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Abstract

Hybridization is a potent evolutionary process that can affect the origin, mainte-

nance, and loss of biodiversity. Because of its ecological and evolutionary conse-

quences, an understanding of hybridization is important for basic and applied

sciences, including conservation biology and agriculture. Herein, we review and

discuss ideas that are relevant to the recognition of hybrids and hybridization.

We supplement this discussion with simulations. The ideas we present have a

long history, particularly in botany, and clarifying them should have practical

consequences for managing hybridization and gene flow in plants. One of our

primary goals is to illustrate what we can and cannot infer about hybrids and

hybridization from molecular data; in other words, we ask when genetic analyses

commonly used to study hybridization might mislead us about the history or nat-

ure of gene flow and selection. We focus on patterns of variation when hybridiza-

tion is recent and populations are polymorphic, which are particularly

informative for applied issues, such as contemporary hybridization following

recent ecological change. We show that hybridization is not a singular process,

but instead a collection of related processes with variable outcomes and conse-

quences. Thus, it will often be inappropriate to generalize about the threats or

benefits of hybridization from individual studies, and at minimum, it will be

important to avoid categorical thinking about what hybridization and hybrids

are. We recommend potential sampling and analytical approaches that should

help us confront these complexities of hybridization.

Introduction

Sexual reproduction that involves mating with other

individuals (outcrossing rather than selfing) and meiotic

recombination mix alleles among different genomic back-

grounds. Physical dispersal of individuals before reproduc-

tion moves alleles farther from where they originated by

mutation and is referred to as gene flow. At some point,

crosses can occur between individuals that are unrelated

enough that we refer to these as hybrids. Although

hybridization has sometimes been viewed as an unimpor-

tant dead end, there is a long history of interest in hybridiza-

tion as a potent creative and destructive evolutionary

process (e.g. Stebbins 1950; Ellstrand 1992; Rieseberg and

Wendel 1993; Buerkle et al. 2003; Arnold 2006). Numerous

cases where hybridization and introgression have had sub-

stantial ecological or evolutionary consequences in plants

are known. For example, hybridization between the sun-

flower species Helinathus annuus and Helinathus petiolaris

resulted in multiple distinct hybrid species (Rieseberg et al.

1990, 1995, 2003a), and hybridization in Populus affects

community composition and ecosystem processes (Driebe

and Whitham 2000; Martinsen et al. 2000; Whitham et al.

2006; Floate et al. 2016). Hybridization is particularly com-

mon among oak species, where it may spread or generate

adaptive genetic variation and where it has been proposed as

a key component of natural and human-induced invasions

(Petit et al. 2004; Moran et al. 2012).

The consequences of hybridization are directly relevant to

aspects of conservation biology and agriculture. Hybridiza-
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tion, whether natural or human induced, can affect the

origin, maintenance, and loss of biodiversity (Rhymer and

Simberloff 1996; Wolf et al. 2001; Buerkle et al. 2003;

Zalapa et al. 2010; Muhlfeld et al. 2014). Hybridization in

plants could help endemic species survive periods of climate

change (Becker et al. 2013) or result in extinction, when,

for example, native species are assimilated by non-native

species or experience demographic decline due to outbreed-

ing depression (Ellstrand 1992; Levin et al. 1996; Balao

et al. 2015; G�omez et al. 2015). Introgressive hybridization

also occurs between crops and their wild relatives, and this

too can have beneficial or detrimental consequences for bio-

diversity (Linder et al. 1998; Ellstrand et al. 2013; Hufford

et al. 2013; Warschefsky et al. 2014). Of particular interest

is the potential for crop–wild hybridization to allow modi-

fied or engineered genes to escape into the wild, which

could negatively affect native species or increase public dis-

trust of genetically modified crops (Ellstrand 2001; Stewart

et al. 2003; Chapman and Burke 2006; Garnier et al. 2014).

Another practical issue is whether and under what condi-

tions hybrid populations or taxa warrant conservation

efforts. Hybrids were not granted protection under the US

Endangered Species Act, but this was questioned in a federal

rule proposed in 1996 (this rule was never adopted; Allen-

dorf et al. 2001, 2013). The proposed federal rule used the

term ‘intercross’ rather than ‘hybrid’ to avoid a negative

connotation of the latter (Allendorf et al. 2013) and we sus-

pect that some people would view even natural hybrids as

less worthy of protection than ‘pure’ species (e.g. the deci-

sion to conserve eastern wolves has in part been based on

species or hybrid status; Rutledge et al. 2015). Clearly, the

potential outcomes and practical consequences of

hybridization are multifarious, and thus, different cases of

hybridization will need to be treated differently.

Confronting this complexity requires careful considera-

tion of what hybridization is, and when distinguishing

among different processes is necessary and possible. The

recognition of hybrids between named taxa is relatively

uncontroversial, but it is somewhat poorly resolved as to

what distance of a cross constitutes hybridization, and what

therefore qualifies as a hybrid (Harrison 1993; Arnold

2006; Allendorf et al. 2013). Similarly, different histories of

gene flow and selection, such as primary divergence versus

secondary contact, have been referred to as hybridization

(Barton and Hewitt 1985). However, discriminating among

these different histories could be necessary from a manage-

ment perspective, if, for example, we are to treat cases of

natural and human-induced hybridization differently as

suggested by Allendorf et al. (2001). Unfortunately,

different histories of hybridization can generate very similar

or identical patterns of genetic and phenotypic variation

(e.g. Barton and Hewitt 1985; Kruuk et al. 1999; Barton

and de Cara 2009). This means we might not always be able

to distinguish different histories even when doing so would

be useful.

In this article, we review and discuss ideas that are rele-

vant to recognition of hybrids and supplement these with

simulations to illustrate important contrasts. We acknowl-

edge that is atypical to have a paper contain review, synthe-

sis of concepts and novel simulations, but we think the

combination can be useful. The issues we address have a

relatively long history, some of which is underappreciated,

and clarifying these ideas should have practical conse-

quences for managing hybridization and gene flow in

plants. A reexamination of some of these points is worth-

while too because recent population genomic studies have

led to a greater appreciation of variation within species and

genomic heterogeneity in differentiation between species or

populations (e.g. Martin and Orgogozo 2013; Gompert

et al. 2014; Mandeville et al. 2015). Additionally, we have

learned more about models and approaches that can be

used to describe patterns of variation in hybrids (Patterson

et al. 2012; Gompert and Buerkle 2013). Along these lines,

it is important to recognize what we can and cannot infer

about hybrids and hybridization from molecular data; in

other words, we must be aware that genetic data provide

incomplete information about hybridization. Our simula-

tions and discussion focus on patterns of variation when

hybridization is recent and populations are polymorphic;

this contrasts with the bulk of theoretical work that con-

cerns long-term equilibrium outcomes of hybridization

and often is most applicable when hybridizing taxa exhibit

fixed differences. This distinction increases the novelty of

our results and makes them particularly informative for

applied issues and contemporary hybridization following

recent ecological change. In the following, we first address

the question of what constitutes hybridization and then

turn to the definition of hybrids. We combine literature

review and new simulations to answer these questions and

conclude each section with recommendations for applied

studies of hybridization and gene flow in plants.

What, if anything, is hybridization

Hybridization has been variously defined as interbreeding

between different species or subspecies, distinct popula-

tions or cultivars, or any individuals with heritable pheno-

typic differences (Stebbins 1950; Barton and Hewitt 1985;

Harrison 1993; Allendorf et al. 2001; Arnold 2006). How-

ever, such distinctions downplay the continuous nature of

genetic and phenotypic differentiation and distract from

the fact that gene flow can have similar consequences any-

where along this continuum (Mayr 1963; Mallet et al.

2007; Martin and Orgogozo 2013). For example, because of

population genetic structure and local adaptation within

species, intraspecific gene flow can have positive, negative,

910 © 2016 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 9 (2016) 909–923

What, if anything, are hybrids Gompert and Buerkle



or negligible effects on populations that are similar to those

of interspecific gene flow (e.g. Ellstrand 1992; Kremer et al.

2012; Nosil et al. 2012; Roe et al. 2014). Moreover, the

consequences of interspecific gene flow frequently depend

on the specific individuals involved, because of polymor-

phisms within and among conspecific populations (Swei-

gart et al. 2007; Escobar et al. 2008; Good et al. 2008;

Gompert et al. 2013). In other words, it is the evolutionary

and ecological consequences of gene flow that should be

considered when defining hybridization. Importantly, the

consequences of gene flow do not depend on taxonomy or

a specific definition of species, but rather on the nature of

differences between groups. Of course, such differences also

represent a continuum, and thus, an unambiguous and

objective definition of hybridization as something distinct

from gene flow is not likely possible. With that said, we

think it is useful to reserve the term hybridization for cases

where outcrossing and gene flow occur between popula-

tions that differ, at least quantitatively, at multiple heritable

characters or genetic loci that affect fitness. Thus, we argue

that the distinction between gene flow and hybridization is

fuzzy and quantitative, rather than discrete and qualitative.

While such a view could complicate management deci-

sions, we think it more accurately captures patterns of vari-

ation in nature.

Different histories or geographies of gene flow and selec-

tion have often been referred to as hybridization. For

example, several authors have argued that both primary

divergence with gene flow and gene flow following sec-

ondary contact (i.e. gene flow after a prolonged period of

geographic separation with very little or no gene flow) con-

stitute hybridization (Barton and Hewitt 1985). We think

that the case for secondary contact is uncontroversial, but

that informed opinions might differ about whether primary

divergence includes hybridization. Certainly, primary

divergence is not the common conception of hybridization

in conservation biology (Allendorf et al. 2001, 2013). Like-

wise, hybrid zones maintained primarily by exogenous (en-

vironment dependent) versus endogenous (environment-

independent) selection have been classified and treated

similarly. However, management efforts could benefit from

distinguishing among these different histories and pro-

cesses. We might be more inclined to intervene when sec-

ondary contact occurs after an anthropogenic disturbance

than when primary divergence occurs, even if the latter

takes place in a disturbed area.

An equally important question is whether and under

what conditions we can in fact discriminate among these

different cases. On the one hand, theory shows that over

the long-term, primary divergence and secondary contact

with exogenous or endogenous selection have similar

equilibrium conditions and result in similar geographic

patterns of genetic and phenotypic variation (Endler 1977;

Barton and Hewitt 1985; Kruuk et al. 1999; Navarro and

Barton 2003; Barton and de Vladar 2009; Barton 2013;

Flaxman et al. 2014). However, it is also true that well-

documented examples of these different cases are known.

For example, convergent clines in flowering time in sun-

flowers are best explained by primary divergence driven by

exogenous selection (Blackman et al. 2011; Kawakami et al.

2011), whereas hybridization between H. annuus and

H. petiolaris, which are not sister species, can be attributed

to secondary contact (Rieseberg 1991). Additionally, the

bulk of evidence suggests that many classic hybrid zones

are tension zones maintained by endogenous selection (re-

viewed in Barton and Hewitt 1985). Consistent with this,

Dobzhansky–Muller incompatibilities (DMIs) have been

documented in several plant taxa, such as Mimulus and

Solanum (Sweigart et al. 2007; Moyle and Nakazato 2010).

Here, we ask when genetic analyses commonly used to

study hybridization might mislead us about the history or

nature of gene flow and selection. We are particularly inter-

ested in cases where being misled could affect decisions in

applied science. We consider primary divergence versus

secondary contact, and neutral evolution versus selection

on a quantitative trait along an environmental gradient or

reduced hybrid fitness due to intrinsic epistatic incompati-

bilities (i.e. DMIs). We simulate genetic data under each of

these conditions and then summarize the results by (i)

examining allele frequency and trait clines, (ii) summariz-

ing genetic variation with principal component analysis

(PCA), and (iii) estimating admixture proportions. Our

goal is not an exhaustive evaluation of these methods, but

rather to provide illustrative examples of the potential to be

misled by genetic data. We then turn to the related problem

of finite sampling. In particular, we show that sparse popu-

lation sampling when organisms are continuously dis-

tributed can lead to false inferences about population

structure. That is to say, clinal variation can appear more

demic and even suggestive of hybrid speciation. Impor-

tantly, and in contrast to most theoretical work on

hybridization or hybrid zones, our simulations incorporate

shared polymorphism across populations (or species),

rather than focusing on genetic markers with fixed differ-

ences. This is realistic in general and better reflects the cur-

rent generation of molecular data (e.g. SNPs identified and

scored through genotyping-by-sequencing or exome

sequencing).

Simulations and analyses

We used individual-based, genetically explicit simulations

to generate pseudo-data under different demographic and

evolutionary histories. Simulations were conducted using

the program nemo version 2.3.44 (Guillaume and

Rougemont 2006). Generations were discrete, and each
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generation consisted of the following ordered events:

breeding, dispersal, viability selection (some histories), and

aging. Patches were arranged according to a 1-D stepping-

stone model with dispersal allowed only between adjacent

patches (dispersal off the outer-edges of the patch vector

was allowed). We assumed logistic growth within each

patch with a carrying capacity of 5000 individuals and a

mean fecundity of two. Genomes consisted of a single chro-

mosome with a recombinational map length of one Mor-

gan. We tracked 200 neutral bi-allelic SNPs in all

simulations, and 10 quantitative trait SNPs or DMI SNPs

in relevant subsets of the simulations. In all cases, mutation

rates were 0.0001 per locus per generation and SNPs were

distributed according to a random uniform distribution

along the recombinational map of the chromosome (this

included neutral and non-neutral SNPs). Simulations

lasted 2000 generations.

Starting allele frequencies were generated for neutral

markers, quantitative trait SNPs and DMI SNPs to mimic

secondary contact or primary divergence (Figure S1).

Ancestral allele frequencies were first generated for neutral

SNPs by sampling from a beta distribution with a and b
equal to 20 (this distribution has a mean of 0.5 and a stan-

dard deviation of 0.08). We then obtained initial allele fre-

quencies for the two taxa experiencing secondary contact

by sampling from betaða ¼ p 1�F
F ; b ¼ ð1� pÞ 1�F

F Þ, where
p is the ancestral allele frequency for the SNP and F corre-

sponds to FST (Balding and Nichols 1995; Falush et al.

2003), which was set to 0.3 (i.e. substantial population

genetic differentiation). We assigned one set of allele fre-

quencies to patches 1–5 and a different set of allele frequen-

cies to patches 6–10. We used the same procedure to

generate initial neutral allele frequencies for primary diver-

gence, except the same allele frequencies were assigned to

all 10 patches. We initialized quantitative SNPs by assum-

ing the two taxa were perfectly adapted to alternative ends

of the patch vector (secondary contact; mean phenotypes

of �0.5 and 0.5 were used for patches 1–5 and 6–10,
respectively), or by setting the mean phenotype in each

patch equal to 0 (primary divergence). We initialized DMI

SNPs with different taxa fixed for different sets of derived

alleles, such that no fitness reduction occurred within taxa

but hybrids would experience reduced fitness (secondary

contact), or with all populations fixed for the ancestral

allele.

We then simulated five replicate data sets with the follow-

ing conditions: neutral evolution following secondary con-

tact (no DMIs and no effect of the quantitative trait on

fitness), exogenous selection along an environmental gradi-

ent with primary divergence, exogenous selection along an

environmental gradient following secondary contact, exoge-

nous selection at a sharp ecotone with primary divergence,

exogenous selection at a sharp ecotone following secondary

contact, endogenous selection caused by DMIs with primary

divergence, and endogenous selection caused by DMIs fol-

lowing secondary contact (summarized in Table 1). We

repeated all simulations with migration rates of 0.01 and

0.001. Exogenous selection was based on a single quantita-

tive trait that was under stabilizing selection in each patch;

we used a Gaussian fitness function with mean l and vari-

ance 0.5. l varied from �0.5 to 0.5 in steps of 0.1 (most

patches) or 0.2 (patches 5 and 6) between patches for the

environmental gradient, and was set to �0.5 (patches 1–5)
or 0.5 (patches 6–10) for the sharp ecotone. This means that

an individual perfectly adapted to one end of the patch vec-

tor would have relative fitness of 0.37 at the other end. DMIs

were modeled as negative fitness effects between derived

alleles at pairs of SNPs. Considering a single locus pair, we

assumed the double homozygote for different derived alleles

had a fitness of 0.6, and an individual heterozygous at one

locus and homozygous for derived alleles at the other had a

fitness of 0.8; all other genotypes had a fitness of 1.0. We

assumed fitness was absolute (not relative) and multiplica-

tive across DMIs.

Additional data were simulated to evaluate the effect of

limited sampling on inference. Our primary motivations

were to determine whether sampling gaps would provide

false evidence of discrete population clusters or a lack of

hybrids when the underlying population structure was con-

tinuous (i.e. with isolation by distance). Here, we assumed

neutral primary divergence in a 1-D stepping-stone model

with 50 patches, each with a carrying capacity of 2500 indi-

viduals and a dispersal rate between neighboring patches of

0.001 (our focus on neutral primary divergence reflects our

interest in isolation by distance). We initialized neutral

allele frequencies as described above. We analyzed either

samples from all 50 patches (50 or 5 individuals each),

Table 1. . Summary of conditions for simulations conducted with

nemo (five replicates each).

Geography Selection Migration rate

Secondary contact None 0.001

Primary divergence Exogeneous, smooth gradient 0.001

Secondary contact Exogeneous, smooth gradient 0.001

Primary divergence Exogeneous, sharp ecotone 0.001

Secondary contact Exogeneous, sharp ecotone 0.001

Primary divergence Endogenous (DMIs) 0.001

Secondary contact Endogenous (DMIs) 0.001

Secondary contact None 0.01

Primary divergence Exogeneous, smooth gradient 0.01

Secondary contact Exogeneous, smooth gradient 0.01

Primary divergence Exogeneous, sharp ecotone 0.01

Secondary contact Exogeneous, sharp ecotone 0.01

Primary divergence Endogenous (DMIs) 0.01

Secondary contact Endogenous (DMIs) 0.01

DMI, Dobzhansky–Muller incompatibilities.
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from sets of four patches at the edges and center of the

patch vector (50 individuals each), and from the 12 center

patches (50 individuals each).

We used three common analytical approaches to quan-

tify and summarize patterns of genetic variation from the

simulations: (i) character and allele frequency clines, (ii)

ordination via PCA, and (iii) inference of admixture pro-

portions. We plotted geographic clines in allele frequencies

at all neutral SNPs and for the quantitative trait (with the

exceptions of DMI simulations, which did not include a

quantitative trait). Allele frequencies were polarized such

that the rarer allele in the first patch was shown. We con-

ducted PCA on the centered genotype data from 50 indi-

viduals from each patch in each simulation (i.e. 500

individuals total for most simulations) using the

prcomp function in R (R Development Core Team

2015). Genotypes were coded as 0, 1, or 2 copies of one

allele at each locus. We estimated admixture proportions

using these same genetic data. We used the program ad-
mixture version 1.23 (Alexander et al. 2009) for this,

which fits the same model as the admixture model in

structure Pritchard et al. (2000), but uses maxi-

mum likelihood rather than Bayesian inference. We used

the block-relaxation method for parameter estimation with

a tolerance of 0.0001 and the Quasi-Newton algorithm for

convergence acceleration.

Our analyses show that time since the onset of secondary

contact or primary divergence has a profound effect on

patterns of genetic variation (Figs 1–3), even over the rela-

tively short temporal scale of our simulations (2000 genera-

tions). By the end of the simulations, allele frequency clines

were somewhat similar for both histories (i.e. secondary

contact and primary divergence), despite clear differences

earlier on. PCA and admixture proportions gave similar

results. Thus, there may be a relatively narrow window of

time during which can distinguish between these histories

based on patterns of genetic or phenotypic data. With that

said, time here is measured in generations, which could

represent vastly different amounts of absolute time for spe-

cies with different life histories and reproductive strategies

(e.g. annual plants versus long-lived, clonal trees).

At the end of the simulations (2000 generations), allele

frequency clines and population structure were weak

overall, particularly when the migration rate was 0.01

(Figures S2–S4). Phenotypic clines were much more

pronounced and followed the environmental gradient or

ecotone when exogenous selection occurred. This contrast

is not surprising even though the neutral SNPs and quanti-

tative trait SNPs were linked on a single chromosome,

because without greater allele frequency differences among

populations, limited linkage disequilibrium (LD) is

expected. A lower migration rate slowed the decay of

differences following secondary contact, but also resulted
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Figure 1 Plots show neutral allele frequency (gray) and quantitative

trait (orange) clines from simulated data with a migration rate of 0.001.

The mean allele frequency cline with SNPs polarized such that the allele

plotted was rarer in patch 1 than patch 10 is depicted with a black line.

Clines after 100, 500, and 2000 generations are shown. Results from a

single simulation are shown, but replicate simulations produced qualita-

tively similar results. Clines from simulations with a higher migration

rate of 0.01 are shown in Figure S2.
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in smaller-scale isolation by distance, including sharp phe-

notypic clines under the neutral secondary contact model,

which could be incorrectly attributed to selection.

Consistent with previous studies focused on equilibrium

dynamics (Kruuk et al. 1999), we found that patterns of

variation generated by exogenous and endogenous selec-

tion can also be difficult to distinguish earlier in the evolu-

tionary process.

Neutral simulations that included 50 patches resulted in

weak population structure overall, and this pattern

was robust to sampling a smaller number of individuals

per patch (5 vs 50; Fig. 4). However, other sampling

approaches resulted in greater distortions of the true popu-

lation structure. Sampling only center and edge patches

resulted in three distinct genotypic clusters, which could be

incorrectly interpreted as evidence of an isolated hybrid lin-

eage or even hybrid species (e.g. Gompert et al. 2014). Even

sampling only the central patches exaggerates levels of pop-

ulation structure. Together these results highlight the

importance of broad geographic sampling to accurately

recover clinal variation (also see Witherspoon et al. 2006;

Schwartz and McKelvey 2009), as opposed to more limited

sampling of putative hybrids and isolated ‘pure’ parental

populations.

Recommendations

Our illustrative simulations are consistent with other theo-

retical work on hybridization (e.g. Barton and Hewitt 1985;

Kruuk et al. 1999; Barton and de Vladar 2009) and show

that it will often be difficult to discriminate among differ-

ent histories of selection and gene flow from genetic data.

However, we show that even though primary divergence

and secondary contact are thought of as hybridization and

result in similar long-term or equilibrium patterns of

genetic variation (Barton and Hewitt 1985), recent primary

divergence and secondary contact generate different pat-

terns of variation. These differences occur because time is

required for LD to buildup between neutral and selected

variants with primary divergence (Barton and de Vladar

2009; Flaxman et al. 2014), whereas allele frequency differ-

ences between geographically isolated populations will gen-

erate LD upon secondary contact. This also means that,

during the early stages of hybridization, secondary contact

might often lead to segregation of greater functional (and

nonfunctional) variation than primary divergence. On the

other hand, early stages of primary divergence might be

limited to sharp phenotypic and genetic differences for

strongly selected characters (e.g. Poelstra et al. 2014; Soria-

Carrasco et al. 2014), with less segregating variation for

other traits or genes in hybrids. We thus recommend that

conservation and management practitioners treat recent

primary divergence and secondary contact distinctly, as
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Figure 2 Scatterplots summarize patterns of genotypic variation for

simulated data based on principal component analysis (PCA). Points

denote individuals and are colored based on patch (dark red and dark

blue for patches 1 and 10, with lighter shades indicating patches closer

to the center). Results are shown for a migration rate of 0.001 and 100,

500, or 2000 generations. Results from a single simulation are shown,

but replicate simulations produced qualitatively similar results. Clines

from simulations with a higher migration rate of 0.01 are shown in Fig-

ure S3.

914 © 2016 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 9 (2016) 909–923

What, if anything, are hybrids Gompert and Buerkle



these processes can be distinguished and have different

consequences. Once hybridization has occurred for a

greater amount of time, patterns will become similar, and

additional data, such as the phylogenetic relationship

between or geographic distribution of hybridizing species,

will be needed to parse these histories. Our results also

show that widespread geographic sampling is important to

accurately describe population structure and patterns of

hybridization. As argued by practitioners of landscape

genetics (e.g. Schwartz and McKelvey 2009), this means

that structured, sensible sampling is preferable to sparse

opportunistic sampling, or sampling focused on ends of a

continuum.

Additional information will likely be gained from studies

of hybridization that parse different types of genetic vari-

ants rather than treating them all in a single analysis (e.g.

Gompert et al. 2014). For example, our simulations and

discussion have considered genetic polymorphism, but we

have focused on common rather than rare genetic variants.

Rare variants, that is genetic variants with minor allele fre-

quencies <1%, have become more accessible with current

sequencing methods and could further help discriminate

among different histories and provide information about

recent evolutionary dynamics (Gravel et al. 2011; Mathie-

son and McVean 2012; Nelson et al. 2012). In particular,

rare variants are often spatially restricted and can be infor-

mative about the dispersal of individuals from neighboring

populations (Slatkin 1985; Barton and Bengtsson 1986;

Gompert et al. 2014) and thus might provide better mea-

sures of contemporary gene flow among plant populations

of conservation concern. Although more difficult to iden-

tify, genetic variants affecting important phenotypes or

those linked to such variants could provide additional

information if they are strongly structured by the environ-

ment (e.g. contrast phenotypic and neutral clines in Fig. 1).

When one or a few genes of large effect determine func-

tional phenotypes, it might be useful to examine patterns

of genetic variation at these loci. However, when pheno-

typic variation is due to many variants with smaller effects,

statistical approaches that combine information across

genetic loci will be more useful (Berg and Coop 2014).

Complementary methods that attempt to identify genetic

variants potentially affected by selection in hybrids could

also be used (e.g. Payseur et al. 2004; Gompert and Buerkle

2009, 2011). Thus, studies of hybridization between crops

and wild species or native and non-native plants, as well as

gene flow in plants with fragmented populations, would

benefit from an increased emphasis on the spread of func-

tional genetic variation via hybridization (e.g. Rieseberg

and Willis 2007; Hufford et al. 2013). Such information is

needed to determine the fitness consequences of hybridiza-

tion and thus to decide when hybridization should be val-

ued, allowed or prevented.
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Figure 3 Barplots show maximum likelihood estimates of admixture

proportions. Different colors denote ancestry from different hypotheti-

cal source populations. Here, we give results for a migration rate of

0.001 and 100, 500, or 2000 generations from a single set of simula-

tions. Replicate simulations produced qualitatively similar results.

Admixture from simulations with a higher migration rate of 0.01 is

shown in Figure S4.
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What, if anything, are hybrids

As noted above, there is a long history of recognizing phe-

notypically intermediate individuals as putative hybrids

between differentiated parental populations or species,

including the use of multivariate phenotypic analysis

(Alston and Turner 1962; Hatheway 1962; Freeman et al.

1991) and gaining understanding of evolutionary relation-

ships through crossing studies (e.g. Heiser 1947, 1956;

Rieseberg 2000). The advent of molecular markers gave rise
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Figure 4 Principal component analysis (PCA) plots illustrate the effect of subsampling on summaries of genetic variation. Points denote individuals

and are colored based on patch. Dark red, dark blue, and gray are used to denote peripheral and central patches when a subset of patches were sam-

pled; otherwise dark red and blue indicate patches on opposite ends, with lighter colors used for more central patches. In panes (A) and (B), 50 or 5

individuals were included from each patch. In pane (C), 50 individuals were included from patches 1–4, 24–27 and 47–50, and in pane (D), 50 individ-

uals were sampled from patches 20–31. Results are shown for a migration rate of 0.001 and 100, 500, or 2000 generations.
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to the use of genetic information as the basis of inference

of ancestry and the recognition of hybrids (e.g. Harrison

and Arnold 1982; Vanlerberghe et al. 1986; Barton and

Gale 1993). A variety of statistical models exist to support

the recognition of hybrids and their distinction from indi-

viduals from parental populations (including species), both

using population genetic (Boecklen and Howard 1997; Bar-

ton 2000; Pritchard et al. 2000; Anderson and Thompson

2002; Falush et al. 2003) and tree-based models (Durand

et al. 2011; Patterson et al. 2012). These various models

and their implementation in software allow quantitative,

model-based recognition of hybrids, given sufficient, infor-

mative genetic data (Anderson and Thompson 2002; Falush

et al. 2003; Vaha and Primmer 2006). Yet, the papers that

describe these models often include explicit cautionary

statements regarding the difficulty of distinguishing among

different hybrid genealogies, as well as distinguishing

hybrids from parentals (e.g. Barton 2000; Anderson and

Thompson 2002). Aside from the problem of alleles shared

between parental taxa and the resulting imperfect informa-

tion about ancestry from allelic state, hybrids can be diffi-

cult to recognize simply because genetic recombination

and sexual reproduction in different genealogies can lead to

the same, ambiguous combination of alleles in genotypes.

While the genetic variation that results from hybridization

is known, it is not clear that as biologists we appreciate the

extent to which different hybrid genealogies can lead to the

same genetic composition. To illustrate the overlapping

expectations for ancestry and genotypic composition of

hybrids, we present a simple set of simulations in this sec-

tion (reprising related simulations and results in Fitzpatrick

2012; Gompert et al. 2014; Lindtke et al. 2014), and their

continuous variation along multiple dimensions of

hybridization. These illustrations lead to the conclusions

that it can be misleading to think about ancestry categories

of hybrids and that hybrids will often be genetically and

functionally diverse.

The fractional contribution of two (or more) parental

taxa to the ancestry of hybrids is a common measure of

hybridity and ancestry and is typically referred to as a

hybrid index (Barton and Gale 1993; Boecklen and Howard

1997; Buerkle 2005) or admixture proportion (Pritchard

et al. 2000; Falush et al. 2003). In the simple case of puta-

tive hybridization between two parental taxa, the hybrid

index or admixture proportion (q) corresponds to varia-

tion along a single axis, with parental ancestry at each end

and hybrids intermediate. Summarizing admixture in this

way is very common, but it also disregards important

information about the history of admixture (Barton 2000;

Anderson and Thompson 2002; Fitzpatrick 2012; Lindtke

et al. 2012; Gompert et al. 2014; Lindtke et al. 2014). For

example, F1 individuals will have a hybrid index of 0.5, but

this is also the expected (mean) hybrid index of any

F2 � � � Fn hybrid individuals, which do not have one of the

parental taxa as a parent after the first generation of

hybridization (i.e. they have experienced no backcrossing).

Consequently, whereas a hybrid index does quantify a con-

tinuum of genetic hybridity and is preferable to a categori-

cal analysis, it cannot discriminate among very different

genealogies, including the differences in ancestry between

an F2 and an F20. Additional information can be obtained

from a second dimension of admixture, the fraction of loci

that combine ancestry from the two parental taxa, which

has been referred to as interspecific heterozygosity or inter-

population ancestry (denoted Q12 here; Barton 2000; Fitz-

patrick and Shaffer 2007; Fitzpatrick 2012; Lindtke et al.

2012; Gompert et al. 2014; Lindtke et al. 2014). Some soft-

ware models this parameter explicitly from genetic data in

hybrids and source populations (e.g. HIest and en-
tropy; models for interpopulation ancestry are

described in Fitzpatrick 2012; Gompert et al. 2014), but the

most commonly used software for admixture analysis does

not (structure; Pritchard et al. 2000; Falush et al.

2003). The combination of admixture proportion (q) and

interpopulation ancestry (Q12) contains additional infor-

mation about admixture histories and thus is a general tool

for summarizing the genomic composition of hybrids. For

one, it allows identification of individuals that had a paren-

tal taxon as an immediate parent (including F1 and any

backcrossed hybrids), as these have maximal Q12 for a

given q.

Simulations and analyses

As has been done in previous studies (Fitzpatrick 2012;

Gompert et al. 2014; Lindtke et al. 2014), we performed

individual-based simulations of hybridization. In the first

set, we repeatedly modeled two generations of hybridiza-

tion that included parental, F1, F2, and backcross (BC)

individuals. In a second set, we used replicates to generate

expectations for the ancestry of F2, F5 and F20 individuals.

The simulations were of finite populations of 50 individu-

als that contribute to the parentage of any set of progeny

(F1, F2, etc.). Diploid meiotic recombination and segrega-

tion were modeled, with 1000 marker loci distributed

across 10 chromosomes, and a single, randomly located

crossover per chromosome in each gamete. Thus, we were

able to track ancestry with complete knowledge. To super-

impose allelic states (including shared alleles between par-

ental taxa and polymorphism within), we utilized an F-

model for shared ancestry of parental taxa and the genetic

drift they experienced relative to the common ancestor (as

above, and in Balding and Nichols 1995; Falush et al.

2003), with a beta distribution of allele frequencies in the

ancestral population with parameters a and b equal to 0.8

(this distribution has a mean allele frequency of 0.5 and a
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standard deviation of 0.31). We set FST ¼ 0:5 and only

considered a random subset of 1000 marker loci with a

minor allele frequency >0.05 in the sampled individuals

(i.e. what are typically referred to as ‘polymorphic’ loci or

common variants). We arbitrarily sampled 20 individuals

of each of the parental taxa, 20 F2, and 10 each F5, F20, and

BC to each parental taxon. The simulations were per-

formed in R (version 3.2.2; R Development Core Team

2015) and the script to perform the simulations is in the

Supporting information.

Our simulations tracked both the ancestry and allelic

state of loci, and we present summaries of both (Fig. 5).

Because we simulated admixture, we had perfect knowledge

of the admixture proportions and interpopulation ancestry

rather than needing to infer them. If one were to infer

ancestries based on models and software (e.g. Gompert

et al. 2014), there would be more uncertainty and variance

around the true values shown here (uncertainty in ancestry

is inversely proportional to allele frequency differences

between the parental taxa, that is, to the extent that allelic

state is informative about ancestry). With the level of allele

frequency difference between our parental populations

(FST ¼ 0:5), recognition of parental individuals and

distinguishing them from all hybrids was unambiguous

with PCA (Fig. 5, PCA performed in R; R Development

Core Team 2015; it would be more difficult to distinguish

parental and hybrid individuals based on allelic state if par-

ental populations were more similar genetically). In terms

of ancestry, F1 individuals were distinguishable from more

advanced generation Fn hybrids (F2, F5, and F20) and back-

crossed individuals on the basis of their maximal interpop-

ulation ancestry. Likewise, BC individuals are recognizable

on the basis of their maximal interpopulation ancestry for

a given admixture proportion. Distinguishing among dif-

ferent generations of backcrossing (e.g. whether F1, or F2
was hybrid parent) would not be possible based only on the

information contained in Q12 and q (knowledge of chro-

mosomal blocks of ancestry would be helpful; Gompert

and Buerkle 2013). Segregation even in the F1 is highly

variable and ancestry in later generation hybrid Fn parents

is expected to overlap with that of the F1. More generally

and as noted in previous research, discriminating between

genealogies beyond the first two generations of admixture

is difficult (Barton 2000; Anderson and Thompson 2002)

without additional information. This is illustrated in these

simulations by the overlapping expectations for Q12 and q

across the individuals in the F2, F5, and F20 generations.

While drift would cause Q12 to decline over further
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Figure 5 Ancestry for simulated individuals from parental taxa (Taxon 1 and 2) and hybrids vary in admixture proportion (q) and the fraction of loci

at which individuals have ancestry from both parental taxa (Q12, interpopulation ancestry; left pane of plot). Hybrids that are progeny from a cross

involving one (BC) or both (F1) parental taxa have maximal interpopulation ancestry for a given admixture proportion (on the edges of the triangle).

In contrast, progeny from crosses between hybrid individuals (F2 � � � Fn) has less than maximal interpopulation ancestry for a given admixture propor-

tion. Principal component analysis (PCA) of genetic covariances among individuals in the simulated population (right pane) shows that genetic differ-

ences between the parental species (ancestry variation) constitute the dominant axis of genetic variation (colors as in left pane). F1 � � � Fn are

genetically intermediate on PC1, and across all hybrids, PC1 mirrors the admixture proportion. F20 individuals (downward-pointing triangles) are dis-

tinguishable genetically from earlier Fn hybrids and in general PC2 is associated with genetic variation among Fn generations.
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generations and ultimately lead to the fixation of ancestry

states in finite populations over time (Stam 1980; Chapman

and Thompson 2002, 2003; MacLeod et al. 2005; Buerkle

and Rieseberg 2008), 20 generations are insufficient to have

a detectable effect in a simulated population of 50

individuals.

If hybridization is restricted to two generations, with suf-

ficient genomic sampling, it can be possible to identify dif-

ferent parental, F1, F2, and BC categories. Here, we have

considered perfect knowledge of ancestry and previous

work has addressed sources of uncertainty that would les-

sen the prospects for clear expectations for ancestry

(Anderson and Thompson 2002; Vaha and Primmer 2006;

Burgarella et al. 2009; Fitzpatrick 2012). But beyond the

issues of whether hybridization involves only two genera-

tions of hybridization and uncertainty in empirical ancestry

estimates, analysis of ancestry categories is problematic

because these classes mask the fact that they will contain

genetic and functional phenotypic variation. Perhaps we

stand to be the most misled in the case of F1 individuals,

where allelic polymorphisms in the parental populations

will result in genetically variable F1 individuals, contrary to

the expectation for a single genotype of F1 resulting from

typical experimental crosses between homozygous parents.

This genetic variation is evident among F1 individuals in

our simulations (Fig. 5). This variation would be even

greater if one considered F1 individuals from different geo-

graphic locations, where allele frequencies in parental taxa

are likely to differ even more (e.g. Gompert et al. 2014;

Mandeville et al. 2015). Somewhat similarly, categorical

treatment of ancestry in hybrids leads to overlapping

expectations for Q12 and q in F2, F5, and F20 individuals,

but analysis of their allelic states shows that F20 individuals

differ genetically from early Fn generations (PCA in Fig. 5).

These genetic differences could be responsible for func-

tional phenotypic differences and comparable functional

differences might arise from more subtle genotypic differ-

ences between Fn generations.

Overall, the use of the term hybrid classes or categories,

and methods for their inference, could obscure important

variation that exists within classes. Instead, Rieseberg and

Carney (1998) suggested it is worthwhile to focus on the

fitness of individual genotypes, rather than hybrid classes.

Certainly, our simple model illustrates that it can be non-

sensical to refer to the ‘fitness of hybrids’, as the genetic

and ancestry composition of hybrids can be highly variable

and hybrids would be expected to vary substantially for

phenotypes. Given the expected genetic and phenotypic

variability within hybrids, and the potential for transgres-

sive phenotypes (Rieseberg et al. 1999a, 2003b), discussion

of hybrid fitness should be in the context of the typical

complexity of tying phenotype (including fitness) to

genotype in natural populations, which is particularly

difficult in variable environments and in variable genetic

backgrounds (Weiss 2008; Rockman 2012).

Recommendations

In both applied and basic science settings, knowledge of the

existence and attributes of hybrids can provide a founda-

tion for learning about species interactions and mainte-

nance (Arnold 2006; Allendorf et al. 2013). For example, a

predominance of BC hybrids would lead to genetic

exchange between parental taxa and a potential local ero-

sion of species differences, whereas if hybrids are restricted

to relatively abundant Fn individuals, these will affect the

demography of parental taxa through wasted reproductive

effort on F1 hybrid progeny and possibly through competi-

tion. Our simple model reflects our understanding that the

ancestry and genetic composition of hybrids vary along

multiple axes and treatment of hybrids as a singular entity

would disregard potentially important variation. Thus,

management decisions might need to consider the types of

hybrids generated and could even accommodate different

actions for different hybrids within the same biological sys-

tem.

Furthermore, hybrids beyond the F1 will also vary in

ancestry along their chromosomes, both in tracts of ances-

try that have not yet recombined, and as a result of drift

and selection leading individual loci to deviate from the

average ancestry in the genome (reviewed in Gompert and

Buerkle 2013). For this reason, hybrids have been of inter-

est to evolutionary biologists who are interested in the

genetics of species boundaries (Rieseberg et al. 1999b;

Rieseberg and Buerkle 2002; Buerkle and Lexer 2008; Pay-

seur 2010; Gompert et al. 2012). Incomplete reproductive

isolation and hybridization have provided support for the

‘genic view’ of speciation and species boundaries (Wu

2001; Abbott et al. 2013). Additionally, recent studies in a

variety of taxa have drawn attention to variability in the

genetic outcomes of hybridization that followed secondary

contact between the same pairs of species in multiple loca-

tions or contexts (Rieseberg 2006; Nolte et al. 2009; Teeter

et al. 2010; Lepais and Gerber 2011; Lagache et al. 2013;

Gompert et al. 2014; Mandeville et al. 2015). For both

applied and basic evolutionary biology, this variability in

outcomes means that it can be difficult to formulate cate-

gorical statements about the composition, importance, and

likely conservation threats of hybrids. The empirical abun-

dance of parental taxa and hybrids at one site may or may

not be informative about other locations where the taxa

co-occur (e.g. Aldridge and Campbell 2009; Mandeville

et al. 2015). Likewise, as noted above, genetic variation in

parents and hybrids makes it difficult to make categorical

statements about the genotypes, phenotypes, and fitness of

hybrids (e.g. Sweigart et al. 2007; Good et al. 2008). This
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challenge is not a matter of uncertainty that arises from

analytical approaches and software, but is inherent to the

process of hybridization, as we have illustrated with the

simulations in this paper.

Overall, these complexities mean it will be difficult to

know the consequences of hybridization without detailed

study (Allendorf et al. 2013), which could include estima-

tion of multiple dimensions of ancestry (Gompert and

Buerkle 2013), sampling multiple geographic locations and

contexts (e.g. Hamilton et al. 2013; Haselhorst and Buerkle

2013; Gompert et al. 2014; Mandeville et al. 2015), and

characterization of the demography of parental and hybrid

individuals in populations (e.g. Carney et al. 2000;

Fitzpatrick and Shaffer 2007).

Synthesis and conclusions

A common theme of our results and discussion is that

hybridization is not a singular process, but rather a collec-

tion of related processes with variable outcomes and con-

sequences. In support of this, as noted above, empirical

studies have often documented variation in outcomes of

hybridization in different locations or contexts, in terms

of the genomic composition of hybrids, patterns of intro-

gression, and the ecological consequences of hybridization

(e.g. Yanchukov et al. 2006; Lepais et al. 2009; Nolte and

Tautz 2010; Teeter et al. 2010; Nice et al. 2013; Gompert

et al. 2014; Mandeville et al. 2015). Indeed, consistent

outcomes of hybridization appear to be mostly limited to

taxa that exhibit limited intraspecific variation for loci

affecting fitness and where endogenous selection domi-

nates (e.g. Buerkle and Rieseberg 2001). Such variability

limits our ability to predict the outcome of specific

instances of hybridization and thus is relevant for our

understanding of evolutionary biology in general and has

practical consequences for management. For example,

invasion by a non-native species could result in extirpa-

tion of a native species in one area but not in another, or

transgene escape from a crop could occur readily into

some wild populations but not others. Thus, it might be

difficult to make valid general statements about the threats

or benefits of hybridization, even for individual species.

Likewise, extrapolation from single empirical examples

(i.e. studies or sites) could be problematic. Clearly, such

problems will be exacerbated when species exhibit sub-

stantial isolation by distance or local adaptation and fail

to function as cohesive entities. We conclude by noting

that while we have focused on hybridization between pairs

of diploid populations or species, the points we have made

should also apply when hybridization generates polyploids

or involves multiple species. However, in such cases, even

more factors could affect the ecological and evolutionary

dynamics, rendering the outcomes of these instances of

hybridization even less predictable.
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