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Abstract: Pain is an important non-motor symptom of Parkinson’s disease (PD). It negatively impacts
the quality of life. However, the pathophysiological mechanisms underlying pain in PD remain to be
elucidated. This study sought to use electroencephalographic (EEG) coherence analysis to compare
neuronal synchronization in neuronal networks between patients with PD, with and without pain.
Twenty-four patients with sporadic PD were evaluated for the presence of pain. Time-frequency
and coherence analyses were performed on their EEG data. Whole-brain and regional coherence
were calculated and compared between pain-positive and pain-negative patients. There was no
significant difference in the whole-brain coherence between the pain-positive and pain-negative
groups. However, temporal–temporal coherence differed significantly between the two groups
(p = 0.031). Our findings indicate that aberrant synchronization of inter-temporal regions is involved
in PD-related pain. This will further our understanding of the mechanisms underlying pain in PD.
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1. Introduction

Parkinson’s disease (PD) is a well-known neurodegenerative disease. It is charac-
terized by motor and non-motor symptoms (NMSs) [1,2]. Dopaminergic medications
and deep brain stimulation therapy improve the motor symptoms and quality of life of
patients with PD. However, NMSs are frequently difficult to treat. Many patients with PD
experience pain as an NMS, which negatively impacts their quality of life [3]. PD-related
pain never responds to analgesic medications, although it sometimes responds to dopamin-
ergic medications [4]. Moreover, the mechanisms underlying pain in PD have not been
sufficiently studied [5].

Pain in patients with PD may result from altered sensory processing [6]. Previous stud-
ies found that, as seen in central sensitization, abnormal neuronal synchronization occurs
in the brain networks of patients with PD with pain [7]. Electroencephalography (EEG) is a
simple method for measuring brain neuronal activity and synchronization [8]. Quantitative
EEG analysis provides information about whole-brain and regional connectivity [8]. EEG
coherence has been used as a biomarker for the clinical severity of PD [9].

Previous studies on neuronal synchronization have compared patients with PD with
healthy controls. However, a comparison between patients with PD with and without pain
has not yet been performed. Thus, our study aimed to elucidate the association between
neuronal synchronization in neuronal networks and PD-related pain, using EEG coherence
analysis. To this end, we investigated the difference in coherence between patients with
PD, with and without pain.

2. Materials and Methods
2.1. Patients and Clinical Data

We included patients with continuous sporadic PD who visited Nara Medical Univer-
sity Hospital, Nara, Japan. The inclusion criteria were (1) Japanese patients with confirmed
PD who met the U.K. PD Society Brain Bank clinical diagnostic criteria [10], (2) patients
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aged 40–90 years, and (3) patients with no significant brain lesions on magnetic resonance
imaging. The exclusion criteria were (1) patients receiving medications that could influ-
ence the EEG findings (e.g., antianxiety medication, antidepressant medication, such as
serotonin–noradrenaline reuptake inhibitors and selective serotonin reuptake inhibitors,
antiepileptic medication, and opioids), (2) patients who had undergone operations, such as
deep brain stimulation, (3) patients with severe cognitive impairment (Mini-Mental State
Examination score < 10), and (4) patients with other known causes of pain (e.g., orthopedic
disease, peripheral neuropathy, spinal cord disease). Pain was assessed using the Move-
ment Disorder Society Unified Parkinson’s Disease Rating Scale Part I (MDS-UPDRS-I)
scores for the item of pain and other sensations (Q 1.9) [11]. This item was rated on a scale
of 0–4: (0—normal: no uncomfortable feelings such as pain, aches, tingling, or cramps.
1—slight: I have these feelings. However, I can do things and be with other people without
difficulty. 2—mild: These feelings cause some problems when I do things or am with other
people. 3—moderate: These feelings cause a lot of problems, but they do not stop me from
doing things or being with other people. 4—severe: These feelings stop me from doing
things or being with other people.). EEG (Neurofax EEG-1224, Nihon Kohden, Tokyo,
Japan) was performed, using the international 10–20 electrode placement system and a
sampling rate of 200 Hz. The electrodes were referenced to linked earlobes (A1 + A2).
During EEG recordings, patients were instructed to relax in a supine position and avoid
blinking as much as possible. The EEG examinations and clinical assessment were carried
out at the same time of day on separate days within one month with the patients in the “on”
phase after 1 to 2 h, while on their usual medications. As such, we sought to exclude the
cases of dystonia-related pain in the “off” phase. This study was approved by the Clinical
Research Ethics Board of Nara Medical University. Informed consent was obtained from
all patients.

2.2. EEG Analysis

EEG data were analyzed, using MATLAB (version R2020a; Math Works) and EEGLAB
toolbox (version 14.1.2) [12]. The EEG data were band-pass filtered, using finite-impulse
response filtering. A low-pass filter of 45 Hz and high-pass filter of 1 Hz were applied. Since
EEG data are often contaminated with artifacts at the beginning of a recording, we manually
selected 60 s of resting-state eyes-closed EEG data 5 min after recording began. These data
were segmented into 2 s epochs, and artifact-contaminated epochs were removed. Time-
frequency analysis was performed across all 16 electrodes, using fast Fourier transformation
with a wavelet transform and a frequency resolution of 1 Hz (Figure S1). The EEG data
of the following four frequency bands were separately analyzed and compared between
the groups: theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (31–45 Hz) [13].
The EEG data underwent notch filtering at 50 Hz and were decomposed, using wavelet
transformation with two cycles per frequency band. A coherence analysis was performed
between all electrode pairs [12]. All 16 electrodes were assigned to four brain regions
(frontal—Fp1, Fp2, F3, F4, F7, and F8; parietal—C3, C4, P3, and P4; temporal—T3, T4, T5,
and T6; and occipital—O1 and O2), and electrode pairs were categorized into 10 groups
representing brain regions (frontal–frontal (FF); frontal–parietal (FP); frontal–temporal (FT);
frontal–occipital (FO); parietal–parietal (PP); parietal–temporal (PT); parietal–occipital (PO);
temporal–temporal (TT); temporal–occipital (TO); occipital–occipital (OO)). Whole-brain
coherence was assessed by averaging the coherence values of all the electrode pairs, and
regional coherence was assessed by averaging the coherence values of electrode pairs based
on the region for each frequency band [14,15]. For example, the value of TT coherence
was assessed by averaging the values of T3-T4, T3-T5, T3-T6, T4-T5, T4-T6, and T5-T6 [14].
The inter-regional coherence indicated FP, FT, FO, PT, PO, and TO coherence, and the
intra-regional coherence indicated FF, PP, TT, and OO coherence. To evaluate inter-and
intra-regional connectivity, regional coherence was compared between the pain-positive
and pain-negative groups. We also probed the relationship between regional coherence
and clinical characteristics in both groups.
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2.3. Statistical Analyses

The means of variables were compared between pain-positive and pain-negative
patients with PD, using an independent two-sample t-test and chi-square test. A Shapiro–
Wilk test was used to assess the distribution of the data. Statistical significance was set at
p < 0.05. A correlation was considered strong if the correlation coefficient (r) was >0.40.
Analyses were performed in SPSS 22.0 J (IBM Japan, Tokyo, Japan).

3. Results

Twenty-four patients with PD (14 men and 10 women) fulfilled the selection crite-
ria and were enrolled in this study. The pain-positive and pain-negative groups com-
prised 12 patients (7 men and 5 women) each. The demographic characteristics, levodopa-
equivalent daily dose, and clinical features of the 24 patients with PD are summarized in
Table 1. There was no statistically significant difference between the two groups in these
variables, which included key variables, such as age, disease duration, MDS-UPDRS-III
score, levodopa-equivalent daily dose [16], and Hoehn–Yahr scores. The mean score of
MDS-UPDRS-I for pain and other sensations was 2.25 ± 0.75. One patient (8.3%) had a
score of 1 (slight), eight (55.7%) patients had a score of 2 (mild), two (16.7%) patients had a
score of 3 (moderate) and one (8.3%) patient had a score of 4 (severe; Table 1). Four of the
patients (33%) had continuous pain, and eight (67%) patients had discontinuous pain.

Table 1. Demographic and clinical characteristics of the participants.

PD PD with Pain PD without Pain p Value

Number 24 12 12
Age 72.29 ± 8.70 72.58 ± 10.80 72.0 ± 6.42 0.87
Sex 14 Male/10 Female 7 Male/5 Female 7 Male/5 Female 1.00

Disease Duration, years 7.25 ± 4.40 8.08 ± 5.28 6.5 ± 3.66 0.40
Pain Duration, years 4.0 ± 2.61 NA NA

H–Y stages
H–Y II 7 (29.2%) 3 (25.0%) 4 (33.3%)

0.69H–Y III 9 (37.5%) 4 (33.3%) 5 (41.7%)
H–Y IV 8 (33.3%) 5 (41.7%) 3 (25.0%)

LEDD, mg 598.86 ± 364.99 621.60 ± 368.89 576.13 ± 375.96 0.77
L-dopa 23 (95.8%) 12 (100%) 11 (91.7%) 0.31

D-Agonist 12 (50%) 7 (58.3%) 5 (41.7%) 0.41
MAOBI 3 (16.7%) 1 (8.3%) 2 (16.7%) 0.54

MDS-UPDRS
Total 61.13 ± 27.92 71.25 ± 34.21 51.0 ± 15.4 0.075
Part I 12.92 ± 6.95 13.92 ± 8.17 11.92 ± 5.66 0.49

Pain and other sensations score
1 (Slight) 1 (8.3%) NA NA
2 (Mild) 8 (55.7%) NA NA

3 (Moderate) 2 (16.7%) NA NA
4 (Severe) 1 (8.3%) NA NA

Part II 16.13 ± 9.76 19.58 ± 11.57 12.67 ± 6.27 0.082
Part III 26.83 ± 13.00 31.58 ± 15.22 22.08 ± 8.5 0.072
Part IV 5.25 ± 3.71 6.17 ± 4.09 4.33 ± 3.20 0.23

MMSE score 24.58 ± 4.14 25.0 ± 3.95 24.17 ± 4.45 0.63
FAB score 12.96 ± 2.56 13.08 ± 3.06 12.83 ± 2.08 0.82

Note: Data are presented as mean ± SD. Disease duration was calculated as the number of years since PD diagnosis. Hoehn and
Yahr stages were used to assess the severity of motor symptoms. The Movement Disorder Society Unified Parkinson’s Disease Rat-
ing Scale was administered to the patients in the “on” phase. The total dose of medication was converted to a levodopa-equivalent
daily dose in mg [16]. PD = Parkinson’s disease; H–Y = Hoehn and Yahr; LEDD = levodopa-equivalent daily dose; L-dopa = L-3, 4-
Dihydroxyphenylalanine; D-Agonist = dopamine agonist; MAOBI = monoamine oxidase-B inhibitors; MDS-UPDRS = Movement Disorder
Society Unified Parkinson’s Disease Rating Scale; MMSE = Mini-Mental State Examination; FAB = frontal assessment battery; SD = standard
deviation; NA = not available.

No significant differences were identified in whole-brain coherence in the alpha band
between the pain-positive and pain-negative groups (p = 0.39). The coherence of the
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TT region in the alpha band significantly differed between the two groups (p = 0.031;
Table 2) and was not correlated with the MDS-UPDRS-III score or disease duration in
the pain-positive group (r = −0.053 and −0.048, respectively). However, these variables
were correlated in the pain-negative group (r = −0.40 and 0.55, respectively; Figure 1).
The pain-positive group was further divided into limb-pain (n = 5) and trunk-pain (n = 7)
groups, and the whole-brain coherence, regional coherence, MDS-UPDRS-III score, and
disease duration were compared between these two groups. The coherence of the TT region
was higher in the trunk-pain group than in the limb-pain group (p = 0.034). There were no
significant differences between the limb-pain and trunk-pain groups in the MDS-UPDRS-III
score (p = 1.00) or disease duration (p = 0.40).

Table 2. Comparison of the whole-brain and regional coherence values in the alpha band between
patients with PD, with and without pain.

PD with Pain PD without Pain p Value

Whole brain 0.46 ± 0.12 0.42 ± 0.07 0.39
FF 0.63 ± 0.11 0.59 ± 0.08 0.40
FP 0.45 ± 0.15 0.42 ± 0.07 0.49
FT 0.37 ± 0.12 0.32 ± 0.07 0.16
FO 0.31 ± 0.13 0.27 ± 0.12 0.35
PP 0.58 ± 0.13 0.58 ± 0.08 0.96
PT 0.46 ± 0.12 0.45 ± 0.08 0.77
PO 0.52 ± 0.11 0.52 ± 0.11 0.91
TT 0.44 ± 0.10 0.35 ± 0.08 <0.05
TO 0.44 ± 0.11 0.44 ± 0.11 0.92
OO 0.64 ± 0.10 0.60 ± 0.10 0.35

Note: Data are presented as mean ± SD. FF = frontal–frontal; FP = frontal–parietal; FT = frontal–temporal;
FO = frontal–occipital; PP = parietal–parietal; PT = parietal–temporal; PO = parietal–occipital; TT = temporal–
temporal; TO = temporal–occipital; OO = occipital–occipital; SD = standard deviation.
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Figure 1. Pearson correlation coefficients and graphs for the correlation of temporal–temporal
coherence in the alpha range with disease duration and MDS-UPDRS-III score. The lines indicate the
approximate line using the least squares method. MDS-UPDRS-III = Movement Disorder Society
Unified Parkinson’s Disease Rating Scale Part III.
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4. Discussion

Here, EEG coherence in the alpha frequency band, used to evaluate neuronal synchro-
nization in brain networks, was associated with pain modulation. Functional abnormalities
can result in the reorganization of the sensory system [17]. This can lead to central sen-
sitization, defined as an increased responsiveness of nociceptive neurons in the central
nervous system to normal or subthreshold afferent input [18]. Pain hypersensitivity is
elicited by neural signal amplification. Central sensitization has been thought to play a
role in unexplained pain in several disorders, such as fibromyalgia, epilepsy, Alzheimer’s
disease, and PD [19,20]. Alongside limb pain, patients with PD commonly experience trunk
pain, including abdominal pain [21]. Various factors, such as altered posture, muscle tone
abnormalities, and truncal dystonia, contribute to trunk pain in patients with PD. However,
trunk pain is frequently neglected and insufficiently treated in patients with PD [22].

An EEG coherence analysis revealed that patients with PD with pain showed higher
regional coherence, representing increased functional connectivity, in the temporal regions.
The temporal lobe is generally responsible for establishing long-term memory, cognitive
and emotional functions, and auditory processing [23]. However, several neuroimaging
studies have reported altered activation within this region [24–26]. In patients with chronic
low back pain, the anterior hippocampus, a part of the medial temporal lobe, showed
significantly lower levels of activity and functional connectivity than the medial prefrontal
cortex [26]. The anterior hippocampus is involved in mood-related functions and psy-
chological modulation, likely through interactions with the amygdala. The amygdala
regulates psychological responses and has been thought to play a role in pain-related
negative affect processing. The amygdala may induce hypoalgesia to modulate pain in
individuals with psychological stress. Anterior hippocampus–amygdala interactions are
known to be involved in both the encoding and retrieval of affective information, and this
has been observed in individuals with experimental pain. Thus, pain-related abnormal
anterior hippocampal activity may be related to psychological dysregulation. Pain may be
considered a stressor, and it elicits a prolonged stress response; this implies that pain poses
an allostatic load on the neuronal networks. The hippocampus is particularly sensitive
to the neurotoxic effects of prolonged exposure to psychological stress, which affects its
structure and function [26]. Our results are consistent with the previous findings, demon-
strating that aberrant connectivity in the temporal lobe could result in pain. Moreover, we
found that temporal lobe connectivity was not correlated with the MDS-UPDRS-III score
or disease duration in patients with PD with pain, which is consistent with the findings
of a previous study [27]. These results suggest that higher temporal lobe inter-regional
connectivity is related to pain in patients with PD.

Our study sheds light on the possible mechanisms underlying PD-related pain; how-
ever, several limitations should be considered. First, we presented a novel approach to
evaluate PD-related pain, using EEG coherence analysis. It may be key in elucidating
the mechanism of pain in PD cases. This clinical study was a pilot study with a limited
sample size [9]. Based on the obtained results, a large clinical trial should be performed to
validate our findings in the appropriate populations. Second, our study focused on the
difference in neuronal synchronization between patients with and without pain and did
not consider other clinical factors that might influence pain, such as depression [28], which
has been associated with abnormal connectivity in the default mode network in patients
with PD [29]. Many other factors, such as age, sex, and medical history, may also contribute
to the reorganization of functional connectivity in neuronal networks [30]. Third, we did
not assess pain intensity, because the intensity of PD-related pain fluctuates throughout the
day [31]. Additionally, to evaluate cortical–subcortical synchronization with pain, further
studies, such as stereo-EEG and functional MRI studies, are needed [7,32].

5. Conclusions

In conclusion, we performed an EEG coherence analysis in patients with PD, with
and without pain. Aberrant neuronal synchronization and abnormal inter-temporal lobe
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connectivity may be involved in PD-related pain. By performing the EEG analysis, we
examined the mechanisms of abnormal connectivity underpinning pain in PD. There have
been numerous basic and clinical research studies on pain in patients with PD; however,
the mechanism remains unclear. Therefore, it may be useful to evaluate pain from a new
perspective by performing a non-invasive neurophysiological technique.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/brainsci11091224/s1, Figure S1: Time frequency and coherence analysis on EEG data.
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