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Politécnica de Madrid, Madrid, Spain, 3 Eastern and Southern Africa Center for International Parasite Control

(ESACIPAC), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya, 4 Barcelona Institute for Global

Health (ISGlobal), Hospital Clı́nic-Universitat de Barcelona, Barcelona, Spain

‡ These authors contributed equally to this work and are considered co-first authors.

* elena@spotlab.ai (ED); david@spotlab.ai (DBP); lin@spotlab.ai (LL); miguel@spotlab.ai (MLO)

Abstract

Soil-transmitted helminths (STH) are the most prevalent pathogens among the group of

neglected tropical diseases (NTDs). The Kato-Katz technique is the diagnosis method rec-

ommended by the World Health Organization (WHO) although it often presents a decreased

sensitivity in low transmission settings and it is labour intensive. Visual reading of Kato-Katz

preparations requires the samples to be analyzed in a short period of time since its prepara-

tion. Digitizing the samples could provide a solution which allows to store the samples in a

digital database and perform remote analysis. Artificial intelligence (AI) methods based on

digitized samples can support diagnosis by performing an objective and automatic quantifi-

cation of disease infection. In this work, we propose an end-to-end pipeline for microscopy

image digitization and automatic analysis of digitized images of STH. Our solution includes

(a) a digitization system based on a mobile app that digitizes microscope samples using a

3D printed microscope adapter, (b) a telemedicine platform for remote analysis and label-

ling, and (c) novel deep learning algorithms for automatic assessment and quantification of

parasitological infections by STH. The deep learning algorithm has been trained and tested

on 51 slides of stool samples containing 949 Trichuris spp. eggs from 6 different subjects.

The algorithm evaluation was performed using a cross-validation strategy, obtaining a mean

precision of 98.44% and a mean recall of 80.94%. The results also proved the potential of

generalization capability of the method at identifying different types of helminth eggs. Addi-

tionally, the AI-assisted quantification of STH based on digitized samples has been com-

pared to the one performed using conventional microscopy, showing a good agreement

between measurements. In conclusion, this work has presented a comprehensive pipeline

using smartphone-assisted microscopy. It is integrated with a telemedicine platform for

automatic image analysis and quantification of STH infection using AI models.
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Author summary

Soil-transmitted helminths (STH), including hookworm, Ascaris lumbricoides and Tri-
churis trichiura, are common intestinal infections in low-income countries. Global esti-

mates indicate that more than 1.5 billion people are infected with at least one STH species.

They cause anaemia, gastro-intestinal problems, tiredness amongst other symptoms.

Diagnosis of STH infection is mainly performed by analyzing stool samples under the

microscope using the so-called Kato-Katz technique. However, the analysis of Kato-Katz

samples, which is usually performed by microscopy experts, is a subjective procedure

based on visual inspection of the samples and requires to be done in a short period of time

since the sample preparation. In this work we proposed a novel system to digitize the

microscopy samples using an affordable 3D-printed adapter and smartphones. Digitized

images were uploaded to a telemedicine platform enabling remote diagnosis. Additionally,

the digitized images were automatically analyzed by an Artificial Intelligence (AI) algo-

rithm which was fully-integrated in the telemedicine platform, performing an automatic

and objective count of different types of STH parasites (A. lumbricoides and T. trichiura).

1. Introduction

Soil-transmitted helminths (STH), which include hookworms (Ancylostoma duodenale and

Necator americanus), roundworm (Ascaris lumbricoides), and whipworm (Trichuris trichiura)

are the most prevalent pathogens among the group of neglected tropical diseases (NTDs) and

occur predominantly in low- and middle-income tropical and subtropical countries [1]. Glob-

ally STH affects more than 1.5 billion people, causing a loss of more than 3 million disability

adjusted life years (DALYs) [2]. The World Health Organization (WHO) 2030 Roadmap for

NTDs set out strategies for STH control that focused on the elimination of the disease caused

by these parasites as a public health problem [3].

In many endemic countries, the STH control strategy is implemented through targeted

mass drug administration (MDA), using the anthelmintic drugs benzimidazole (BZ), albenda-

zole, or mebendazole [4]. The diagnostic method recommended by WHO is Kato-Katz, a labo-

ratory method for preparing human stool samples in a microscope smear using a small spatula

and slide template. It allows a standardized amount of faeces to be examined under a micro-

scope and quantify STH infection [5,6]. Kato-Katz is generally more sensitive than other

microscopic methods such as McMaster, formol-ether concentration, and direct microscopy

in high transmission settings, and it requires limited equipment and is easy to perform in low

resource settings [7]. However, it often presents a decreased sensitivity in low-transmission

settings.

One of the main disadvantages of the Kato-Katz technique is the necessity to read samples

within 30 minutes from preparation as eggs tend to disappear or hatch, specially those of hook-

worms, and thus considerably reducing the sensitivity of this technique and even highly

trained microscopists can misidentify species or give inconsistent results [8,9]. Digitizing the

samples at the right time (within 30 to 60 minutes after slide preparation) could provide a solu-

tion that allows digital storage of the sample images and further analysis at any moment in

time. Different digitization devices have been tested allowing remote diagnosis and second

opinion [10]. Additionally, during the last years, the potential of the use of smartphones in the

diagnosis of parasitic diseases has been highlighted, and there have been proposed smart-

phone-assisted systems for microscopy [11]. A further step that could increase performance
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and remove subjectivity of microscopic techniques is the possibility of implementing artificial

intelligence (AI) algorithms for the automatic detection and quantification of these parasites

on digitized image samples. This would be a major advance in the diagnosis and control of

these diseases and its implementation would not disrupt the laboratories normal workflow

since the basis of diagnosis is still microscopy and the technique used is the Kato-Katz.

AI-based technologies are rapidly evolving into applicable medical solutions and are actu-

ally revolutionizing the field [12]. However, only a few studies have made effort to meet rigor-

ous standards to be approved by regulatory institutions such as the Food and Drug

Administration (FDA) [13]. Most of these approved technologies were developed for the fields

of radiology, cardiology, and internal medicine. However, AI systems also have the potential

to be applied to enable a rapid and objective diagnosis of NTDs and to enable the delivery of

public health in low- and middle-income countries. In this context, a special effort has to be

made for the application of AI methods in such diseases as has been recommended by the

WHO [14].

Several approaches for computer-aided analysis of helminth eggs detection and classifica-

tion using AI have been investigated in the last few years. Alva et al. proposed the use of hand-

crafted features along with a multivariate logistic regression for intestinal parasites classifica-

tion [15]. Image analysis techniques based on morphological operations have also been pro-

posed to identify pathogenic helminth eggs, although their authors found limitations in their

use in samples with very high solids content due to the large amount of debris and objects that

interfere with the precise identification of eggs [16]. Another notable recent deep learning-

based approach used a large fecal database with over 1122 patients including 22440 images for

the identification of visible components in faeces, including blood and epithelial cells, as well

as STH eggs, proposing the so-called FecalNet [17]. This work proved the potential of using

these methods for the automatic analysis of stool samples using conventional microscopy

images. Holmstrom et al. proposed to acquire microscopy images with a portable scan con-

nected to a laptop and used a two-stage sequential algorithm where candidates previously pro-

posed by the first algorithm are classified as any type of helminth egg, and obtained promising

results despite their limited number of training samples [18]. The use of deep learning-based

object detection methods for automatic analysis and detection of helminth eggs in images

acquired with smartphone-compatible microscopy attachments has already been tested [19].

This work achieved sensitivity comparable to standard microscopy when detecting Ascaris
spp. but showed low performance in the identification of Trichuris spp. This is probably caused

by the use of a cheap smartphone-compatible microscopy attachment (a magnification endo-

scope; USB Video Class, UVC) where the light source comes from the same direction as the

camera. This produces images with insufficient quality specially for Trichuris spp. which have

thinner and more translucent membranes. Previous approaches might disrupt the usual labo-

ratory workflow as they do not use conventional microscopes.

The objective of this study is to propose and develop an end-to-end system for remote and

automatic detection and quantification of STH primarily for the detection of T. trichiura,

based on digitized microscopy images acquired with a 3D printed adapter together with a

smartphone and AI methods.

2. Materials and methods

2.1. Ethics statement

Ethical approval was obtained from the Kenya Medical Research Institute (KEMRI) Ethics

Review Committee (SERU 3873). Prior to enrolment, written informed consent was obtained

from all participating individuals and parents/guardians of children, all individual adults in
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the households and assent from children aged 13 years and above. All the individuals found

positive for STH were treated with albendazole by community health workers.

2.2. Data and samples

In this work, we present a complete end-to-end pipeline from stool sample collection to auto-

matic analysis of the samples for the identification of STH parasites. Fig 1 schematizes the pro-

posed end-to-end workflow, where samples collected and prepared from different subjects

were digitized and uploaded to a telemedicine platform for remote analysis. Additionally, the

digitized samples were labelled using the telemedicine platform and used for training AI algo-

rithms in order to perform an automatic analysis for future incoming digitized samples. All

the prepared samples were also analyzed during the process using conventional microscopy

methods for comparison purposes.

Stool was collected from study participants from Kwale county (south coast of Kenya) who

were part of a follow-up study related to exploring the presence of T. trichiura infection. All

stool samples were transferred to the laboratory within four hours after collection and pro-

cessed using the Kato-Katz thick smear method (using a template that allows one to put 41.7

mg of stool sample on the slide) and analyzed by conventional microscopy on the same day to

identify and quantify the presence of STH eggs. This analysis was carried out by a total of 3

independent technicians and all samples were analyzed by at least two of them. We digitized

using the proposed digitization pipeline samples from 12 subjects (6 positive and 6 negatives).

These digitized samples were used for the evaluation of the remote analysis system, as well as

to train and evaluate the AI algorithm. From the 6 positive subjects, 5 were only positive for

Trichuris spp. and one was co-infected by Trichuris spp. and Ascaris spp. For each positive

stool sample, 7 slides were prepared, while for negative stool samples 1 or 2 slides were

prepared.

2.3 Digitization pipeline of clinical samples

The proposed digitization system uses a 3D printed device that allows coupling a mobile

phone with a conventional optical microscope by aligning the smartphone camera with the

objective of the microscope to acquire images. This adapter (approximately 0.5 kg, with a com-

pact design measuring 31x16x12 cm) has the potential to convert any conventional microscope

into a digital microscope. It should be noted that the working method when using the adapter

remains the same as in the conventional way, and the user still needs to move the microscope

eyepiece navigating through the sample. The smartphone, which is placed in the adapter, uses

Fig 1. Schematic representation of study design and experimental workflow.

https://doi.org/10.1371/journal.pntd.0009677.g001
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an Android mobile app specifically developed and customized for fast and easy digitization

and sharing of digitized microscopy images (Fig 2A). 51 Kato-Katz slides were digitized with a

10x objective (100x total magnification) using two different smartphone models (Xiaomi

Pocophone F1 and Bq Aquaris X2) by attaching the 3D printed device to the ocular of a con-

ventional light microscope (Leica DM-2000). It should be noted that we used two different

smartphone models during the digitization process in order to introduce potential variability

in our image database due to the use of different devices. All microscopy fields in which hel-

minth eggs were present or suspected were digitized. In addition, visually confirmed negative

images were also acquired for both positive and negative subjects. Images were acquired in the

JPG format with a resolution of 12 Mpx through the mobile application.

2.4. Telemedicine platform for remote analysis

All acquired images were transferred from the smartphone to a telemedicine platform via the

mobile network, where the images are stored and presented in an easy-to-use dashboard that

allows their visualization, management, and labelling (see Fig 2B). In this web platform, stan-

dard clinical and analysis protocols were translated into digital tasks that were adapted to the

clinical case and disease under study (see the analysis panel shown in the left part of the screen-

shot presented in Fig 2B).

All acquired images were labelled through the telemedicine platform by one expert using a

customized procedure for analysing stool samples which allows to tag parasites that can be

seen in the images and thus quantify parasitic infection. The annotation protocol was based on

the placement of bounding boxes around the identified parasites. The image database, together

with the label data, can be accessed by other professionals and coupled with other support plat-

forms for diagnostic assistance.

2.5. Artificial intelligence algorithm

2.5.1. Network architecture. The proposed approach for helminth eggs identification

relies on a detection algorithm based on Convolutional Neural Networks (CNN). Most CNN-

Fig 2. (A) 3D-printed adapter used for attaching a smartphone to a conventional microscope and digitizing samples through a mobile app. (B) Telemedicine web

platform for viewing and remote analysis of the digitized samples performing a manual annotation. Note: The web platform in Fig 2B has been developed by the

authors.

https://doi.org/10.1371/journal.pntd.0009677.g002
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based detection algorithms are designed to perform at the same time both the object localiza-

tion task, which determines where objects are located in a given image, and the object classifi-

cation task, which determines which particular category each previously located object belongs

to.

In this paper, Single-Shot Detection (SSD) architecture [20] together with the backbone

MobileNet network [21] for feature extraction were used. Our choice to use a SSD-MobileNet

architecture is mainly due to the relative simplicity of the architectures which are specially

designed to be easily integrated into embedded vision applications in an efficient way. The

model was initialized with pretrained weights on the COCO Image database [22]. We used the

RMSprop optimizer with an exponential decay learning rate to minimize the total loss func-

tion, which was calculated as the sum of a sigmoid cross entropy loss for object classification

and smooth L1 loss for object localization. We also employed early stopping technique, where

the training finishes before overfitting begins by stopping the training process when the error

on the validation set does not decrease for a predefined number of steps.

2.5.2 Training dataset generation. The training dataset was generated by extracting

512x512 pixels image patches around the location of labels which were placed manually by the

experts on helminths. The size of the image patches was selected based on a balance between

the relative size of the objects in relation to the size of the image patches and the computational

cost needed at inference time, as a small size of image patches increases the number of patches

to be processed at test time using the sliding window procedure (see Section 3.3.4).

Additionally, and for the purpose of augmenting the size of the training dataset, we ran-

domly selected 512x512 pixels image patches around the manually placed bounding boxes

multiple times, always ensuring that all labeled objects were fully covered. This was done so

that each object could appear in different locations within the image patch, and different con-

text environments were captured. Moreover, additional augmentation was conducted by

applying on-the-fly random flip and rotation transformations during training.

The framework used for training the proposed method was based on Tensorflow Object

Detection API using a cloud computing environment with a GPU Nvidia Tesla K80 12GB.

The time required to train the algorithm using the described hardware was approximately 3

hours.

3. Experiments and results

To evaluate and validate the entire proposed pipeline for digitizing and automatically assessing

microscopy images, we first evaluate the quality of annotations on digitized images and analyze

whether they can serve as ground truth for training the AI algorithm. This evaluation was per-

formed using the analysis based on a conventional procedure as reference. Subsequently, we

evaluated the performance of the AI model for the detection of helminth eggs.

3.1. Generation and evaluation of ground-truth annotations

Bounding boxes around the identified parasites annotated through the telemedicine platform

were used as ground truth for training the AI algorithm. From the 51 Kato-Katz slides, a total

of 1508 image fields were digitized and uploaded to the telemedicine platform, analyzed and

labeled by a microscopist expert. Manual revision of these images resulted in a total of 797 pos-

itive images for at least one STH and 711 negative images.

Table 1 summarizes the digitized samples from all positive patients where a total of 949 Tri-
churis spp. egg labels were identified. It should be noted that patient number 6 had a biparasite

infection for Trichuris spp. and Ascaris spp., obtaining additional 4296 labels for Ascaris spp.
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eggs. Additionally, as expected, all 10 digitized slides from the 6 negative subjects obtained a

negative result where no eggs were found in the images.

Once we obtained the ground truth for AI models by manually annotating acquired images,

we evaluated its quality to study all possible biases introduced during the digitization step. In

this way, the manual egg counting using digitized images was compared to the analysis per-

formed by a conventional microscopy procedure on the same samples.

For the comparison of the two measurement methodologies (conventional microscopy and

remote analysis of digitized samples which serve as ground truth for training the AI algorithm)

we excluded patient number 3 because its slides were not properly preserved and their reading

could not be done correctly. To evaluate the quality of the ground truth generated for training

AI models, we study the correlation between both egg measurements made by the conven-

tional procedure and based on digitized images. We found a strong correlation between both

metrics, with a Pearson correlation coefficient of 0.95 (95% CI:[0.91–0.98], p-value <0.001).

(see Fig 3A). Bland-Altman analysis [23] was also performed to analyze the goodness of the

generated ground truth, and the results showed good agreement between both metrics (mean

bias of 0.74 units, see Fig 3B). This slight overestimation of egg count observed in the manual

labelling of digitized samples compared to the conventional methodology may indicate that

when the count and analysis were performed remotely on the telemedicine platform, the

expert can perform a more exhaustive job, detecting more eggs than when it is done in the

field, and decreasing the number of false negatives.

Table 1. Database of digitized Kato-Katz slide samples from the 6 positive patients. �Patient number 5 had 6 slides instead of 7 because one of them broke during its

handling.

Patient N˚ of slides N˚ of (+) images N˚ of (-) images Total number of images N˚ Trichuris spp. Eggs

Positive subjects 1 7 94 39 133 148

2 7 39 15 54 47

3 7 50 21 71 74

4 7 28 203 231 30

5 6� 44 10 54 47

6 7 542 13 555 603

Total 41 797 301 1098 949

https://doi.org/10.1371/journal.pntd.0009677.t001

Fig 3. Assessment of the quality of the generated ground truth. (A) Scatterplot of the manual counting using conventional microscopy and using digitized

samples. (B) Bland-Altman plot showing the difference between the conventional and digital analyses.

https://doi.org/10.1371/journal.pntd.0009677.g003
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The results ensure the quality of the generated ground truth based on digitized images of

Kato-Katz samples and indicate that they can be used for training AI models.

3.2. Artificial intelligence-assisted analysis

3.2.1 Analysis of the model performance. To evaluate the proposed method for Trichuris
spp. detection, we constructed a leave-one-out cross-validation scheme at the patient level.

Thus, the algorithm is applied and tested only on samples belonging to a single subject, using

all other subject samples as a training set. This process ensures the test set is completely inde-

pendent from the training set. It should be noted that as the proposed algorithm was focused

on the detection of Trichuris spp., the leave-one-out scheme was constructed based only on

subjects who were positive for Trichuris spp.

To assess the model performance, we considered the precision (P), recall (R), and F-score

(F) metrics defined as:

P ¼
TP

TP þ FP
; R ¼

TP
TP þ FN

; F ¼ 2�
P � R
P þ R

where TP, FP and FN denote the number of true positives, false positives, and false negatives,

respectively. TP were defined as both correctly boxed and classified object, false detection was

considered as FP and FN was defined as all ground truth objects misdetected by the algorithm

or proposed for a wrong label. All the boxes proposed by the algorithm had to have a certainty

greater than or equal to 30% to be considered as proposed. The certainty of an object was

defined based on the probability given by the algorithm and associated with the predicted label

of this object. Correctly proposed and classified boxes were considered as true positive detec-

tions when they had an intersection over union (IOU) with the ground truth greater than 30%.

Note that the performance metrics were only computed on positive image patches i.e., known

to contain at least one helminth egg.

An overview of the results is shown in Table 2. The proposed approach showed a mean pre-

cision (P) of 98.4%, a mean recall (R) of 80.9% and a mean F-score (F) of 88.5% along all fold-

ers within the leave-one-out cross validation scheme.

Additionally, we wanted to compare the results obtained with the proposed method, which

is based on SSD and MobileNet networks, with a model based on FasterRCNN together with a

ResNet50 backbone, a more complex and deeper network, which also introduces the concept

of residual connections. Our hypothesis is that, although this deeper network may have a

higher discriminative power, it needs to be trained with a large amount of training data. The

network was trained with the same leave-one-out cross-validation scheme as that used for

Table 2. Detailed performance of the proposed methodology for the detection of Trichuris spp. using a leave-one-one cross-validation scheme at the patient level.

Training Testing

#T. eggs #T. eggs Precision Recall F-Score

Folder 1 801 148 99.16 79.73 88.39

Folder 2 902 47 97.78 93.62 95.65

Folder 3 875 74 100.00 66.22 79.68

Folder 4 919 30 100.00 80.00 88.89

Folder 5 902 47 95.24 85.11 89.89

Mean
STD

98.44

2.00

80.94

9.96

88.50

5.73

Note: #T. eggs represent the number of Trichuris spp.

https://doi.org/10.1371/journal.pntd.0009677.t002
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training the proposed algorithm and obtained a mean precision of 88.5% and a mean recall of

75.1%. It should also be noted that the FasterRCNN-ResNet50 algorithm took longer to train

and test compared to the proposed SSD-MobileNet architecture, imposing more computa-

tional cost. These results prove that the proposed method outperforms more complex net-

works, being an optimally cost-effective architecture.

For further validation, we wanted to extend the analysis of the AI algorithm developed

by comparing its results at slide level to those obtained by all reference methods, including

both conventional microscopy-based analysis and manual remote analysis of digitized

samples.

Digitized images from whole slides were divided into 512x512 pixels image patches using a

sliding window procedure with an overlap of 64 pixels to ensure all helminth eggs are not

cropped within images. All 27 slides coming from all subjects only positive for Trichuris spp.

that were included in the analysis of Section 3.1 were analyzed by the AI algorithm, and Bland-

Altman analysis between automated AI-assisted STH quantification and both manual remote

analysis and the one performed by conventional microscopy were assessed.

Bland-Altman analysis showed a good agreement between AI-assisted results and both the

conventional microscopy procedure and the manual remote analysis, having a bias of -0.26,

95% confidence interval [-16.78,16.26] when compared to the results obtained with the con-

ventional microscopy method, and a bias of -1.4 units, 95% confidence interval [-9.01,6.20]

when compared to the remote analysis of digitized samples.

Additionally, we also executed the AI algorithm in all images extracted from all negative

samples. The results showed that only 99 STH eggs were incorrectly detected (false positives)

along the 20090 negative images, resulting in a specificity of greater than 99% at the image

patch level.

3.2.2 Evaluation of the generalization capability. For further assessment of the proposed

approach, we also wanted to test the generalization capability of the proposed methodology at

detecting other helminths eggs than Trichuris spp. We extended our analysis by training the

proposed method with all available subject samples, i.e. including those belonging to the one

which were positive for a coinfection of Trichuris spp. and Ascaris spp. The training and evalu-

ation of the extended version of the proposed method were based on a train-validation-test

scheme. Of all available digitized slides from all subjects, 32 were randomly selected for train-

ing and validation, while the remaining 9 were used for testing. Both the training sets (70%)

and the validation sets (15%) comprised 808 Trichuris spp. and 3649 Ascaris spp. eggs, while

the test set (15%) consisted of 136 Trichuris spp. and 647 Ascaris spp. eggs. Our interpretation

is that the appearance of helminth eggs is independent across slides and therefore the training

and testing may be done using images from the same subject as long as they belong to different

slides.

Additionally, and in order to increase the discriminating power of the proposed approach

and to better distinguish between both helminth eggs and all those structures that may be pres-

ent on the images which are similar to objects under study, we deployed our trained model on

all training slides, identified all false positives objects, labeled them as a separated class (namely

artifact class) and constructed a multiclass model including three different classes, namely Tri-
churis spp., Ascaris spp. and artifacts. Thus, background objects which are difficult to discern

and are confused with real helminth eggs were used as negative examples.

Table 3 summarizes the results and proves that the proposed model can be extended for the

detection of different helminth eggs, obtaining promising results, including a mean precision

of 94.36% and a mean recall of 93.08%.
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3.3. Built-in AI algorithms: operational deployment on technological

platforms

The AI algorithm developed was integrated into both the telemedicine platform and the acqui-

sition mobile app, allowing the operational deployment of the AI model so that it can be

remotely used on demand by the telemedicine platform or even could be executed during

acquisition time through the mobile app. Fig 4 shows the implementation of the AI algorithm

on both technological platforms.

The execution of the AI algorithm on the telemedicine platform is done on a cloud comput-

ing platform. Each time the images are uploaded, the system recognizes the type of sample

based on the image metadata and executes the AI model which will detect the eggs and show

them in a visualization environment which is accessed via the web. As an additional possibility

of integration of AI models into the clinical workflow, we have created a prototype that

embeds the AI model in the acquisition app. While the user examines the sample with the

smartphone attached to the microscope, the images captured by the camera are processed in

real time, and all STH eggs detected by the AI algorithm locally executed on the smartphone’s

hardware are shown in an augmented reality environment (see Fig 4B). This could facilitate

the identification and counting of STH eggs by the user.

Table 4 provides a report of the calculated time needed to perform the prediction for a sin-

gle image patch of 512x512 pixels using different hardware configurations and technological

platforms, as well as the average time needed to get a final prediction for a whole digitized

image considering that each image is composed of 48 image patches.

4. Discussion and conclusions

In this work, we present an end-to-end pipeline for microscopy image digitization and remote

analysis together with novel deep learning algorithms for automatic assessment and

Table 3. Overview of the results obtained for the detection of helminth eggs from Trichuris spp. and Ascaris spp.

Precision Recall F-Score

Trichuris spp. 95.31 89.71 92.43

Ascaris spp. 93.41 96.45 94.91

Mean 94.36 93.08 93.97

https://doi.org/10.1371/journal.pntd.0009677.t003

Fig 4. Operational deployment of the AI algorithm on technological platforms. (A) Deployment on the telemedicine platform. (B) Prototype of the

deployment on the mobile acquisition app. Note: Both the web platform and the mobile application in Fig 4A and 4B have been developed by the authors.

https://doi.org/10.1371/journal.pntd.0009677.g004
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quantification of parasitological infections by STH, mainly focused on the identification of Tri-
churis spp. eggs.

Microscopy remains the most widely used technique to complete a diagnosis of any of the

NTDs, including STH which is one among the most prevalent diseases among this group.

However, visual diagnosis based on conventional microscopy is a subjective procedure and

requires specialised experts in the work field. Unfortunately, the density of health workers in

STH-endemic areas is very low [24]. Taking into account these limited resources together with

the highly elevated number of patients in these areas, it is clear that the use of digital micro-

scopes together with AI algorithms for remote and automatic diagnosis of STH could consti-

tute an advantageous tool.

Although some systems have been previously proposed for the digitization of STH images,

they require special hardware that has not been specifically designed for acquiring microscopy

images [17] or could disrupt the usual laboratory workflow since they do not leverage conven-

tional microscopes, making it more complex to follow standard microscope diagnostic proto-

cols [16]. Our 3D printed digitization and image acquisition device was specially designed not

to alter the daily routine in microscopy diagnosis laboratories. Additionally, the access to pri-

mary care centers in high endemic areas of STH may be limited, entailing a high need for field-

work to bring the diagnosis closer to remote areas. In this context, we designed a completely

portable device with reduced weight and size that can be attached to any existing conventional

microscope, enabling digital diagnosis in those areas.

In this work, we proposed the first complete pipeline from image digitization using smart-

phone technology to remote analysis assisted by AI methods.

The acquisition and digitization of the images were performed in a standardized manner

and using a controlled procedure using a customized app which is directly linked to a telemed-

icine platform where the images were manually analyzed and tagged enabling the training of

AI algorithms.

The quality of the ground truth generated by annotating the digitized samples in a remote

manner was evaluated and compared to the analysis based on conventional microscopy. The

results showed good agreement and minimal differences between the resulting egg quantifica-

tion using both methods (R-squared of 0.95) and ensured enough ground truth quality to train

AI models.

Particularly, the proposed deep learning-based algorithm enables an automatic and objec-

tive identification of STH eggs. The method, which was trained and validated using a cross-val-

idation scheme, achieved a relatively high precision and recall results (98,44% and 80,94%

respectively) for the identification and classification of Trichuris spp. eggs. The results vali-

dated the use of the proposed deep learning algorithms for the automatic identification of STH

eggs. We also wanted to compare the results with those obtained with more complex and

deeper network architectures, and the results proved that the proposed relatively simple archi-

tecture considerably reduces computational cost while maintaining similar results.

Additionally, the results obtained suggest that remote and AI-assisted analysis of digitized

images of Kato-Katz samples allows to detect in mean more eggs compared to the count using

the conventional procedure, since the analysis can be performed in a more exhaustive manner.

Table 4. Comparison of the time needed to execute the AI algorithm with different technological platforms and hardware configurations.

Tech. Platform HW configuration Patch image (s) Whole Image (s)

Telemedicine platform Low-moderate performance GPU (NVIDIA K80) 0.04 1.97

Telemedicine platform Low-moderate performance CPU (Intel Xeon E5-2630 v3) 0.20 9.60

Mobile-phone Low-moderate CPU (Snapdragon 820) 0.25 12.00

https://doi.org/10.1371/journal.pntd.0009677.t004
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Moreover, these tools would potentially be useful for other use cases such as the evaluation of

the effectiveness of MDA programmes.

For further validation and to illustrate the generalization capability of the method at identi-

fying other helminth eggs than Trichuris spp., we extended the analysis by training the algo-

rithm including positive samples for both Trichuris spp. and Ascaris spp. coming from a co-

infected subject. The results (mean precision of 94,66% and mean recall of 93,08%) showed

that the proposed method can be extended for the detection of different STH eggs, although

further validation work should be done in this direction.

It should be noted that the main limitation of this work may be caused by the relatively

scarce number of considered subjects. This should be contemplated in future works in order

to increase the variability regarding STH morphology and stage, appearance and aspect of the

Kato-Katz samples and the inclusion of other species of STH (i.e. hookworm).

Finally, we proposed an operational implementation which allows to integrate the AI algo-

rithm on both the remote analysis platform and the digitization mobile app, opening a simple

but potentially revolutionary use of the method on demand by invoking it through the tele-

medicine platform or in real time during image digitization with the mobile app.

Next steps to scale the proposed system in the field require the undertaking of a large-scale

clinical performance evaluation study to validate the entire pipeline and demonstrate its appli-

cability where real-time diagnosis is required.

Although effective and accurate molecular tools for the diagnosis of NTDs such as STH

have been proposed, which are already implemented in developed countries [25], they may

not be accessible in low- and middle-income countries. These molecular techniques, such as

quantitative PCR, require expensive equipment and very well-trained specialists. In order to

achieve the goal established in the WHO 2030 roadmap [3], it is essential to have an effective

and standardized diagnosis to accelerate the NTDs elimination. In this context, the proposed

solution could reduce time, distances, and expertise needed for microscopic analysis of hel-

minth samples and therefore help to make accurate STH diagnosis accessible.
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16. Jiménez B, Maya C, Velásquez G, Torner F, Arambula F, Barrios JA, et al. Identification and quantifica-

tion of pathogenic helminth eggs using a digital image system. Exp Parasitol. 2016 Jul; 166:164–72.

https://doi.org/10.1016/j.exppara.2016.04.016 PMID: 27113138

17. Li Q, Li S, Liu X, He Z, Wang T, Xu Y, et al. FecalNet: Automated detection of visible components in

human feces using deep learning. Med Phys. 2020; https://doi.org/10.1002/mp.14352 PMID: 32583463

18. Holmström O, Linder N, Ngasala B, Mårtensson A, Linder E, Lundin M, et al. Point-of-care mobile digital

microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haema-

tobium. Glob Health Action [Internet]. 2017; 10(3). Available from: https://doi.org/10.1080/16549716.

2017.1337325 PMID: 28838305

19. Yang A, Bakhtari N, Langdon-Embry L, Redwood E, Lapierre SG, Rakotomanga P, et al. KankaNet: An

artificial neural network-based object detection smartphone application and mobile microscope as a

point-of-care diagnostic aid for soil-transmitted helminthiases. PLoS Negl Trop Dis. 2019; 13(8):

e0007577–e0007577. https://doi.org/10.1371/journal.pntd.0007577 PMID: 31381573

20. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al. SSD: Single Shot MultiBox Detector.

In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision–ECCV 2016 [Internet]. Cham:

Springer International Publishing; 2016 [cited 2020 Oct 21]. p. 21–37. (Lecture Notes in Computer Sci-

ence; vol. 9905). Available from: http://link.springer.com/10.1007/978-3-319-46448-0_2

21. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. MobileNets: Efficient Convolu-

tional Neural Networks for Mobile Vision Applications. 2017 Sep; Available from: http://arxiv.org/abs/

1704.04861

22. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common Objects

in Context. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer Vision–ECCV 2014 [Inter-

net]. Cham: Springer International Publishing; 2014 [cited 2020 Dec 22]. p. 740–55. (Lecture Notes in

Computer Science; vol. 8693). Available from: http://link.springer.com/10.1007/978-3-319-10602-1_48

23. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res.

1999 Abril; 8(2):135–60. https://doi.org/10.1177/096228029900800204 PMID: 10501650

24. WHO. World health statistics 2020: monitoring health for the SDGs, sustainable development goals.

2020.

25. Llewellyn S, Inpankaew T, Nery SV, Gray DJ, Verweij JJ, Clements ACA, et al. Application of a Multiplex

Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled

Clinical Trial. PLoS Negl Trop Dis. 2016 Jan; 10(1):e0004380. https://doi.org/10.1371/journal.pntd.

0004380 PMID: 26820626

PLOS NEGLECTED TROPICAL DISEASES Mobile microscopy and deep learning for the quantification of trichuriasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009677 September 7, 2021 14 / 14

https://doi.org/10.1371/journal.pone.0175646
http://www.ncbi.nlm.nih.gov/pubmed/28410387
https://doi.org/10.1016/j.exppara.2016.04.016
http://www.ncbi.nlm.nih.gov/pubmed/27113138
https://doi.org/10.1002/mp.14352
http://www.ncbi.nlm.nih.gov/pubmed/32583463
https://doi.org/10.1080/16549716.2017.1337325
https://doi.org/10.1080/16549716.2017.1337325
http://www.ncbi.nlm.nih.gov/pubmed/28838305
https://doi.org/10.1371/journal.pntd.0007577
http://www.ncbi.nlm.nih.gov/pubmed/31381573
http://link.springer.com/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://link.springer.com/10.1007/978-3-319-10602-1_48
https://doi.org/10.1177/096228029900800204
http://www.ncbi.nlm.nih.gov/pubmed/10501650
https://doi.org/10.1371/journal.pntd.0004380
https://doi.org/10.1371/journal.pntd.0004380
http://www.ncbi.nlm.nih.gov/pubmed/26820626
https://doi.org/10.1371/journal.pntd.0009677

