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Background
Cancer is a complicated disease with phenotypic manifestations connected to various 
molecular signatures, such as gene expression and DNA methylation. That is, genetic 
mutations and epigenetic landscapes can be used to determine cancer types and sub-
types. Consequently, any causal analysis based exclusively on one component or single 

Abstract 

Background:  Methods for the multiview clustering and integration of multi-omics 
data have been developed recently to solve problems caused by data noise or limited 
sample size and to integrate multi-omics data with consistent (common) and differ‑
ential cluster patterns. However, the integration of such data still suffers from limited 
performance and low accuracy.

Results:  In this study, a computational framework for the multiview clustering method 
based on the penalty model is presented to overcome the challenges of low accuracy 
and limited performance in the case of integrating multi-omics data with consistent 
(common) and differential cluster patterns. The performance of the proposed method 
was evaluated on synthetic data and four real multi-omics data and then compared 
with approaches presented in the literature under different scenarios. Result implies 
that our method exhibits competitive performance compared with recently developed 
techniques when the underlying clusters are consistent with synthetic data. In the case 
of the differential clusters, the proposed method also presents an enhanced perfor‑
mance. In addition, with regards to real omics data, the developed method exhibits 
better performance, demonstrating its ability to provide more detailed information 
within each data type and working better to integrate multi-omics data with consist‑
ent (common) and differential cluster patterns. This study shows that the proposed 
method offers more significant differences in survival times across all types of cancer.

Conclusions:  A new multiview clustering method is proposed in this study based on 
synthetic and real data. This method performs better than other techniques previously 
presented in the literature in terms of integrating multi-omics data with consistent and 
differential cluster patterns and determining the significance of difference in survival 
times.
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omics will exhibit a causal reductionism resulting in unsatisfactory results [1]. The rapid 
advancement of high-production technology has produced a massive amount of data 
generated from patients with different types of cancer, facilitating the collection of dif-
ferent genome-scale datasets to address clinical and scientific challenges. The Cancer 
Genome Atlas (TCGA) is one of the most prominent projects. It provides a consider-
able amount of omics data obtained from different platforms (e.g. DNA methylation and 
gene expression). Therefore, developing methods for integrating different types of omics 
data and creating a comprehensive picture of a given disease or biological process is nec-
essary to improve disease detection, treatment and prevention [2].

Clustering is a popular technique for exploratory data analysis [3], and it has been used 
as a fundamental step in the comprehensive analysis of omics data to identify cancer 
subtypes [4–6] and detect correlated gene expression patterns [7]. Traditional cluster-
ing methods for omics data analysis involve one data type, such as DNA methylation [8]. 
However, information from one data type may be inconsistent due to a small number of 
samples compared with a large number of measurements, scale differences, collection 
bias, noise in each dataset and the complementary nature of information provided by 
different types of omics data. Several methods have focused on multi-omics data cluster-
ing to integrate information from different types of omics data [9–12] or used concord-
ant data structure to perform clustering [10, 12–16].

Although multiview clustering methods have significantly improved clustering per-
formance, some methods assume that underlying clusters for different data types are 
consistent clusters [11, 12, 16], whilst others assume that such clusters are differential 
clusters [17–19]. In such case, multi-omics data should have simultaneous consistent 
and differential cluster patterns in accordance with our intuition. A few integrative clus-
tering methods have been proposed recently to integrate multiview data with consist-
ent and differential cluster patterns [20–23]. The authors of [24] proposed a multiview 
clustering method to solve the multiview spectral clustering optimisation problem [17]; 
this method used the linear search technique. However, all previous studies reported 
low performance in integrating different data types. The optimisation problem exhibits 
orthogonality constraints. Several methods have been proposed to solve the optimisa-
tion problem with orthogonality, such as gradient-based methods [24–26], conjugate 
gradient methods [27, 28], projection-based methods [29], a constraint-preserving 
updating scheme [30, 31], a multiplier correction framework [32] and penalty function 
methods [33].

In the present study, we proposed a new approach for multiview clustering that aimed 
to integrate different types of data with consistent and differential cluster patterns. The 
current work developed the computational framework for multiview clustering pre-
sented in [23] to improve performance in integrating different types of omics data with 
consistent and differential cluster patterns. The procedures of the proposed method 
were based on the penalty model, and the first-order algorithm in [33] was used to solve 
the multiview spectral clustering optimisation problem with orthogonality constraints 
[21]. Moreover, we evaluated the performance of the proposed method on synthetic 
data. On the basis of the obtained high accuracy, we used the method on four different 
types of real multi-omics data. The experiment results demonstrated that the proposed 
method outperformed other methods presented in the literature.
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The major contributions of this work are as follows. Firstly, a new multiview cluster-
ing method is provided for integrating multi-omics data with consistent and differential 
cluster patterns. Secondly, the proposed method is used to determine the significance 
of difference in survival times. Finally, comprehensive experiments on several state-of-
the-art multiview clustering methods are performed to validate the proposed method. 
The remaining sections of this paper are organised as follows. "Related work" section 
provides a review of related work. "Proposed method" section presents the proposed 
method. "Results and discussion" section describes the experiments performed on data-
sets by using state-of-the-art algorithms for comparison. "Conclusion" section concludes 
the study.

Related work
In this section, we review related work on multiview clustering methods for integrating 
different types of data.

Currently available approaches can be classified into three types. The first type is based 
on a concordant data structure when performing clustering [10, 12–16]. iCluster is an 
integrative clustering method based on a Gaussian latent variable model with lasso-
type penalty terms to induce sparsity in coefficient matrices for feature selection. This 
approach’s significant computational complexity necessitates gene preselection. There-
fore, clustering outcomes are dependent on this step [12, 15]. To address the issue of 
gene preselection, a fused network method is proposed. This method uses sample net-
works as a foundation for integration and merges similarity networks built for each data 
type into a single combined similarity network via an iterative approach based on mes-
sage passing. The final clusters for a fused network are obtained using spectral clustering 
[13]. A multiple kernel learning method that aims to reduce the dimensions of data from 
different sources conserves the distance of neighbours for all data types by extending 
spectral clustering to accept several affinity matrices as input and then fuses matrices by 
using a linear combination with weight optimisation [12].

The second type is based on spectral clustering. The affinity aggregation spectral 
clustering method provides a framework for learning the spectral clustering similarity 
matrix to improve the robustness of spectral clustering by reducing the effect of unreli-
able and irrelevant features [34]. The authors of [21] and [22]aimed to maximise consist-
ency between clusters from different perspectives by using various cluster consistency 
measures. The formulation of an optimisation problem in [22] included an alternative 
computation of the eigenvectors of the regularised Laplacian matrix; thus, the method is 
less stable and more likely to yield the local optimum.

For the third type, multiview clustering methods have demonstrated remarkably 
improved clustering performance, although some of these methods assume that the 
underlying clusters across different data types are consistent clusters. For example, 
methods based on the application of cancer patients assume that the underlying sub-
types are the same across different data types [11, 12, 16]. The flaw of these methods 
is that they do not check whether genes, microRNA (miRNA) and other small mole-
cules exhibit the same cluster patterns across different subtypes. Several methods based 
on the assumption that underlying clusters across various data types are different have 
also been proposed by comparing clusters identified in different data or by merging 
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information that demonstrates differences in single objects [17–19]. Meanwhile, a few 
methods have focused on the problem of integrating different datasets with consistent 
and differential cluster patterns. The method in [22] tends to obtain the local optimum, 
whereas the methods in [21, 35] overly relax the original multiview ratio cut model, 
likely producing the information in each data type. The multiview clustering method 
based on manifold was proposed to solve the multiview spectral clustering optimisation 
problem [23] by using a linear search technique. All these methods exhibit lower per-
formance in integrating different data types. Therefore, we proposed a new multiview 
clustering method to obtain better performance.

Proposed method
In this section, we introduce the penalty model, the proposed method steps, the algo-
rithm, and the example for our method as follows.

Penalty model

By considering the following matrix optimization problem with orthogonality 
constraints:

where Ip is any p× p identity matrix, and f : Rn×p �→ R satisfies the following assump-
tion throughout this section. We start with the merit function that can be written as 
follows:

This merit function was firstly defined in Gao et  al. [36]. Equation (4.2) evaluates the 
function value reduction of the proximal linearised augmented Lagrangian algorithm 
(PLAM), where ψ : Rp×p → Rp×p , and ψ(X) = XT+X

2  denotes the linear operator for 
symmetrisation. The penalty model that minimises h(X) under a compact convex con-
straint (PenC) is as follows:

where M is a compact convex set that contains Stn,p.
Xiao et al. [33] demonstrated that the original problem 1 and the penalty model 3 are 

equivalent. They proposed the first-order method (PenCF) for solving problem 3. In our 
work, we used PenCF to solve our problem because our objective function was formu-
lated as

Steps of the proposed method

The proposed method has five steps. Firstly, to normalise each data type to have a stand-
ard normal distribution [10], we convert each data type into a patient–patient k-nearest 

(1)min
X∈Rn×p

f (X), s.t.XTX = Ip,

(2)h(X) = f (X)− 1

2
ψ(∇f (X)TX ,XTX − Ip) + β

4
XTX − Ip

2

F

(3)min
X∈M

h(X),

(4)f (X) = Tr
(

XTLX
)

.



Page 5 of 19AL‑kuhali et al. BMC Bioinformatics          (2022) 23:288 	

neighbour (NN) similarity network on the basis of a spectral clustering method [37, 
38]. Secondly, we obtain a multiview spectral clustering optimisation problem from 
the multiview network clustering model to integrate multiple similarity networks [21, 
35]. Thirdly, we use the penalty model, i.e. the first-order algorithm from [33], to solve 
the multiview spectral clustering problem with orthogonality constraints. Fourthly, we 
repeat the processing of the penalty model until convergence is achieved, and we obtain 
the values of X that are represented by the matrix that contains the label for each patient. 
Finally, we use k -mean to cluster the matrix X into C1;C2;C3; ...;CK  . We present the 
details of these steps as follows.

Normalization

We start to normalise each feature across all data types to have a standard normal distri-
bution. We use the following form:

where ǧ denotes the feature after normalization, g denotes a feature of any data type, 
E(g) represents the mean of features, and Var(g) represents the variance of features.

Construction of the k‑NN similarity network

Consider M types of omics data measurements {Xm}Mm=1 (each with a dimension of ǧm 
) collected from N patient samples, such that Xm is a ǧm × N  matrix, where ǧm is the 
number of features of m. For each data type Xm , we construct a patient-to patient sim-
ilarity network Gm to model the local neighbourhood relationships between the sam-
ples. Let Gm = (Vm;Em;Am) denote a patient similarity network for data type m, where 
Vm = {v1; v2; v3...; vN } denotes the set of the nodes, Em denotes the edge set, and Am 
denotes the adjacency matrix. The nodes represent N patients, and the edges represent 
the connection between patients.

The adjacency matrix Am of the network GM is is a symmetric matrix whose entry 
am(i, j) represents the edge weight if there is an edge between node vi and vj , otherwise, 
Am(i, j) = 0 . To construct this similarity network, we firstly compute a similarity matrix 
for measuring pairwise similarity between each sample pair. Here, we use a common 
similarity measure, called Gaussian similarity, as the similarity metric [37, 38]:

where d = ||xm(i)− xm(j)|| is the Euclidean distance between xm(i) and xm(j) patients, 
and parameter α controls the width of the neighbourhoods. Several options are available 
for setting parameter α , here we use the most common choice by setting parameter α as 
the standard deviation of patients ||xm(i)− xm(j)|| . Then, we construct a k-NN network 
from the similarity matrix Sm . We symbolise Ni as a set of node vi neighbours with node 
vi , and the size of Ni is equal to k. We then connect vi and vj with an undirected edge with 
the edge weight as S(i, j) if vi ∈ Ni , as shown in Eq. (7).

(5)ǧ = g − E(g)
√

Var(g)
,

(6)Sm(i, j) = exp

(

d2

2α2

)

i = 1, 2, · · · ,N , j = 1, 2, · · · ,N ;
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Thus far, the k-NN similarity network Gm for each data type is constructed.

Multiview network clustering model for integrating the multiple similarity networks

To integrate all k-NN similarity networks, we first compute the Laplacian matrix Lm for 
each k-NN similarity network Gm for all data types.

where Am is the adjacency matrix for the k-NN similarity network Gm ; and Dm is the 
diagonal matrix for the k-NN similarity network Gm , whose entries are the degree of all 
the nodes(patients) in the m-th Gm.

Then, we present the multiview network clustering model [21, 35]. We start by denot-
ing the number of clusters as K across the M networks and Sm as the assignment of the N 
nodes into K clusters for the network GM.

We set

We firstly align the clusters obtained for different networks to show consistent and dif-
ferential cluster patterns across multiple networks. The computation is complex if we 
directly align the identified cluster patterns in each network. Thus, Zhang et al. proposed 
identifying cluster patterns for each network and aligning clusters for multiple networks. 
The cluster patterns in each network are identified using spectral clustering. For cluster 
alignment in different networks, the similarity between the mth cluster in network Gm 

and the mth cluster in network Gh is defined as 
Sm.,kS

h
.,k

||Sm.,k ||2||Sh.,k ||2
 . Zhang et  al. [21] and 

Chen et al. [35] aimed to maximize the similarities of the corresponding clusters in all 
networks, and the objective function of a multiview network clustering model is

where β is the parameter for controlling the contributions from intra- and inter-network 
connections. The optimization problem is formulated as

(7)Am(i, j) =
{

Sm(i, j), if vi ∈ Ni

0, otherwise.

(8)Lm = Dm − Am,

(9)
Smi,k =

{

1, if i ∈ Gm belongs to the k − th cluster
0, otherwise.

i = 1; 2; . . . ;N ,m = 1; 2; . . . ;M, k = 1; 2; . . . ;K .

(10)

ϕ

(

S1, S2, .., SM
)

=
M
∑

m=1

K
∑

k=1

(

Sm.,k

)T
(Dm − Am)S

m
.,k

(

Sm.,k

)T
Sm.,k

− β

M
∑

m,h=1

K
∑

k=1

(

Sm.,k

)T
Sh.,k

||Sm.,k ||2||Sh.,k ||2
,

(11)

min ϕ
(

S1, S2, . . . , SM
)

s.t. Smi,k ∈ {0, 1}, i = 1, 2, 3, . . .N ; m = 1, 2, 3, . . .M; k = 1, 2, 3, . . .K

K
∑

k=1

Sm,k = 1 for m = 1, 2, 3, . . .M,
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where Sm,k  represents the k-th column of Sm . We can cluster the nodes in each network 
from the first term in the objective function and obtain the alignment of clusters in dif-
ferent networks from the second term. The aligned clusters in all the views are obtained 
by solving optimization problem (11).

As shown below, the preceding optimisation problem is relaxed to a multiview spectral 
clustering optimization problem as follows:

where

To relax both constraints in optimization problem (11), we transform the constraints for 
each network into a single equation with Xm = Sm

||Sm||2
 . In the first constraint in optimi-

zation problem (11), the variables Sm are relaxed from binary values to real values. To 
combine the information of all networks, we relaxed the second constraint to XTX = IK  . 
However, this relaxation will result in the loss of information in the network [23]. To 
preserve information, we solve the following optimization problem:

Let Xm = Sm

||Sm||2
 . Then, the constraint XT

mXm = IK  is direct relaxation of 
∑K

k=1 S
m
,k = 1 , 

and it retains more information than in the optimization problem (11).
The problem  (14) is an optimization problem with orthogonality constraints. 

The orthogonality constraints can be expressed as a Stiefel manifold Stn,p , which 
X ∈ Stn,p =

{

X ∈ Rn×p|XTX = Ip
}

 . Thus, problem (14) can be written as

which is an optimization problem defined in manifold.

Solving the optimization problem

In this step, we solve optimization problem (15) by using the penalty model, i.e. the first-
order algorithm from [33]. This algorithm iteratively implements steps.

Step 1 As mentioned earlier, Xiao et al. [33] demonstrated that the original problem (1) 
and the penalty model 3 are equivalent. We begin by computing the gradient of the aug-
mented Lagrangian [36] to approximate problem  (15). The gradient of the augmented 
Lagrangian function with respect to X is formulated as

(12)min
Xm∈RN×K

Tr
(

XTLX
)

s.t. XTX = I ,

(13)L =









L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...
0 0 · · · LM









− β









0 In · · · In
In 0 · · · In
...

...
. . .

...
In In · · · 0









X =









X1

X2

...
XM









.

(14)min
Xm∈RN×K

Tr
(

XTLX
)

s.t. XT
mXm = IK , m = 1; 2; . . . ;M.

(15)min
{Xm}Mm=1∈StK ,N

Tr
(

XTLX
)

,

(16)Dm = ∇Xϕ(Xm, δ) = ∇f (Xm)+ Xmδ(Xm)+ βXm

(

XT
mXm − Ip

)

,
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where Dm = ∇Xϕ(Xm, δ) denotes the gradient of the augmented Lagrangian, and 
∇f (Xm) represents the gradient of the objective function 4. We computed the gradient of 
the objective function as

and δ(X) is the Lagrangian multiplier. The PLAM method in [36] is shown as the closed-
form expression of the Lagrangian multipliers δ(X) , which is defined as

where the operator ψ is defined from Eq. (2) as follows,

From Eqs.  (18) and  (19), we compute the Lagrangian multiplier to have the following 
form:

We use Eq. (16) to calculate the gradient of the augmented Lagrangian.
Step 2 We perform the following iterations in this step. We compute 

X̃m+1 = Xm − µmDm , and then we check if �Xm+1�F is greater than the parameter r. If yes, 
then

If �Xm+1�F is not greater than r, then Xm+1 = X̃m+1 , where µm is the stepsize, and r is 
the radius. We explain how we selected the two parameters in the “Results and discus-
sion” section. We repeat the processing of the aforementioned steps until convergence. 
Finally, we obtain the values of X.

k‑means

We begin by setting X as N ×M points in RK , and then use k-means clustering to obtain 
the clusters. The output is the class label of the patients (nodes) in each network. We call 
our method multiview clustering by using the penalty model (MVCPM).

Algorithm

In this subsection, we present the algorithm framework of the proposed method as shown 
in Algorithm 1. For convenience, we call it MVCPM.

(17)G = ∇X f (X) = ∇XTr
(

XTLX
)

= LX ,

(18)δ(X) = ψ

(

∇f (X)TX
)

,

(19)ψ(X) = XT + X

2
.

(20)δ(X) = ψ

(

∇Tr
(

XTLX
)T

X

)

= ψ

(

(LX)TX
)

=
XT

(

LT + L
)

X

2
.

(21)Xm+1 =
r

∥

∥

∥
X̃m+1

∥

∥

∥

F

X̃m+1.
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Example for the proposed method

Figure 1 presents an illustrative example of our method’s steps.

Fig. 1  Illustrative example of method steps
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Results and discussion
We investigate the performance of our method (i.e. MVCPM) in this section. The 
performance of the proposed method is compared with several recently developed 
methods by using synthetic and real data. The comparison methods are the affinity 
aggregation for spectral clustering (AASC) algorithm [34], the multiview clustering 
based on manifold optimisation (MVCMO) method [23] and the multiview spectral 
clustering (MVSC) method [21].

Comparison using synthetic data

We begin by simulating network structures because all the methods mentioned ear-
lier have been proposed using network tools. The networks are generated via the sto-
chastic block model [39]. We begin by simulating network structures because all the 
methods mentioned earlier have been proposed using network tools. The networks 
are generated via the stochastic block model [39]. Assume that M views are present, 
and N is the number of nodes in each view. First, the number of N nodes is assigned 
to K. Then, the connections within and between different clusters are generated 
using a given probability matrix, in which diagonal entries specify connection prob-
abilities within clusters. The other entries specify connection probabilities between 
corresponding clusters. To obtain the results when between cluster connections are 
changed, we use the following four connection probability matrices, with the within 
cluster connection probability being larger than that between clusters:

The entries of main diagonal (l, l) for each probability matrix represent the connection 
probabilities within cluster l, whilst the entries (l, s); l �= s represent the connection 
probabilities between the cluster l and cluster s.

To evaluate its performance, the proposed method is compared with existing meth-
ods in the literature under different scenarios. Firstly, the performance of the numbers 
of M views and N nodes is analysed when setting the same cluster size. For example, we 
set the cluster size as (50, 50, 50)N = 150 and M = 3 to test the performance of the pro-
posed method and as (200, 200, 200) , N = 600 and M = 5 to emphasise the superiority 
of our presented method. Meanwhile, performance is analysed under different cluster 
sizes, i.e. cluster size is set as (50, 50, 50), (30, 90, 30), (40, 60, 50) with N = 150 , M = 3 , 
and (200, 150, 250), (230, 270, 100), (180, 160, 260), (150, 310, 140), (130, 250, 220) when 
N = 600 and M = 5.

To see the performance of all the methods, we repeat the experiments 50 times for 
each setting. Then, we calculate the identification accuracy of the clusters, wherein 
identification accuracy is represented by the Rand index, which is defined as

(22)

P1 =
1

n





16 0 0
0 18 0
0 0 17



 P2 =
1

n





16 0.4 0.6
0.4 18 0.55
0.6 0.55 17





P3 =
1

n





16 0.8 1.2
0.8 18 1.1
1.2 1.1 17



 P4 = 1

n





16 1.2 1.8
1.2 18 1.65
1.8 1.65 17



 .
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where TP, TN, FP and FN represent the numbers of true positive, true negative, false 
positive and false negative, respectively. TP is the number of nodes in clusters i and j, 
and the others can be defined similarly.

The results are presented in Tables  1, 2, 3 and 4. To see the results of the 50 times 
experiments, we list the mean Rand index and the standard deviation within brackets for 
each setting.

(23)R = TP + TN

TP + TN + FP + FN
,

Table 1  Comparison between the performance of different methods, when the clusters size the 
same across all M views, N = 150 , M = 3 , and cluster size: (50, 50, 50), (50, 50, 50), (50, 50, 50)

Method P1 P2 P3 P4

MVCPM 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

MVSC 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.99(0.01)

MVCMO 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.99(0.01)

AASC 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

Table 2  Comparison between the performance of different methods, when the clusters size is 
different across all M views, M = 3 , N = 150 , and cluster size: (50, 50, 50) , (30, 90, 30) , (40, 60, 50)

Method P1 P2 P3 P4

MVCPM 1.00(0.00) 1.00(0.01) 0.97(0.00) 0.97(0.01)

MVSC 0.99(0.01) 0.98(0.01) 0.94(0.12) 0.89(0.16)

MVCMO 0.99(0.01) 0.99(0.01) 0.97(0.07) 0.97(0.02)

AASC 0.73(0.00) 0.73(0.00) 0.73(0.01) 0.73(0.01)

Table 3  Comparison between the performance of different methods. When the size of the cluster is 
the same across all M views, M = 5 , N = 600 , and cluster size: (200, 200, 200)

Method P1 P2 P3 P4

MVCPM 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

MVSC 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

MVCMO 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

AASC 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

Table 4  Comparison between the performance of different methods. When the size of the cluster 
is different across all M views, M = 5,N = 600 , and cluster size:(200, 150, 250),(230, 270, 100) , (180, 160, 260) , 
(150, 310, 140) , (130, 250, 220)

Method P1 P2 P3 P4

MVCPM 0.92(0.01) 0.93(0.00) 0.93(0.01) 0.89(0.02)

MVSC 0.91(0.01) 0.90(0.02) 0.77(0.06) 0.76(0.04)

MVCMO 0.90(0.01) 0.91(0.00) 0.90(0.02) 0.78(0.03)

AASC 0.56(0.56) 0.56(0.56) 0.56(0.56) 0.56(0.56)
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As shown in Tables 1 and 3, when cluster sizes are the same across all M views, all four 
methods can cluster the nodes with a mean Rand index close to 1 and a lower standard 
deviation. Thus, all the methods exhibit comparable performance and demonstrate the 
significance of data integration, with AASC and our method performing the best with a 
ratio of 0.01.

Tables 2 and 4 present the results of the four methods when cluster sizes are different. 
Our method outperforms all the other methods. The primary reason is solving optimiza-
tion problem 15. Most of the other methods formulate the optimization problem under 
the assumption that cluster sizes are the same across different networks. Then, they 
focus on finding the common features of the cluster to perform clustering. In AASC, 
for example, the M vectors that minimize the ratio cut of the weighted combination of 
all the networks are computed. By clustering these M vectors, the common cluster for 
all the considered networks can be obtained. In Tables 2 and 4, the mean Rand index 
of the AASC method is lower than those of the other methods. Consequently, all the 
methods can detect cluster differences between different views, whereas the AASC 
method regards them as the same. Thus, MVCPM, MVSC and MVCMO exhibit bet-
ter performance than the AASC method. The MVCPM method outperforms MVSC 
and MVCMO, which has the highest mean Rand index. The MVCPM method performs 
more consistently when networks are fewer, resulting in a considerably lower standard 
deviation of the Rand index.

Selection of the parameters of the proposed method

In this section, we describe the method for choosing the values of the penalty parameter 
β , the stepsize µk , and the radius r.

Penalty parameter β . In Theorem 4.1 [33], β should be sufficiently large to guarantee 
convergence. Although, we can estimate a suitable β that meets the requirements of pre-
vious theorems, such β is too large to be practically helpful. In our method, we set β to 
be less than t = ||f (X0)|| . In the selected penalty model, the compact convex set as the 
ball Br with radius r > √

p.
Stepsize µk Practically, the upper bound of µk used in Theorem 4.1 is too restrictive. 

Therefore, we recommend using the alternating Barzilai–Borwein (ABB) step size [15] 
and the Barzilai–Borwein (BB) stepsize [40].

ABB step size

BB step size

where Sm−1 = Xm − Xm−1 and Ym−1 = Dm − Dm−1.
Moreover, we compare the penalty model for solving problem  (15) with n = 1000 , 

p = 30 and different pairs of β and r: β = 10−6t, 10−5t, 10−4t, 10−3t, 10−2t, 10−1t, t, 10t 
and r = √

p, 1.01
√
p, 1.04

√
p, 1.06

√
p, 1.3

√
p, 1.8

√
p, 3

√
p, 7

√
p, 10

√
p,
√
p.

(24)µABB
m =

{

µBB1
m , for odd m

µBB2
m , for even m.

(25)µBB1
m =

STm−1Sm−1

STm−1Ym−1

µBB1
m =

STm−1Ym−1

YT
m−1Ym−1
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The results are presented in Fig. 2.
From Fig.  2, we can conclude that our algorithm is insensitive to the choice of r 

when r ≤ 2 . Furthermore, a small β can lead to a fast convergence rate. Consequently, 
we suggest choosing β = 0.01t whilst r = 1.04

√
p.

To guarantee fair comparison over the literature, we set parameter β = 1 to deter-
mine the performance of our method compared with those of other methods.

Real data experiments

In this section, we use five real different types of cancer data to evaluate the perfor-
mance of the proposed method and compare it with those of other methods. We 
select two commonly used measures, namely, silhouette score to measure clustering 
performance [41] and the P-value in the Cox log-rank test to evaluate the significance 
of difference between survival times [42].

Dataset

This study uses real multi-omics data generated by TCGA. We use the five data types 
of cancer processed in [16]. The data types are glioblastoma multiforme (GBM), lung 
squamous cell carcinoma (LSCC), kidney renal clear cell carcinoma (KRCCC) and 
colon adenocarcinoma (COAD). Each data type of cancer contains miRNA expres-
sion, DNA methylation and gene expression data type.

Fig. 2  Show the results of the different settings for the parameters of the penalty model for solving the 
problem (15)
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Comparison using silhouette score

We begin by constructing the k-NN similarity networks for each data type, choosing the 
five nearest neighbours and setting the number of clusters K as that in [16]. Then, we 
apply the proposed method to the k-NN similarity networks to obtain the final result.

We use the silhouette score to measure the clustering performance of our method 
(MVCPM) compared with the performance of other methods [41]. For the AASC 
method, we use the code developed in [34]. For the MVCPM and MVSC methods, we 
use the code generated in [23]. We compute the silhouette score of the common clusters 
and the average silhouette score of all data types to obtain the cluster assignment in each 
dataset and the common clusters across the three datasets. We also calculate the silhou-
ette score of integrative clustering by using k-NN to assign patients who are previously 
clustered in different clusters into one cluster because cluster assignment in the three 
data types is not the same. We denote the silhouette score of the common clusters, the 
average silhouette score and the silhouette score for integrative clustering as (MVCPM-
com, MVCMOcom, MVSCcom), (MVCPMavg, MVCMOavg, MVSCavg) and (MVCP-
Mint, MVCMOint, MVSCint), respectively. The results are provided in Table 5.

From Table 5, the common clusters identified using our method provide the highest 
silhouette score. The proposed method can capture common cluster structures effi-
ciently in multiple views. The average silhouette scores are also higher than those using 
other methods in three of the four datasets. This result shows that MVCPM maintains 
the clustering results in each dataset. The cluster assignment in the three data types are 
not the same; thus, we use k-NN to assign patients that are originally clustered into dif-
ferent clusters into one cluster and compute silhouette scores as MVCPMint, MVC-
MOint, AASCint and MVSCint. In this case, the common silhouette score and average 
silhouette scores of all the methods are higher when compared with AASC, implying 
that all the methods, except for AASC, can identify the common clusters and capture 
the common cluster structures efficiently across multiview data. Moreover, all the meth-
ods have a high silhouette score for integrative clustering, except for AASC, indicating 
that all the methods can integrate clustering with good performance.

When we compare MVCPM, MVCMO and MVSC, MVCPM has the highest silhou-
ette score for common clusters and the average silhouette score. MVCPM provides more 
detailed information within each data type, is better for integrating different types of 

Table 5  Comparisons all methods with real multi-omics data

Method KRCCC​ COAD GBM LSCC

MVCPMcom 0.5021 0.4169 0.4206 0.4236

MVCPMavg 0.4948 0.4100 0.4200 0.4437

MVCPMint 0.4904 0.3631 0.3870 0.3431

MVSCcom 0.3869 0.3853 0.2740 0.2345

MVSCavg 0.3782 0.3619 0.2395 0.2127

MVSCint 0.3786 0.2952 0.2136 0.1732

MVCMcom 0.4177 0.3958 0.2797 0.2475

MVCMOavg 0.3969 0.3725 0.2548 0.2296

MVCMOint 0.3581 0.2836 0.2063 0.1812

AASC 0.2815 0.2926 0.1944 0.1803
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omics data and simultaneously has consistent and differential cluster patterns. MVCP-
Mcom and MVCPM avg are greater than MVCMO avg, MVCMOcom, MVSCavg and 
MVSCcom; therefore, our method has the highest silhouette score for integrative clus-
tering. For example, MVCPMint in COAD is about 0.07 higher than MVCMOint, whilst 
MVCPMint is about 0.06 higher than MVSCint. Thus, MVCPM is the best method for 
integration the clustering.

Comparison by Cox survival P‑values

In this subsection, we compare the performance of our proposed method with those of 
other methods by using the P-value in the Cox log-rank test to determine the signifi-
cance of the difference in survival times [42]. The lowest P-values are used to determine 
the number of clusters for each cancer type in our proposed method. To ensure that 
the proposed method’s results are comparable with those of the other methods, we set 
the number of clusters for each cancer type for the other methods to be the same as the 
number of clusters for our proposed method. The results are provided in Table 6.

As indicated in Table 6, our method provides more significant differences in survival 
times across all types of cancer studied compared with the other methods. The P-value 
produced is comparable with the P-value produced by the other methods. Thus, the 
survival plots for all methods across COAD, GBM, KRCCC and LSCC cancers are pre-
sented in Figs. 3, 4, 5 and 6.

Conclusion
This paper proposed a new method for multiview clustering of This study proposed a 
new method for the multiview clustering of multi-omics data based on a penalty model. 
Synthetic data and four different types of real multi-omics data were used to test the 
performance of the proposed method. We adopted the block model to generate these 
data in synthetic data and applied the proposed method and other methods. To ensure 
the performance of the proposed method, we compared it with some recently developed 
multiview clustering methods by using synthetic data. The results showed that when the 
underlying clusters were consistent, the proposed method exhibited competitive perfor-
mance with the recently developed methods. However, the performance of the proposed 
method was better when the underlying clusters were differential.

For real multi-omics data, we downloaded the gene expression, miRNA expression 
and DNA methylation datasets for five different types of real multi-omics data. These 
are GBM, COAD, LSCC and KRCCC from TCGA. To test the clustering performance 
of all the methods, we used two commonly used measures: silhouette score to meas-
ure clustering performance and P-value in Cox log-rank test to evaluate the significance 

Table 6  Comparison of Cox survival p-values for all methods across all types of cancer

Cancer type Our method MVCPM MVCMO MVSC AASC

COAD (6cluters) 3.7× 10−2 6.5× 10−2 3.4× 10−2 13× 10−2

GBM (4cluters) 1.2× 10−4 1.8× 10−2 1.9× 10−3 4× 10−3

LSCC (3cluters) 8.6× 10−3 9× 10−3 8.6× 10−3 8.4× 10−2

KRCCC (3cluters) 38× 10−2 26× 10−2 38× 10−2 41× 10−2
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of difference between survival times. For the silhouette score, the proposed method 
obtained the highest silhouette score and provided more detailed information within 
each data type. In Cox survival P-values, the proposed method resulted in more signifi-
cant differences in survival times across all studied data types.

Thus, the proposed method can be considered the best approach for integration and 
clustering. Although our method performed well in synthetic and real omics data analy-
ses, some issues still need to be addressed. For example, we set parameter β = 1 and 
the number of clusters to be three throughout our study to guarantee fair comparison 

Fig. 3  Kaplan-Meier survival curves of glioblastoma multiforme (GBM) of all methods (p-values are recorded 
in Table 6)

Fig. 4  Kaplan-Meier survival curves of lung squamous cell carcinoma (LSCC) of all methods (p-values are 
recorded in Table 6)
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with conventional methods. However, the number of clusters is not practically optional 
because it must be selected on the basis of the eigengap. Moreover, no guarantee theo-
retically exists to determine the optimal number of clusters. Consequently, developing 
an excellent statistical method for determining the optimal number of clusters in net-
work-based clustering is still a worthwhile research.
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recorded in Table 6)
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