes for the generation of neutral lipids are located [25,45]. The generation
of these neutral lipids in the ER and their behavior in the membrane drive LD biogenesis.
The LD formation begins with the accumulation of neutral lipids, such as TAG and SE
molecules, which are synthesized by diacylglycerol acyltransferase 1 (DGAT1) in the ER
between two leaflets of its membrane [32,46]. Because the two layers of ER phospholipids
can only accommodate a small number of neutral lipids, once the concentration of neutral
lipids in the double layers exceeds the critical point, the formation of LDs will be triggered.
In fact, when the nascent LDs were formed in yeast, a lens of about 50 nm was observed
in the ER [47]. As the nascent LDs grow, they will emerge (or bud) from the ER and
separate [25], indicating that LDs seem to be formed spontaneously from the ER. This
spontaneous bud mechanism does not require energy-consuming machinery, curvature
induction reagents, or the intrinsic asymmetry of double layers [44]. Enzymes are necessary
to synthesize neutral lipids in the process of LDs’ spontaneous budding, while proteins
transform mature LDs, which process involves structural changes and the adjustment of
LD biogenesis [25,48]. These proteins include PLIN3, glycerol-3-phosphate acyltransferase
4 (GPAT4), DGAT1, DGAT2, seipin, and fat storage-inducing transmembrane protein 2
(FIT2) [25,41,42]. Seipins are located at the ER–LD contact site, which directly affects the
occurrence of LD biogenesis or is involved in regulating lipid metabolism [49–53]. The
function of FIT is not completely clear, but the overexpression of FIT2 increases the size and
number of LDs. The depletion of FIT2 causes the nascent LDs not to bud from ER but to still
be embedded in the ER membrane, indicating that FIT regulates the budding of LDs from
the ER. FITs may not directly mediate the budding but may affect the lipid homeostasis at
the sites of LD biogenesis [54,55]. Molecular dynamic studies have shown that the protein
recruited onto the ER membrane will be expelled precisely from the sites of LD formation,
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due to changes in the underlying membrane properties [48]. Lipids such as diacylglycerol
(DAG) and phosphatidic acid also contribute to the formation of LDs by promoting shape
changes in the same direction as the membrane curvature formation [25,56–58]. In the
case of viral infection, the occurring process of LD biogenesis is observed and reflected by
comparing their dynamics in virus-infected or uninfected cells. The data also demonstrate
that LDs may be formed by peripheral TAG accumulation on the ER membrane and that
HCV NS5A is responsible for interacting with those sites on the ER membrane that may
form LDs [59].
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Figure 2. Schematic representation of the LD structure and a model of the key steps in LD biogenesis.
(A) LD is composed of a core of neutral lipids, such as TAGs and SEs, surrounded by a phospholipid
monolayer. LD surface-bound proteins are classified into two groups. Class I LD proteins, such as
GPAT2, mostly contain a hydrophobic hairpin that is associated with the lipid monolayer; Class II
LD proteins, such as perilipins, are inserted into the LD from the cytosol via amphipathic helices or
other short hydrophobic domains. (B) Five essential steps are involved in LD formation, growth,
and expansion. Abbreviations: LD, lipid droplet; TAG, triacylglycerol; SE, sterol esters; FAs, fatty
acids; Acyl-CoA, acyl-coenzyme A; ER, endoplasmic reticulum; GPAT, glycerol-3-phosphate acyl-
transferase; AGPAT, acyl-glycerol-3-phosphate acyltransferase; PAP, phosphatidate phosphatase;
DGAT, diacylglycerol acyltransferase.

Extensive research on LD biogenesis, carried out over several years, showed the
important role ER plays in the growth of nascent and mature LDs. However, the hypothesis
that LDs can spontaneously form from a symmetric elongated lens of ER membrane remains
controversial [57], with some key questions, such as the location of the sites formed by LDs
in ER, not yet having been answered. Other evidence suggests that LD formation in yeast
and mammalian cells might occur at a unique ER site [60,61] with unknown characteristics,
or it may be a process that occurs in random positions. Although the protein participating
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in TAG synthesis could be synthesized or enriched at the local discrete zones where LDs
may be generated [62], most of the enzymes participating in neutral lipids synthesis are
distributed throughout the ER, indicating that certain lipids may not only be generated at
the site of LD assembly. Alternatively, neutral lipid synthase may be activated at the sites
of LD biogenesis, while the lipin homolog, known as phosphatidic acid phosphohydrolase
1 (Pah1p) in yeast, is a regulator of lipid synthesis and may be positioned at the location
of LD biogenesis in the ER. Though seipin and FIT2 may play a role in the sites of LD
biogenesis [52,55,58], the way in which they regulate LD biogenesis in the ER remains to
be clarified. When the nascent LDs transition to mature LDs, another question is whether
they are separated from ER physically or are reconnected to the ER through the membrane
bridge, whether they move from the cell periphery to the nucleus, and, if these bridges
do exist, how can they form? In Saccharomyces cerevisiae, membrane bridge formation
may not be required, given that the LD is still connected to the ER [63]. There also seems
to be a unique mechanism in mammalian cells that uses the coat protein I (COPI) and
adenosine diphosphate (ADP)–ribosylation factor 1 (ARF1) machinery to connect with
the LDs separated from ER [64]. The answers to these questions will help us understand
the machinery of LD biogenesis in the cell and elucidate the LDs’ interactions with other
cellular organelles.

Recent evidence also shows the existence of nuclear LDs (nLDs), which originate
from the inner nuclear membrane (INM) and are associated with INM via the predicted
transmembrane protein, seipin [65,66]. Seipin forms a complex with LD assembly factor
1 (LDAF1) in the ER and plays a key role in cLD maturation [67]. The formation of nLDs
is also related to promyelocytic leukemia (PML) nuclear bodies, which are dot structures
in the nuclear matrix that regulates transcription and apoptosis in response to cell stress,
including antiviral defense [68,69]. Since they were only found recently, their role has not
yet been fully described, but, as with cLDs, nLDs may act as a lipid supplier for membrane
expansion and as a bracket platform for proteins [70,71].

Besides nLDs, the secretory autophagosome released from DENV-infected cells also
contains LDs. These extracellular LDs (eLDs) may involve the mechanism of cLD extracel-
lular trafficking, which has not yet been thoroughly studied, but may be related to viral
pathogenesis and could play an important role in the extracellular environment related to
virus infection [72]. Whether the eLDs promote the early innate defense of DENV or other
flaviviruses or are hijacked to spread the virus still needs further study.

Given the recent discovery of more types of LDs, their biogenesis should also depend
on their positioning. In particular, the presence of nLDs indicates that LDs may also exist in
the mitochondria derived from the endosymbionts. Therefore, it is necessary to determine
whether they exist in other intracellular organelles or extracellular vesicles in eukaryotic
cells. Theoretically, this speculation is reasonable because conservative LDs form a stable
connection with ER and are also related to mitochondria, the inner nuclear envelope,
lysosomes, vesicles, and endosomes [73,74].

2.3. Lipid Droplet Function and Its Regulation Mechanism

The LD is a highly complex organelle that stores energy and participates in the lipid
metabolism of cells by acting as a hub for FA transport to the mitochondria. The LD also
regulates nuclear functions through the availability of proteins and signaling lipids in
the nucleus and protects cells from different forms of cellular stress, such as ER stress,
and the lipotoxic effects of unesterified lipids [36]. In addition, LDs contribute to the
maturity, degradation, storage, and turnover of many different proteins and maintain
protein homeostasis [26,73,75]. Here, the main features of LD function are briefly described
in the following sections.

2.3.1. Participating in Cell Energy Storage and Lipid Metabolism

As an essential cellular organelle that regulates lipids and energy metabolism in cells,
LDs are involved in many of the processes of cells, including lipid metabolism, membrane
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biogenesis, membrane transportation, and signal transduction. During nutritional stress,
the lipids released from LDs are used either for hormone synthesis or as the primary
repository of sterols, FAs, cholesterol, and the membrane phospholipid precursors used
for cell membrane formation. They are used to maintain the homeostasis of ER and other
membranes [47,76–78]. The lipids in the hydrophobic core of LDs are mostly TAG and SE,
which play an important role in cell energy storage [36].

In cell lipid metabolism, a key metabolic pivot involves the regulation of phospholipid
acid (PA) in the ER membrane, which is used to synthesize membrane phospholipids
or LD TAGs. In yeast, PA is converted into DAG, a precursor of TAG, by PAH1. When
nutrition is lacking, the PAH1 pathway is activated through the Nem1-Spo7 complex,
which transfers the fatty acyl chain from PA to membrane biogenesis and keeps it stored
in the LDs [58,79]. This may be an important part of cell survival reaction and the lipid
flux-balancing mechanism that causes the LDs to allow cellular regulation into membranes
for growth or storage, and for starvation/stress survival.

Cellular lipid metabolism is a complex and highly regulated process. The neutral
lipids stored in LDs can be catabolized by cytoplasm lipolysis or lysosome-mediated
lipophagy, which is the selective autophagy of LDs (Figure 3). Lipolysis is mediated by
LD-related lipases, such as adipose triglyceride lipase (ATGL), while lipophagy involves
the key enzymes that hydrolyze TAG and cholesterol in the lysosome, namely, lysosomal
acid lipase (LAL), which acts on the LDs delivered to autolysosomes via autophagy.
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Figure 3. Overview of LD degradation through lipolysis or lipophagy. TAG breakdown in LD is
catalyzed by cytoplasmic or lysosomal lipase. Lipolysis is composed of three sequential catalyzations
of TAG, DAG, and MAG by adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and
monoacylglycerol lipase (MGL), respectively. Lipophagy belongs to selective autophagy; that is, the
LDs are engulfed into the autophagosome and are then fused with lysosomes to form autolysosomes,
wherein the neutral lipids in LDs are hydrolyzed by lysosomal acid lipase (LAL).

Various proteins and lipases on the surfaces of LDs regulate LD catabolism. For example,
perilipin is responsible for lipid homeostasis by controlling the availability of lipases to neutral
lipids in LDs. At the basic level, perilipin combines with the comparative gene identification-
58 (CGI-58) in an inactive state. Under starvation conditions, perilipin is phosphorylated by
protein kinase A, releasing the combined CGI-58, which then combines with ATGL to drive the
hydrolysis of TAG [80]. The phosphorylated perilipin can also add phosphate to the hormone-
sensitive lipase (HSL) and transfer it to LDs. The HSL hydrolyzes DAG into monoacylglycerol
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(MAG) [81], which is hydrolyzed into free FAs and glycerol by monoacylglycerol lipase
(MGL) [82]. The free FAs released by neutral lipid breakdown undergo β-oxidation to
generate energy via mitochondria or the peroxisome [83]. Therefore, LDs play a key role in
maintaining cellular homeostasis by balancing lipogenesis and lipolysis. This homeostatic
effect is essential for normal cellular and organismal functions, which are closely related to
human health. LD disorders can also cause many human diseases, such as fatty liver disease,
obesity, diabetes, cardiovascular disease, and cancer [84,85].

2.3.2. Preventing ER Stress

ER stress is caused by the activation of the unfolded protein response (UPR) by cells
in response to conditions such as the aggregation of misfolded and unfolded proteins in
the lumen of ER, the dysregulation of calcium homeostasis, and/or lipid composition
imbalance, and the reaction process to re-establish ER homeostasis [86]. For example,
three ER-integrated membrane proteins, also known as UPR sensors, are often activated in
response to the accumulation of unfolded proteins. These proteins are the inositol-requiring
protein 1 (IRE1), protein kinase RNA (PKR)-like ER kinase (PERK, also known as EIF2AK3),
and the activated transcription factor 6 (ATF6). The activation of these three main pathways
will trigger the cell signaling cascade, slowing the translation of related proteins and
increasing the gene expression participating in ER protein-folding, degradation, and lipid
biogenesis.

The disruption of LD biogenesis and TAGs synthesis often leads to UPR activation
in yeast and mammalian cells. Studies on the mutant yeast strain (LD∆) that is defi-
cient in the enzymes required for TAG and SE biosynthesis with the loss of LDs showed
an altered ER morphology. The alteration, however, could be reversed by inhibiting de
novo FA synthesis or deleting the Opi1 inhibitor to induce ER phospholipid synthesis,
suggesting that phospholipid synthesis could compensate for the loss of LD formation.
Without LDs, the ER phospholipid composition changes, displaying an increased level of
phosphatidylinositol, leading to impaired autophagosome biogenesis [78]. Although LDs
function primarily by providing a lipid source to the autophagosome membrane [76,78,87],
mutant yeast studies suggest that LDs are more likely to regulate autophagy through ER
quality-control functions. Yeast cells with PC biosynthesis inhibition activate the UPR to
form abnormally fragmented ER aggregates [88]. Excessive saturated FA triggers UPR
more effectively than unsaturated FA [89,90]. However, UPR triggering does not require the
unfolded protein-sensing domains of IRE1 and PERK and may involve sensing perturbed
ER membrane composition [91]. In adipocytes, the lipolysis of stored lipids is stimulated
by a noradrenergic signaling cascade, releasing large amounts of FAs, followed by the
production of large numbers of small LDs, which are not fragmented or in fission with
LDs, as initially thought [92,93]. Instead, these FAs are re-esterified and packaged into
DGAT1-dependent LDs [94]. Under these lipolytic conditions, DGAT1-dependent fatty acid
re-esterification and LD biogenesis are critical for protection against ER stress, lipotoxicity,
and UPR activation. Furthermore, in 3T3-L1 preadipocytes, the lack of RAB18 resulted
in a substantial reduction in the number of mature LDs and UPR activation, indicating
increased ER stress after oleate treatment [95].

The molecular mechanism between impaired LD biogenesis and UPR activation is
unclear. Because the abundance of LDs is usually found to increase when UPR is activated,
an investigation needs to determine whether LDs improve or exacerbate this stress response.
Studies also show that increased TAG storage in LDs mitigates ER stress in mammalian
cells and tissues. The TAG storage of the liver LDs increases in ATGL-knockout mice, and
the ER stress induced by the tunicamycin (TM) is prevented by reduced stress markers,
such as the glucose-regulating protein 78 (GRP78) and the slicing X-box binding protein
1 (XBP1) [96]. Similarly, in human cardiomyocyte-derived cells, the overexpression of
ATGL promotes the release of free FAs from the TAG in LDs, thereby increasing the ER
stress markers. The ER stress induced by palmitate is also inhibited by increased TAG,
through the overexpression of peroxisome proliferator-activated receptor γ (PPARγ) or
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acyl-CoA synthetase (ACSL1) [97]. The overexpression of autophagy-related 14 (ATG14)
in Hela cells stimulates lipophagy, leading to increased free FAs and ER stress [98]. The
constitutive hypoxia-inducible factor 2α (HIF-2α) upregulates the expression of the LD
coat protein PLIN2 in clear-cell renal cell carcinoma (ccRCC). The knockdown of PLIN2,
however, eliminates LD, expands the ER, and activates PERK, IRE-1α, and other UPR
targets. Nevertheless, the supplies of the exogenous PLIN2 are sufficient to restore LDs
and inhibit cell death [99].

The inhibition of PC biosynthesis in yeast cells activates UPR and forms LDs at
the abnormal fragmented ER aggregates. The polyubiquitinated proteins and the ER
chaperone heat-shock protein (Hsp104p) contained in LDs appear to be degraded via the
endosomal sorting complex required for transport (ESCRT)-dependent microlipophagy
in the yeast vacuole cells [88]. Data also indicate that LDs formed by an ER sequester
unfolded, misfolded, or aggregated ER proteins and further promoted their removal
through microlipophagy. However, whether these ubiquitinated proteins are located on the
surface of LDs or on LD-related ER subdomains is unclear. The specific substrates involved
in the assumed degradation pathways have not yet been determined. In mammalian cells,
we observed a connection between LDs and selected ER-associated degradation (ERAD)
substrates. Hydroxymethylglutaryl (HMG)-CoA reductase enzyme and apolipoprotein
B (ApoB) undergo ERAD under specific metabolic conditions [100,101]. Interestingly,
both proteins bind with LDs or are related to the LD-associated ER subdomains before
degradation. In addition, changes in the lipid composition of the ER can also directly
activate the UPR without requiring the luminal sensing domains of yeast and mammalian
IRE1s and PERKs. Consistent with this finding, the activation of PERK and IRE1 by
saturated FAs in recombinant liposomes requires that their transmembrane domains should
be independent of the luminal misfolded protein-sensing domains [91,102]. These studies
suggest that abnormal FAs storage in LDs can either activate UPR directly by changing the
lipid composition of the ER membrane or indirectly, by changing ER homeostasis, leading to
impaired ER protein-folding or calcium storage. The LDs provide a vehicle for rebalancing
ER lipid homeostasis and removing misfolded ER proteins. This LDs-mediated function
for ER quality control is likely to play a role, together with the ERAD pathway [103–105].

2.3.3. Participating in Autophagy

Intracellular LDs are degraded into free FAs and glycerol in the form of autophagy, called
lipophagy. It is manifested as the co-localization of autophagic LC3 and LD coat proteins,
such as PLIN2. This kind of selective autophagy is another form of lipolysis and is necessary
for the clearance of LDs and TAG in hepatocytes [106]. In addition to acting as an energy
source, lipophagy controls the quality of LD proteins and lipid homeostasis in cells [107,108].

The occurrence of lipophagy mainly starts from the recognition of cargoes by the
autophagosome membrane via interaction with the microtubule-associated protein 1 light
chain 3 (MAP1LC3) [109]. This usually involves the assistance of one or more cargo
adapters, such as P62, Optineurin, NBR1, and NDP52, which connect the organelle mem-
brane to LC3. This has been confirmed by Tatsumi’s study [110] on the role of lipophagy in
embryonic development. The study showed that the forced lipophagy system, through the
fusion of the LD binding domain and p62, significantly reduced the number of LDs and
TAG levels during mouse embryonic development, ultimately retarding the development.
Meanwhile, lipophagy may also require the polyubiquitination of organelle surface proteins
as a recruitment signal [111].

The LDs’ surface proteins involved in lipophagy and promoting LD recognition are
not fully understood. Before autophagy or cytosolic lipase degrades LDs, the perilipin
on the surface of LDs needs to be removed, which mainly occurs through chaperone-
mediated autophagy, regulated by adenosine 5′-monophosphate (AMP)-activated protein
kinase (AMPK) signaling [112,113]. Studies also show that huntingtin is necessary for
lipophagy under stress conditions since it connects p62 with LC3-II, releasing Unc-51-like
autophagy-activating kinase 1 (ULK1), which is a pro-autophagic kinase inhibited by
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mammalian target of rapamycin (mTOR) [114]. The ancient ubiquitous protein 1 (AUP1)
is a type-III membrane protein and is expressed most commonly in LDs and the ER. It
recruits the E2 ubiquitin-binding enzyme G2, accumulating LDs and controlling ER protein
quality [115]. AUP1 is used by DENV and ZIKV to trigger lipophagy and may be a specific
factor of lipophagy, but the mechanism of the initiation of lipophagy has not been fully
elucidated. DENV deubiquitinates and transports AUP1 from LDs to autophagosomes
by binding the viral NS4A and NS4B proteins in infected cells. DENV also stimulates the
acyltransferase activity of AUP1 to upregulate lipophagy and promote the generation of
progeny viruses. The knockdown of AUP1 using the clustered, regularly interspaced short
palindromic repeats (CRISPR)-Cas9 genome editing technique eliminates the generation of
the infectious DENV and ZIKV virion [116].

Proteins of the Rab molecular switch family may also be involved in the process of
lipophagy. Many Rab molecules have been identified on LDs [117], some of which are
related to autophagy regulation, especially Rab7, Rab10, and Rab25. They have been proven
to be essential for lipophagy of hepatocytes under certain conditions. For example, Rab7 is
activated in hepatocytes under nutrient deficiency; however, during lipophagy, it promotes
the recruitment of multivesicular bodies and lysosomes to the LD surface. The deletion of
Rab7 causes morphological changes in multivesicular bodies, lysosomes, and autophago-
somes, and leads to reduced lipophagy [118]. In addition, chronic alcohol exposure inhibits
the activation of Rab7, leading to the damage of lysosomes that degrade LDs and ultimately
block the lipophagy of hepatocytes [119,120]. Rab10 forms a complex with the adaptor
protein EH domain-binding protein 1 (EHBP1), while the membrane-modified adenosine
triphosphatase EH-Domain Containing 2 (EHD2) to promote the migration of LC3-positive
autophagic membrane to the LD surface. However, the loss of Rab10 function leads to LD
accumulation [121]. The disappearance of LDs often accompanies the activation of hepatic
stellate cells (HSCs). The activation of HSC stimulates the expression of Rab25 and pro-
motes the formation of complexes with PI3KCIII, thereby guiding autophagy to recognize,
encapsulate, and degrade LDs. The knockdown of Rab25 expression with specific siRNA,
however, prevents lipophagy and inhibits the disappearance of LDs [122].

Lipase recognizes LDs and directly promotes the formation of autophagosomes by
inducing the recruitment of TAG and SEs, which help to initiate lipophagy [76,123]. The
cytoplasmic ATGL (also known as PNPLA2) regulates lipolysis and lipophagy, but the way
in which it coordinates the regulation of both processes is unclear. ATGL is a necessary
and sufficient positive regulator for inducing lipophagy in mouse liver. It interacts with
LC3 via its LC3-interacting region (LIR) motif to promote its movement to LDs, upon
which it causes lipophagy [124]. ATGL also promotes lipophagy by enhancing sirtuin
1 (SIRT1) activity, which regulates the catabolism of liver LDs [125]. The patatin-like
phospholipase-domain-containing enzyme 5 (PNPLA5) that is present in LDs contributes
to lipophagy and autophagic proteolysis [87]. PNPLA8 mediates the lipophagy driven by
sterol-regulatory element binding protein 2 (SREBP-2) through its dynamic interaction with
LC3 in the hepatocytes of high-fat diet (HFD)-fed mice and regulates lipid homeostasis in
patients with nonalcoholic fatty liver disease (NAFLD) [126]. Through mutation studies,
PNPLA3 was confirmed as a key player in the autophagosome formation stage of the
lipophagy process in starved human hepatocyte HepG2 [127]. In lysosomes, LDs can also
be degraded by acidic lipases. Under nutrient deficiency, the expression of lysosomal lipases
in Caenorhabditis elegans and mouse hepatocytes is regulated by the lysosomal biogenesis
transcription factor EB (TFEB) [128]. TFE3 regulates the steatosis of hepatocytes by inducing
lipophagy [129]. Under fasting conditions, the forkhead homeobox transcription factor
(FoxO1) triggers the lipophagy of adipocytes by inducing lysosomal acid lipase [130].

Similar to general autophagy, lipophagy is also regulated by cellular nutritional state-
sensing signals and response systems, to ensure that the level of free FAs in cells matches
their energy requirements. These sensory systems include AMPK, mTOR, the nuclear
receptor farnesoid X receptor (FXR), PPARα, and transcription activator cAMP response
element-binding protein (CREB) [120,131–133]. If the cells are in a nutrient-rich state and
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do not need free FAs as an energy source, lipophagy will be inhibited. However, in the
case of insufficient nutrition, lipophagy is triggered, leading to the decomposition of TAG
in LDs. The SIRT3 protein activates lipophagy by stimulating the AMPK-ULK1 pathway,
inducing smaller-sized LDs, and reducing lipid accumulation in mature adipocytes [134].
For example, DENV induces AMPK kinase activity as well as AMPK-independent mTORC1
suppression to cause the lipophagy that promotes viral infection [135]. In addition, treat-
ment with AMPK and an autophagy activator (AICAR and rapamycin) or mTOR inhibitor
(Torin-1) significantly alleviates the symptoms in patients with NAFLD [136–138], indicat-
ing that restoring the function of lipophagy may be an important treatment for improving
fatty liver disease.

3. Roles of LDs in the ZIKV Life Cycle
3.1. ZIKV Infection Causes Changes in LDs

To confirm that LDs participate in ZIKV infection, LDs are stained with specific dyes,
such as BODIPY, Oil Red O, LipidTox Deep Red, and Nile Red, and then observed under
a microscope to detect their intracellular changes after viral infection. To ensure that the
effects of LD measurement occur in a single cycle of ZIKV replication, a low multiplicity of
infection (MOI), i.e., infection with ZIKV at an MOI of 0.1 and a limited virus replication
cycle (i.e., 24 h) are used for LDs analysis. Confocal microscopy showed that compared
with uninfected cells, the number, content, and size of LDs in ZIKV-infected cells were
significantly reduced [10]. This result is consistent with the previous findings that flavivirus
infection induces pro-viral selective autophagy against LDs [139,140].

However, some studies have also reported increased LDs during the early stages of
ZIKV infection. For example, two hours after ZIKV infection, both in vivo and in vitro,
the induced LDs were transiently upregulated and controlled by the epidermal growth
factor receptor (EGFR). The inhibition of EGFR suppresses the expression of LDs during
infection, while the production of types I and III IFN, which reflects the ability to mount an
effective immune response in infected cells, is significantly reduced. This ultimately leads
to increased ZIKV replication, indicating that LDs can also serve as an important cellular
organelle in the innate antiviral immune response [141,142]. In the model of infected
astrocytes, cells were infected with ZIKV or stimulated with poly I:C, a dsRNA virus mimic.
The LD displacement and average velocity in cells were significantly enhanced 2 h after
infection or stimulation, indicating that the dynamics of LDs had changed in the early
stage of pathogen infection, further supporting the emerging role of LDs in the innate
host response [143]. Another study showed that hydroxysteroid (17β) dehydrogenase
(HSD17B)12 promotes the replication of ZIKV and the production of infectious particles by
increasing LD biosynthesis, which plays a key role in virus assembly. This study confirms
the indispensability of LDs in ZIKV infection [144].

No explanation exists for the differences seen in LD changes following ZIKV infection.
However, the differences may be due to the different cell systems or ratios of the virus
to cells adapted to infect the monolayer cells [23,139]. Other reasons may be the research
purposes used to determine the various analysis and measurement targets under corre-
sponding experimental conditions. For example, some authors may pay more attention to
the changes in a single LD or the number or total area of LDs, while others may only focus
on the number of LDs. Given that the size of LDs may vary, the observed phenotype of
LD changes may correspond to the overall activation of different cellular processes. The
differences come from the various cell lines and the time of infection used. In various cell
systems, viruses may adopt different LD hijacking paradigms. For example, ZIKV hijacks
LDs by manipulating the SREBP pathway, which is the main regulator of LD biogenesis, or
via secreted autophagosomes containing LDs [72,145]. There is also the possibility that the
virus adopts different LD utilization modes at the various stages of infection. Therefore,
in the early stages of viral infection, the virus may induce LD biogenesis to stimulate the
initial replication and may then trigger lipophagy to reduce the number of LDs, to release
free FAs from these lipid structures.
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3.2. Interaction of LDs with ZIKV Proteins

Similar to other flaviviruses, the ZIKV-C protein is also one of the viral structural
proteins assembled with the viral genome to form the nucleocapsid. In addition to the clas-
sical structural function that accommodates and protects the virus genome, the C-protein
also has multi-functional characteristics. It plays an important role in viral replication and
infection by interacting with cellular proteins and regulating cell metabolism, apoptosis,
and immune response.

Previous studies have shown that the ZIKV-C protein is localized in the LDs of the cells
in infected HEK293, BHK21, and Vero [15,16,22], representing the primary location of the
C-protein in host cells. This is also consistent with DENV and HCV-C protein localization in
the LDs [23,146]. The interaction between the C-protein and host LDs is important for viral
genome encapsulation, replication, and assembly (Figure 4). In addition, the accumulation
of C-protein around the LD structure is the key prerequisite for the efficient production of
viral particles [147,148].
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Figure 4. Overview of LDs-C protein interaction during the ZIKV life cycle. ZIKV infection promotes
LDs formation at the early stages of infection. With the increasing interaction of LDs with ZIKV-C
protein, lipophagy is induced to generate sufficient free fatty acids for robust viral replication and/or
assembly. During this process, ZIKV NS4A/4B proteins may also contribute to the occurrence of
lipophagy. We hypothesize that the eLDs and nLDs are involved in the ZIKV life cycle, and their
formation and function possibly need the help of some unknown host factors, which are shown as
red irregular polygons with a border of dashed lines.

Shang et al. [22] resolved the crystal structure of the ZIKV C protein with a resolution
of 1.9 Å. The structure contains four α helices with a unique long pre-α1 loop, contributing
to C-C dimer formation. Compared with the known forms of WNV and DENV-C proteins,
the ZIKV-C protein has different hydrophobic characteristics at the lipid bilayer interface.
The interaction between the ZIKV-C protein and LDs was confirmed by confocal microscopy
analysis. The substitution mutation of key amino acids (F27S/K31S/R32S) in the pre-α1
loop of ZIKV-C protein disrupted the interaction with LDs, indicating that this loop is
critical for membrane association [22].

The dynamic N-terminal domain of the C-protein is related to its functional diversity. A
specific peptide (pep14–23) in the DENV-C protein mediates the binding of the C-protein to
LDs through conformational transition [149]. The characteristics of the structural dynamics
of the N-terminal domain of the ZIKV-C protein were analyzed by dividing the domain
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into three truncated fragments. The circular dichroism, dynamic light scattering, Zeta
potential, and molecular dynamic simulation confirmed that the truncated fragments, 5–26
and 1–30, are prone to adopt an α-helical conformation, but the conserved fragment, 14–23,
is unstructured. This fragment does not undergo conformational conversion, which is
different from the DENV-C protein, suggesting that this conserved region in the ZIKV-C
protein may not be involved in the association with LDs [150]. The molecular mechanism
of the interaction between ZIKV-C protein and LDs needs further study.

In addition to the interaction of ZIKV-C protein with LDs, ZIKV NS4A and NS4B proteins
are also associated with the selective autophagy of LDs. DENV NS4A and NS4B proteins
induce lipophagy to improve the production of infectious particles by interacting with AUP1
to hijack its acyltransferase function. This mechanism seems also to play a role in ZIKV
infection and is likely to be a universal mechanism adopted by flavivirus infection [116].

4. Conclusions

Lipid droplets serve as a platform for ZIKV replication and a lipid reservoir for cells
and provide energy and lipid sources for virus replication. By comparing the size, location,
accumulation, and dynamic changes of LDs through real-time visualization techniques in
uninfected and infected cells, we reveal the important details of how ZIKV hijacks cellular
LDs for its successful replication and understand in what stages of the virus life cycle the
LDs may play a role. However, the molecular mechanism of LD involvement in ZIKV
infection still needs further elucidation. How ZIKV establishes contact, interacts, and
communicates with cellular LDs needs to be answered. Identifying and characterizing
viral factors (such as structural and NS proteins) and host factors, especially the specific
LD-related factors involved in the interaction between ZIKV and LDs, is also important.
Identifying and characterizing these interaction factors can provide basic information
for developing effective therapeutic drugs that inhibit ZIKV replication. In recent years,
with the improvement of the isolation and purification of LDs from cultured cells, the
morphology, lipidomics, proteomics, and even “ZIKV-LDs interaction omics” after viral
infection will be characterized in depth. The data will provide important information for
further understanding the role of LDs in the pathogenesis of flaviviruses.

Since there are no effective antiviral drugs for ZIKV, developing antiviral drugs is still
challenging. In this sense, positioning lipid metabolism regulators as antiviral drugs is a
promising strategy for the future. Existing studies also support the possibility of developing
antiviral treatment strategies based on LDs, a basic and conserved cellular organelle. For
example, the use of SREBP pathway inhibitors (such as PF-429242) to control LD abundance
and change LD size and proteome has been proven to be an attractive option for controlling
flavivirus infection [145,151,152]. However, this lipid metabolism antiviral drug has a long
way to go before it can be applied in clinical practice.

Therefore, a comprehensive understanding of the important role of LDs in the life
cycle of ZIKV helps to understand the pathogenic mechanism of viruses and may make
them possible targets for developing new antiviral therapies.
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