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Abstract
Background: The vitamin D receptor (VDR) and pregnane X receptor (PXR) are nuclear hormone
receptors of the NR1I subfamily that show contrasting patterns of cross-species variation. VDR and PXR
are thought to have arisen from duplication of an ancestral gene, evident now as a single gene in the
genome of the chordate invertebrate Ciona intestinalis (sea squirt). VDR genes have been detected in a wide
range of vertebrates including jawless fish. To date, PXR genes have not been found in cartilaginous fish.
In this study, the ligand selectivities of VDRs were compared in detail across a range of vertebrate species
and compared with those of the Ciona VDR/PXR. In addition, several assays were used to search for
evidence of PXR-mediated hepatic effects in three model non-mammalian species: sea lamprey (Petromyzon
marinus), zebrafish (Danio rerio), and African clawed frog (Xenopus laevis).

Results: Human, mouse, frog, zebrafish, and lamprey VDRs were found to have similar ligand selectivities
for vitamin D derivatives. In contrast, using cultured primary hepatocytes, only zebrafish showed evidence
of PXR-mediated induction of enzyme expression, with increases in testosterone 6β-hydroxylation activity
(a measure of cytochrome P450 3A activity in other species) and flurbiprofen 4-hydroxylation activity
(measure of cytochrome P450 2C activity) following exposure to known PXR activators. A separate assay
in vivo using zebrafish demonstrated increased hepatic transcription of another PXR target, multidrug
resistance gene (ABCB5), following injection of the major zebrafish bile salt, 5α-cyprinol 27-sulfate. The
PXR target function, testosterone hydroxylation, was detected in frog and sea lamprey primary
hepatocytes, but was not inducible in these two species by a wide range of PXR activators in other animals.
Analysis of the sea lamprey draft genome also did not show evidence of a PXR gene.

Conclusion: Our results show tight conservation of ligand selectivity of VDRs across vertebrate species
from Agnatha to mammals. Using a functional approach, we demonstrate classic PXR-mediated effects in
zebrafish, but not in sea lamprey or African clawed frog liver cells. Using a genomic approach, we failed to
find evidence of a PXR gene in lamprey, suggesting that VDR may be the original NR1I gene.
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Background
The vitamin D receptor (VDR, NR1I1) and pregnane X
receptor (PXR, NR1I2) are members of the nuclear hor-
mone receptor (NR) superfamily of ligand-activated tran-
scription factors. NRs work in concert with co-activators
and co-repressors to regulate gene expression [1-3]. NRs
share a modular domain structure, which includes, from
N-terminus to C-terminus, a modulatory A/B domain, the
DNA-binding domain (DBD; C domain), the hinge D
domain, the ligand-binding domain (LBD; E domain)
and a variable C-terminal F domain [3].

VDRs bind 1α,25-(OH)2-vitamin D3 (calcitriol) with high
affinity and mediate classic calcitriol effects such as regu-
lation of calcium and phosphate homeostasis (see Figure
1 for chemical structure of calcitriol). Over the last two
decades, VDRs have been shown to influence a variety of
physiological functions, affecting nearly every organ and

tissue [4-7]. VDR genes have been detected in mammals,
birds, amphibians, reptiles, teleost fish, and sea lamprey
(see Additional file 1 for sequence alignments) [8,9]. All
mammalian genomes analyzed to date have a single VDR
gene; where expression has been studied, VDR is
expressed in a broad range of tissues that include brain,
gut, heart, skeletal muscle, liver, pancreas, and immune
tissues [9]. A similarly broad pattern of tissue expression
is also seen with African clawed frog (Xenopus laevis) [10]
and avian VDRs [11,12]. Some teleost fish, including
pufferfish (Takifugu rubripes) and Japanese flounder (Par-
alichthys olivaceus) have two VDR genes [13,14]. Like
mammalian, bird, and frog VDRs, the pufferfish VDRα
and flounder VDRβ have widespread tissue distribution;
in contrast, the pufferfish VDRβ is expressed only in gut
while the flounder VDRα shows little or no expression in
liver, gill, and skeletal muscle [13,14].

In contrast to VDRs, PXRs have broad ligand specificity
and, at least in mammals and chicken, serve as a 'chemical
defense' protein that senses toxic concentrations of a wide
variety of endogenous and exogenous compounds and
transcriptionally controls detoxification pathways in liver,
intestine, and other organs [15,16]. PXR regulates the
metabolism, transport, and excretion of bile salts, xenobi-
otics, steroid hormones, and vitamins. 'Classic' PXR tran-
scriptional targets in mammals include the broad
specificity cytochrome P450 (CYP) 2C and 3A enzymes,
as well as transporters such as multidrug resistant protein
(MDR, ABCB1) [17-22]. While the majority of PXR stud-
ies have been on mammalian species, studies of chicken
PXR (also known as chicken X receptor, CXR) show simi-
lar transcriptional targets [23,24].

PXR genes have been cloned and functionally character-
ized from a variety of vertebrate species, including
human, rhesus monkey, mouse, rat, rabbit, dog, pig,
chicken, African clawed frog, and zebrafish
[15,17,18,23,25-27]. The PXR LBD is unusually divergent
across species compared to other NRs (see Additional file
1 for sequence alignments), and previous studies have
shown significant differences in ligand specificity of PXRs
across species [27-29]. Unlike VDR, PXR gene(s) have yet
to be detected in cartilaginous fish.

In this study, we characterize in detail the ligand specifi-
city of VDRs from three model non-mammalian species:
sea lamprey (Petromyzon marinus; a jawless fish), zebrafish
(Danio rerio, a teleost fish), and the African clawed frog
(an amphibian). In addition, we study the single VDR/
PXR-like NR from the chordate invertebrate Ciona intesti-
nalis (sea squirt) [30], a member of Urochordata, a sub-
phylum now thought to be the closest extant relatives of
vertebrates [31]. We compare these VDRs to human and
mouse VDRs (abbreviations: human VDR, hVDR; mouse

Chemical structures of 1α,25-(OH)2-vitamin D3 (calcitriol), 1α-hydroxyvitamin D2, testosterone, 5α-petromyzonol 24-sulfate (major sea lamprey bile salt), 2,3,7,8-tetraochlorod-ibenzo-p-dioxin (TCDD), and 6-formylindolo [3,2-b]carba-zoleFigure 1
Chemical structures of 1α,25-(OH)2-vitamin D3 (calcitriol), 
1α-hydroxyvitamin D2, testosterone, 5α-petromyzonol 24-
sulfate (major sea lamprey bile salt), 2,3,7,8-tetrachlorod-
ibenzo-p-dioxin (TCDD), and 6-formylindolo [3,2-b]carba-
zole. Select bond positions are numbered for the vitamins, 
testosterone, and 5α-petromyzonol 24-sulfate, and the let-
tering of the steroidal rings is indicated for calcitriol, 1α-
hydroxyvitamin D2, and testosterone. The carbon atoms 
numbered for testosterone indicate the sites of hydroxyla-
tion in the species studied in this report.
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VDR, mVDR; Xenopus laevis VDR, xlVDR; zebrafish VDR,
zfVDR; sea lamprey VDR, lampVDR). We also probed the
evolutionary origin of PXR and VDR in basal vertebrates.
To this end, we searched for evidence of PXR-like gene(s)
in sea lamprey both by comparative genomics and by
functional assays in cultured primary hepatocytes. Pri-
mary hepatocyte culture systems were also developed and
tested for zebrafish and African clawed frog. The zebrafish
studies were carried further by studies of liver transcrip-
tion following injection of zebrafish with bile salts. The
results demonstrate that classic PXR effects, similar to
those described in mammals and chicken, are evident in
zebrafish liver and isolated hepatocytes. In contrast, there
is no genomic or functional evidence of a PXR-like gene in
sea lamprey.

Results
Ligand specificity of vertebrate VDRs
To compare ligand specificity of mammalian and non-
mammalian VDRs, luciferase-based reporter assays were
used to study ligand activation of hVDR, mVDR, xlVDR,
zfVDR, lampVDR, and Ciona VDR/PXR (ciVDR/PXR). All
five vertebrate receptors were activated by 1α,25-(OH)2-
vitamin D3 (calcitriol), 1α-hydroxyvitamin D2, 1α-
hydroxyvitamin D3, 25-hydroxyvitamin D3, and
24(R),25-(OH)2-vitamin D3 (Figure 2A–E; Table 1).
xlVDR has lower potency for the five vitamin D derivatives
studied, similar to the initial report published on X. laevis
VDR [10]. The other notable difference was that the two
mammalian VDRs had higher apparent affinity for 1α-
hydroxyvitamin D2 and 1α-hydroxyvitamin D3 than the
three non-mammalian VDRs (Figure 2C and 2D). Other-
wise, there were few major differences between the five
receptors with regard to vitamin D derivatives. This is con-
sistent with the high degree of sequence conservation
across vertebrate VDRs at positions shown to interact with
ligands in x-ray crystallographic structures of human [32-
34], rat [35,36], and zebrafish VDRs [37,38] (Additional
file 2). The ciVDR/PXR was not activated by any of the
vitamin D derivatives (Figure 2A–E; Table 1).

A 76-compound library of known nuclear hormone
receptor ligands was screened for additional activators of
xlVDR, zfVDR, and lampVDR (Additional file 3). None of
these three VDRs were activated by farnesoid X receptor
(NR1H4) or liver X receptor α (NR1H3) or β (NR1H2) lig-
ands such as T-0901317, fexaramine, GW3965, or
GW4064, or by steroid hormones such as 17β-estradiol or
testosterone (Additional file 3). An unexpected finding
was that 6-formylindolo- [3,2-b]-carbazole, a tryptophan
photoproduct that is a high affinity agonist of the aryl
hydrocarbon receptor [39], weakly activated the VDRs in
the low micromolar range (Figure 2F; Table 1; see Figure
1 for chemical structure). This planar compound more
strongly activated the ciVDR/PXR (Figure 2F; Table 1). The

dioxin compound 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) also activated the ciVDR/PXR but not the verte-
brate VDRs (Table 1). Like 6-formylindolo- [3,2-b]-carba-
zole, TCDD is also a planar compound (see Figure 1 for
chemical structures).

Studies of zebrafish primary hepatocytes
We next focused on studies of PXR in non-mammalian
species. A major transcriptional target of PXR and VDR in
mammals and birds is cytochrome P450 (CYP) 3A, a sub-
family of enzymes with broad ligand specificity. A com-
mon functional assay for CYP3A activity is steroid
(typically testosterone) 6β-hydroxylation – this activity is
often used to measure CYP3A induction by xenobiotics or
other compounds [40,41]. Exposure to PXR agonists
increases testosterone 6β-hydroxylation in primary
human and rodent hepatocytes [42,43], as well as in the
chicken liver LMH cell line [24]. VDR agonists upregulate
CYP3A more prominently in the intestine than liver in
humans [44,45].

Other than studies in the chicken LMH cell line men-
tioned above, little is known about enzyme induction in
other non-mammalian species [46]. To this end, we devel-
oped a zebrafish primary hepatocyte cell culture model,
adapting a protocol previously published by Collodi and
colleagues [47]. As an initial test of enzyme induction, we
first analyzed the ability of compounds to induce ethox-
yresorufin O-deethylase (EROD) activity as a measure of
CYP1A-like activity typical of the aryl hydrocarbon recep-
tor pathway [48]. Similar to results previously reported for
the zebrafish ZFL liver cell line [49], 24 hour exposure of
the zebrafish cells to the dioxin compound TCDD
strongly increased EROD activity (EC50 = 0.15 ± 0.022 nM,
maximal rate = 33.0 pmol/min/mg protein; Figure 3A). 3-
Methylcholanthrene (3-MC) also induced EROD activity
with similar efficacy but lower potency than TCDD (EC50
= 373 ± 22 nM, maximal rate = 28.1 pmol/min/mg pro-
tein; Figure 3A). In contrast, 3,3'-diindoylmethane (DIM)
at concentrations of 2 μM and greater caused a decrease in
EROD activity (Figure 3A). A variety of other compounds
were tested and found not to affect EROD activity in the
zebrafish hepatocytes; these included calcitriol, 5α-
androstan-3α-ol (androstanol), 5α-cyprinol (5α-
cholestan-3α,7α,12α,26,27-pentol ) 27-sulfate (major
bile salt of zebrafish [50]), nifedipine, and phenobarbital
(data not shown).

Next, the ability of compounds to increase testosterone
hydroxylation was tested in the zebrafish hepatocytes.
Vehicle-treated zebrafish hepatocytes demonstrated basal
6β-, 15α-, 16α-, and 16β-hydroxylation activity as demon-
strated by high-performance liquid chromatography
(HPLC) analysis (data not shown; see Figure 1 for num-
bering of carbon skeleton of testosterone). In response to
Page 3 of 17
(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:222 http://www.biomedcentral.com/1471-2148/7/222

Page 4 of 17
(page number not for citation purposes)

Concentration-response curves for activation of VDRs by vitamin D derivatives and 6-formylindolo [3,2-b]carbazoleFigure 2
Concentration-response curves for activation of VDRs by vitamin D derivatives and 6-formylindolo [3,2-b]carbazole. The ordi-
nate represents activation of VDR, relative to vehicle control, and normalized to the maximal activator (0.5 μM calcitriol for 
mouse and sea lamprey VDRs; 1 μM calcitriol for human, frog, and zebrafish VDRs; 20 μM 6-formylindolo [3,2-b]carbazole for 
Ciona intestinalis VDR/PXR). (A)-(E) Human (●), mouse (■), frog (❍), zebrafish (�), and sea lamprey ( ) VDRs are all acti-
vated by vitamin D derivatives while the Ciona intestinalis VDR/PXR (Δ) is insensitive to all vitamin D compounds. (F) The pla-
nar molecule 6-formylindolo [3,2-b]carbazole activates most vertebrate VDRs (i.e., all except zebrafish VDR) weakly and the 
Ciona VDR/PXR at low micromolar concentrations.
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Table 1: Effects of compounds on VDRs

Common name Significance Human VDR
EC50 ± SD
(relative efficacy)

Mouse VDR
EC50 ± SD
(relative efficacy)

Xenopus VDR
EC50 ± SD
(relative efficacy)

Zebrafish VDR
EC50 ± SD
(relative efficacy)

Sea lamprey VDR
EC50 ± SD
(relative efficacy)

Ciona VDR/PXR
EC50 ± SD

(relative efficacy)

1,25-(OH)2-Vitamin D3 Vitamin D 1.2 ± 0.2 nM (1.0a) 0.6 ± 0.1 nM (1.0a) 33 ± 3.5 nM (1.0a) 0.7 ± 0.1 nM (1.0a) 0.8 ± 0.1 nM (1.0a) No effect

1α-Hydroxyvitamin D2 ligands 13 ± 1.2 nM (0.88) 0.8 ± 0.1 nM (0.98) 624 ± 49 nM (0.58) 26 ± 1.7 nM (0.78) 41 ± 3.6 nM (0.88) No effect

1α-Hydroxyvitamin D3 4.3 ± 0.5 nM (0.99) 0.3 ± 0.04 nM (0.96) 157 ± 10 nM (0.84) 18 ± 1.4 nM (0.73) 94 ± 8.0 nM (0.90) No effect

25-Hydroxyvitamin D3 1.5 ± 0.2 M (1.22) 0.6 ± 0.1 μM (2.62) 11 ± 0.8 nM (0.67) 7.3 ± 0.8 μM (0.91) 19 ± 2.1 μM (0.63) No effect

24(R),25-(OH)2-Vitamin D3 0.3 ± 0.02 μM (0.9) 0.3 ± 0.02 μM (1.7) 11 ± 1.7 μM (0.20) 0.7 ± 0.06 μM (0.6) 5.6 ± 0.8 μM (0.9) No effect

5α-Petromyzonol Bile salts from No effect No effect No effect No effect No effect No effect

5α-Petromyzonol 24-sulfate sea lamprey No effect No effect No effect No effect No effect No effect

5α-Cyprinol Major bile salt No effect No effect No effect No effect No effect No effect

5α-Cyprinol 27-sulfate for zebrafish and 
Xenopus species

No effect No effect No effect No effect No effect No effect

Lithocholic acid Major human 11 ± 0.7 (0.12) 7.1 ± 0.9 (0.36) No effect No effect No effect No effect

Glycolithocholic acid secondary No effect 16 ± 2.1 (0.28) No effect No effect No effect No effect

Taurolithocholic acid bile acids and No effect 26 ± 3.8 (0.23) No effect No effect No effect No effect

Lithocholic acid 3-sulfate metabolities No effect No effect No effect No effect No effect No effect

3-Ketolithocholic acid 55 ± 8.1 (0.17) 20 ± 0.3 (0.58) No effect No effect No effect No effect

6-Formylindolo- [3,2-b]-carbazole Miscellaneous > 10 (~0.12) > 10 (~0.08) > 10 (~0.10) ~5 (< 0.03) 2.0 ± 0.3 (0.25) 0.86 ± 0.081 (1.0a)

2,3,7,8-Tetrachlorodibenzo-p-dioxin No effect No effect No effect No effect No effect 0.23 ± 0.04 (1.80)

a Maximal reference compound (efficacy = 1.0) ; efficacy of other compounds are relative to the maximal reference compound.
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either androstanol or phenobarbital, 6β-hydroxylation
was increased significantly (EC50 for androstanol = 20.0 ±
2.7 μM, maximal rate = 717 pmol/min/mg protein; EC50
for phenobarbital = 928 ± 109 μM, maximal rate = 1430

pmol/min/mg protein; Figure 3B). These two compounds
have been previously described as zebrafish PXR agonists
[27,29]. In contrast to 6β-hydroxylation, 15α-, 16α-, and
16β-hydroxylation activities were not influenced by incu-

Enzyme induction in cultured primary zebrafish hepatocytesFigure 3
Enzyme induction in cultured primary zebrafish hepatocytes. (A) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and 3-methyl-
cholanthrene (3-MC) both increase EROD activity in zebrafish hepatocytes, relative to vehicle-only control, following a 48-
hour exposure. In contrast, 3,3'-diindoylmethane (DIM) causes a reduction in EROD activity relative to vehicle-only control. 
(B) 5α-androstan-3α-ol (androstanol), 5α-cyprinol 27-sulfate, phenobarbital, and TCDD cause a concentration-dependent 
increase in testosterone 6β-hydroxylation activity in primary zebrafish hepatocytes, relative to vehicle control, following a 48-
hour exposure. (C) Androstanol, 5α-cyprinol 27-sulfate, phenobarbital, and TCDD all activate recombinant zebrafish PXR 
using a luciferase-based reporter assay system in HepG2 liver cells. All values are normalized relative to 20 μM androstanol 
(which is assigned an efficacy of 1) and to β-galactosidase expression. (D) Phenobarbital (PB; 2 and 3 mM), TCDD (1 nM), and 
androstanol (0.2 mM) all increase flurbiprofen 4-hydroxylation activity in primary zebrafish hepatocytes, relative to vehicle con-
trol, following a 48-hour exposure.
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bation with androstanol, phenobarbital, or any other
drugs tested (data not shown). Varying the exposure time
of the inducers revealed that optimal induction was
achieved with 48-hour exposure. Incubation with calci-
triol (1–500 nM) did not increase 6β-hydroxylation of tes-
tosterone. Nifedipine (3–20 μM) and 5α-cyprinol 27-
sulfate (20–200 μM) both produced small but reproduci-
ble increases in 6β-hydroxylation activity compared to
vehicle-treated levels (approximately 15–20% increase
compared to vehicle-treated control; Figure 3B). Some-
what unexpectedly, TCDD was found to be a potent and
efficacious inducer of testosterone 6β-hydroxylation
(EC50 = 0.154 ± 0.03 nM, maximal rate = 2830 pmol/min/
mg protein; Figure 3B).

The ability of androstanol, 5α-cyprinol 27-sulfate, and
phenobarbital to increase 6β-hydroxylation of testoster-
one in the zebrafish hepatocytes occurred at similar con-
centrations to those that activated recombinant zebrafish
PXR, as measured by a luciferase-based assay in HepG2
cells (Figure 3C). The efficacy of these three compounds
for increasing testosterone 6β-hydroxylation were, how-
ever, different; for example, phenobarbital has lower effi-
cacy than androstanol for activating recombinant
zebrafish PXR (Figure 3C) but higher efficacy in increasing
testosterone 6β-hydroxylase activity in primary zebrafish
hepatocytes (Figure 3B). These discrepancies may result in
part from metabolism of steroid hormones and/or bile
salts by the hepatocytes as opposed to HepG2 cells. TCDD
was also found to activate zebrafish PXR (Figure 3C) but
at much higher concentrations than needed to induce tes-
tosterone 6β-hydroxylation (Figure 3B). In fact, the con-
centrations of TCDD that increased testosterone 6β-
hydroxylation are very close to those that increased EROD
activity in the zebrafish hepatocytes (Figure 3A), suggest-
ing that a common mechanism (e.g., aryl hydrocarbon
receptor) mediates both effects.

A limited number of compounds were also tested for the
ability to hydroxylate flurbiprofen, a measure of CYP2C9
activity in humans [51,52]. Zebrafish hepatocytes had
basal flurbiprofen 4-hydroxylation activities of approxi-
mately 4 nmol/min/mg protein. This activity was mark-
edly higher in hepatocytes exposed to phenobarbital
(Figure 3D), with maximal activities greater than 50
nmol/min/mg protein in phenobarbital-treated cells (Fig-
ure 3D). Lesser increases relative to vehicle control were
seen with treatments by TCDD (1 nM) or androstanol
(200 μM; Figure 3D).

Effects of bile salts on in vivo transcription in zebrafish 
livers
To further probe the effects of endogenous PXR activators
on zebrafish liver in vivo, zebrafish were separately
injected with each of four bile salts or vehicle controls.

These included 5α-cyprinol 27-sulfate (major excreted
bile salt of zebrafish [50] and an efficacious activator of
recombinant zebrafish PXR [29]), 5β-scymnol (5β-
cholestan-3α,7α,12α,24,26,27-hexol) 27-sulfate (weaker
activator of recombinant zebrafish PXR [29,53]), as well
as unconjugated 5α-cyprinol and 5β-scymnol (both inac-
tive at recombinant zebrafish PXR [29,53]). Zebrafish
were then sacrificed and liver mRNA isolated. As meas-
ured by semi-quantitative reverse transcription (RT)-PCR,
none of the four bile salts produced any significant effect
on transcription of β-actin (vehicle control – 60.0 ± 26.2
arbitrary units; 5α-cyprinol – 44.7 ± 19.6; 5α-cyprinol 27-
sulfate – 38.2 ± 20.7; 5β-scymnol – 62.2 ± 21.8; 5β-scym-
nol 27-sulfate – 39.3 ± 17.5) or glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH; vehicle control – 1.63 ±
0.54 arbitrary units normalized to β-actin; 5α-cyprinol –
1.50 ± 0.88; 5α-cyprinol 27-sulfate – 2.38 ± 0.79; 5β-
scymnol – 1.17 ± 0.58; 5β-scymnol 27-sulfate – 1.08 ±
0.50). Relative to vehicle control, 5α-cyprinol 27-sulfate,
but not the other three bile salts, produced a significant
increase in transcription of MDR1 (tentatively classified as
ABCB5 in zebrafish) as measured by semi-quantitative
reverse transcription RT-PCR (vehicle control – 1.25 ±
0.25 arbitrary units normalized to β-actin; 5α-cyprinol –
2.00 ± 1.00; 5β-cyprinol 27-sulfate – 2.29 ± 0.75; 5β-
scymnol – 1.08 ± 0.17; 5β-scymnol 27-sulfate – 1.50 ±
0.58; effect by 5α-cyprinol 27-sulfate significant at p <
0.01 relative to vehicle control). The bile salts tested did
not produce significant effects on transcription of PXR
(vehicle control – 1.04 ± 0.54 arbitrary units normalized
to β-actin; 5α-cyprinol – 0.58 ± 0.33; 5α-cyprinol 27-sul-
fate – 1.50 ± 0.67; 5β-scymnol – 0.92 ± 0.38; 5β-scymnol
27-sulfate 0.75 ± 0.33) or CYP3C1 (vehicle control – 1.17
± 0.33 arbitrary units normalized to β-actin; 5α-cyprinol
– 1.33 ± 0.33; 5α-cyprinol 27-sulfate – 1.71 ± 0.50; 5β-
scymnol – 1.17 ± 0.50; 5β-scymnol 27-sulfate 1.33 ±
0.58). These results are limited by possible metabolism of
the bile salts following injection in zebrafish but do con-
firm that the major bile salt of zebrafish can produce clas-
sic PXR effects in zebrafish liver, including increased
transcription of MDR, an effect that can be mediated by
PXR in mammals [19,54].

Studies of African clawed frog primary hepatocytes
Adapting a previously published protocol [55], we also
cultured primary hepatocytes from adult African clawed
frogs (Xenopus laevis). TCDD markedly increased EROD
activity following a 48 hour exposure although with lower
potency and efficacy than in the zebrafish hepatocytes
(EC50 = 6.5 ± 0.77 nM, maximal rate = 9.8 pmol/min/mg
protein). These results are consistent with previous reports
showing lower sensitivity of Xenopus laevis aryl hydrocar-
bon receptors to TCDD [56,57]. The frog hepatocytes
showed significant 6β- and 12α-hydroxylation of testo-
sterone ; however, neither activity was substantially
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increased relative to vehicle control by treatment with
dexamethasone, calcitriol, 5α-cyprinol, 5α-cyprinol 27-
sulfate (major Xenopus laevis bile salt; Hagey LR, unpub-
lished data), TCDD, or the Xenopus laevis PXRα endog-
enous agonist 3-aminoethylbenzoate [25,58] (Additional
file 4). Thus, unlike zebrafish, testosterone hydroxylation
by frog hepatocytes is not induced by activators of frog
PXRs (also known as benzoate X receptors) or aryl hydro-
carbon receptors.

Studies of sea lamprey primary hepatocytes
Sea lampreys are a member of the jawless fish (Agnatha),
a paraphyletic superclass of the phylogenetically most
basal vertebrates. Using an adaptation of previously pub-
lished methods for culturing primary sea lamprey tissues
[59], we developed a primary cell culture method for sea
lamprey hepatocytes. Initial experiments utilizing larval
stage lampreys (i.e., prior to the transformer life-stage
capable of parasitic feeding on live fish) were unsuccessful
due to frequent contamination with bacteria and fungi,
despite trying multiple antibiotic combinations and dif-
ferent decontamination techniques. Similar problems
were also mentioned by Ma and Collodi [59]. Culture of
hepatocytes from transformer stage lampreys were more
successful and yielded cells that grew for at least 7–10
days. We were unable to passage the cells.

In contrast to the zebrafish hepatocytes, the sea lamprey
hepatocytes demonstrated undetectable EROD activity (<
1 pmol/min/mg protein), both at baseline and after 24–
48 hr exposure to various compounds. The following
compounds did not alter EROD activity: TCDD, 5α-petro-
myzonol (5α-cholan-3α,7α,12α,24-tetrol), 5α-petro-
myzonol 24-sulfate (major sea lamprey bile salt [60]; see
Figure 1 for chemical structure), androstanol, calcitriol, 3-
MC, and phenobarbital. These results are consistent with
that of a previous study that showed low basal EROD
activity in microsomes from sea lamprey livers and, addi-
tionally, no inducibility of EROD activity in sea lampreys
treated with compounds that act as efficacious aryl hydro-
carybon receptor agonists in teleosts and terrestrial verte-
brates [61].

The sea lamprey hepatocytes showed significant testoster-
one 6β-hydroxylation activity with an average basal activ-
ity of 458 pmol/min/mg protein. No other hydroxylated
metabolites of testosterone were detected by HPLC even
after incubating the hepatocytes with 250 μM testosterone
for up to 24 hours. A wide range of compounds were
tested for the ability to induce testosterone hydroxylation
in lamprey hepatocytes including androstanol (1–200
μM), 5α-androst-16-en-3α-ol (1–200 μM), calcitriol (10–
1000 nM), dexamethasone (0.1–50 μM), 5α-petromyzo-
nol (0.01–20 μM; major unconjugated bile salt of sea
lampreys [60]), 5α-petromyzonol 24-sulfate (0.1–100

μM; major excreted bile salt of sea lampreys [60]), 3-keto-
5α-petromyzonol (0.01–20 μM), 3-MC (0.1–10 μM),
phenobarbital (10–3000 μM), pregnenolone (1–200
μM), pregnenolone sulfate (10–200 μM), TCDD (1–10
nM), and 25-hydroxyvitamin D3 (0.1–5 μM). None of
these compounds produced significant increases in testo-
sterone 6β-hydroxylation. The lamprey hepatocytes also
were able to 4-hydroxylate flurbiprofen (basal activity 2.8
nmol/min/mg protein). Flurbiprofen 4-hydroxylation
was significantly decreased by 48 hour treatment with 5α-
petromyzonol (20 μM; 0.21 nmol/min/mg protein) and
3-MC (5 μM; 0.33 nmol/min/mg protein).

Finally, we also looked for evidence of PXR gene(s) in the
preliminary assembly of the sea lamprey genome (5.9X
assembly, 21 Feburary 2007, Genome Sequencing Center
[62], Washington University, Saint Louis, MO, USA). We
searched for potential PXR ortholog(s) in sea lamprey by
a reciprocal BLAST analysis strategy [63]. BLAST queries
using DBD, LBD, and full-length protein sequences of all
available vertebrate PXRs and CARs (constitutive andros-
tane receptors; NR1I3; a receptor closely to PXRs) against
translated nucleotides of the sea lamprey draft genome
(tblastn) did not reveal any gene fragments that, when
BLASTed against the Genbank nr database [64], recipro-
cally returned PXR or CAR genes. These analyses did, how-
ever, detect the already described sea lamprey VDR [8] and
a novel, putative sea lamprey ortholog to farnesoid X
receptor (FXR; NR1H4). Several contigs corresponded to
the published cDNA sequence for the sea lamprey VDR
Genbank: AY249863[8]: these included contig 990
(nucleotides 3761–3877, 6462–6563, 8284–8362,
13878–14009), contig 16240 (nucleotides 3538–3621),
contig 20222 (nucleotides 13373–13570), and contig
21479 (nucleotides 13047–13304, 17009–17143,
17905–18072). The contigs that likely correspond to a
lamprey FXR are contig 5004 (nucleotides 25341–25445,
27183–27422), contig 40984 (nucleotides 16–165), and
contig 56284 (nucleotides 3555–3698). The lamprey
FXR-like gene fragments showed closest sequence identity
to the recently cloned and characterized FXR for the little
skate (Leucoraja erinacea, a cartilaginous fish; Genbank:
EF520727) [65]. Similar to CARs and PXRs, no putative
orthologs to liver X receptors (LXRs; NR1H2 and NR1H3)
were detected as well. In summary, although more com-
plete sequencing of the sea lamprey genome may reveal
additional NR1H and 1I genes, the evidence so far sug-
gests the presence of FXR and VDR only, fewer than the
inventory found in teleost fish (generally LXR, FXR, one or
two VDRs, PXR), African clawed frog (LXR, FXR, VDR, and
two PXRs), chicken (LXR, FXR, VDR, PXR) or mammals
(LXRα, LXRβ, FXR, VDR, PXR, CAR).
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Discussion
VDR and PXR are closely related NRs in the NR1I sub-
family that we previously proposed to have arisen from a

duplication of an ancestral gene [9]. Although at first
glance these two NRs appear to be quite different, they
bind to similar response elements in the promoter of tar-

Phylogeny of vitamin D receptors (VDRs, NR1I), pregnane X receptors (PXRs,NR1I2), and constitutive androstane receptors (CARs, NR1I3).Figure 4
Phylogeny of vitamin D receptors (VDRs, NR1I), pregnane X receptors (PXRs,NR1I2), and constitutive androstane receptors 
(CARs, NR1I3). See Methods for details on the phylogenetic analysis. Four key evolutionary transitions in ligand sensitivity (i.e., 
ability to be activated by ligands) are proposed and indicated by the labels A, B, C, and D underneath four branches. Label A 
indicates loss of ligand sensitivity in the Xenopus frog PXRs relative to other PXRs. The Xenopus laevis and Xenopus tropicalis 
PXRs have narrow ligand sensitivity (essentially to benzoate compounds only) compared to other vertebrate PXRs. Label B 
indicates broadening of ligand specificity relative to the ancestral receptor. This is supported by the broader ligand specificity of 
vertebrate PXRs relative to the Ciona intestinalis VDR/PXR. Label C indicates acquisition of sensitivity to certain bile acids, par-
ticularly lithocholic acid and its derivatives, in mammalian VDRs. All non-mammalian VDRs studied so far are insensitive to bile 
salts. Label D indicates acquisition of sensitivity to vitamin D, a property of all vertebrate VDRs but not the Ciona VDR/PXR.
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get genes and also share a number of target genes includ-
ing CYP3A enzymes [17,19-22,25,44,66,67]. Some of the
key evolutionary transitions in ligand selectivity for NR1I
receptors are indicated in the phylogeny shown in Figure
4. In this report, we show that VDRs have similar selectiv-
ity for vitamin D ligands across a range of vertebrate spe-
cies that include sea lamprey (Agnatha, jawless fish),
zebrafish (teleost fish), African clawed frog (amphibian),
mouse, and human (mammals). Although the functions
of vitamin D in basal vertebrates are not well understood,
the ability to bind and be activated by vitamin D ligands
has been conserved across vertebrates.

PXRs, on the other hand, show extensive sequence diver-
gence across species [27,29,53]. In this report, we demon-
strate that PXR activators can produce effects similar to
those described in mammals and chicken in both the pri-
mary hepatocytes and livers of zebrafish. These effects
include increases in CYP3A-like activity (testosterone 6β-
hydroxylation), CYP2C-like activity (flurbiprofen 4-
hydroxylation), and mRNA transcription of MDR1. In
zebrafish, both synthetic (e.g., phenobarbital) and endog-
enous (e.g., 5α-cyprinol 27-sulfate) ligands can produce
these effects. In contrast, classic PXR-like effects were not
elicited in either sea lamprey or African clawed frog pri-
mary hepatocytes by a range of compounds that activate
PXRs from other species. The PXRs for the African clawed
frog are very divergent from other species in multiple
respects: (1) ligand selectivity (narrow selectivity for ben-
zoates, no xenobiotic sensitivity), (2) tissue expression
pattern (little expression by liver or intestine, high expres-
sion in brain, ovary, skin, and testis), and (3) develop-
mental expression pattern (strong expression during
tadpole development, less expression in adults)
[25,27,58,68,69]. Our results provide further evidence
that additional xenobiotic-response PXRs or related NRs
are not found in the African clawed frog genome. It is an
unresolved evolutionary question why African clawed
frog (and perhaps other amphibians) lack an NR such as
CAR or PXR that can respond to a diverse assortment of
potentially toxic endogenous and exogenous molecules
[58].

The NR repertoire in jawless fish has not been well-stud-
ied, with the exception of VDR [8] and sex and adrenocor-
tical steroid receptors [70,71]. As one of the most basal
extant vertebrates, these animals can provide helpful evo-
lutionary perspective. For the sea lamprey, we were unable
to find any compounds that increased testosterone 6β-
hydroxyation or fluribiprofen 4-hydroxylation in primary
hepatocytes (both possible consequences of PXR-medi-
ated transcriptional regulation), even though the lamprey
hepatocytes had substantial basal levels of both activities.
Coupled with our failure to find a PXR-like gene in the
preliminary release of the sea lamprey genome (despite

finding multiple contigs that contained fragments of a
putative FXR gene in addition to the already characterized
VDR gene), the available data suggest that PXR gene(s)
may not exist in the sea lamprey. If true, then VDR is either
the evolutionarily older NR1I or, alternatively, PXR
gene(s) have been lost during some or all jawless fish lin-
eages.

The properties of the putative Ciona intestinalis ortholog to
VDR and PXR demonstrate that invertebrate and verte-
brate NR1I receptors have diverged markedly in ligand
selectivity. The ciVDR/PXR does not respond to vitamin D
ligands and, in a separate manuscript, we will report lack
of sensitivity of the ciVDR/PXR to bile salts, steroids, typ-
ical PXR-activating xenobiotics, and fat-soluble vitamins
other than vitamin D (i.e., vitamins A, E, and K). The
ciVDR/PXR was found to be activated only by a small
number of planar, synthetic compounds including n-
butyl-p-aminobenzoate, carbamazepine, 6-formylindolo-
3,2-b-carbazole, and TCDD (EJ Reschly, MD Krasowski,
unpublished data). There are no clear correlates of vita-
min D or bile salts yet described in invertebrates, and as a
result, endogenous ligands for the ciVDR/PXR would
likely be different from those for vertebrate VDRs and
PXRs. Ciona intestinalis is, however, capable of synthesiz-
ing steroid hormones and also accumulates cholesterol
and other sterols from dietary sources [72,73]. The endog-
enous activators of the ciVDR/PXR may be as yet unde-
scribed steroidal molecules that have structural similarity
to vertebrate vitamins and/or bile salts. Alternatively,
ciVDR/PXR may be activated by exogenous ligands rele-
vant to its marine environment.

Conclusion
Our results show that VDR ligand selectivity is highly con-
served across vertebrate species. Using primary hepatocyte
and in vivo models, we demonstrate classic PXR-mediated
effects in liver cells from zebrafish but not the African
clawed frog. Using functional and comparative genomic
approaches, we failed to find evidence of PXR gene(s) in
sea lamprey, suggesting VDR may be the evolutionarily
older gene or that PXR gene(s) have been lost in some car-
tilaginous fish lineages. Vertebrate VDRs and PXRs have
markedly different ligand selectivity from the VDR/PXR
from the chordate invertebrate Ciona intestinalis indicating
substantial functional divergence during evolution.

Methods
Animals
Adult Xenopus laevis frogs were purchased from NASCO
(Fort Atkinson, WI, USA). The AB strain was used for the
zebrafish experiments. Juvenile and transformer stage sea
lampreys were obtained from Acme Lamprey Company
(Harrison, ME, USA). All animal studies were performed
in conformity with the Public Health Service Policy on
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Human Care and Use of Laboratory Animals, incorpo-
rated in the Institute for Laboratory Animal Research
Guide for Care and Use of Laboratory Animals. Vertebrate
animal studies were approved by the University of Pitts-
burgh Institutional Animal Care and Use Committee
(hepatocyte studies in African clawed frog, zebrafish, and
sea lamprey), the Committee on Animal Use of the Uni-
versity of California at San Diego (bile isolation and puri-
fication studies), and Ethics Committee of the Federal
University of Santa Catarina (in vivo zebrafish liver stud-
ies).

Chemicals
The sources of the chemicals were as follows: n-butyl-p-
aminobenzoate, ethyl 3-aminobenzoate, 1,25-(OH)2-
vitamin D3, glycocholic acid, taurocholic acid, fexara-
mine, GW3965, GW4064, phenobarbital (Sigma, St.
Louis, MO, USA); 5α-cholic acid, 5α-petromyzonol, 5α-
petromyzonol 24-sulfate, 3-ketopetromyzonol sulfate
(Toronto Research Chemical, Inc., North York, ON, Can-
ada); TCDD (Cambridge Isotopes, Andover, MA); 1α-
hydroxyvitamin D2, 1α-hydroxyvitamin D3 (EMD Chem-
icals, San Diego, CA, USA); 24(R),25-(OH)2-vitamin D3,
25-hydroxyvitamin D3, Nuclear Receptor Ligand Library
(76 compounds known as ligands of various nuclear hor-
mone receptors; BIOMOL International, Plymouth Meet-
ing, PA, USA). 5α-cyprinol 27-sulfate was isolated from
Asiatic carp (Cyprinus carpio) bile [74]. 5β-scymnol 27-sul-
fate was isolated from the bile of Spotted eagle ray (Aeto-
batus narinari). Bile salts were purified by extraction and
Flash column chromatography. Bile alcohol sulfates were
chemically deconjugated (e.g., to 5α-cyprinol and 5β-
scymnol) using a solution of 2,2-dimethoxypropane:1.0
N HCl, 7:1 v/v, and incubating 2 hours at 37°C, followed
by the addition of water and extraction into ether. Com-
pleteness of deconjugation and assessment of purity was
performed by thin-layer chromatography using known
standards. Other than those described above, steroids and
bile salts were obtained from Steraloids (Newport, RI,
USA).

Maintenance of cell lines
The creation of a HepG2 (human liver) cell line stably
expressing the human Na+-taurocholate cotransporter
(NTCP; SLC10A1) has been previously reported [29,53].
HepG2-NTCP cells were grown in modified Eagle's
medium-α containing 10% fetal bovine serum and 1%
penicillin/streptomycin. The cells were grown at 37°C in
5% CO2. The zebrafish ZFL liver cell line (ATCC) was
grown in 50% Leibovitz's L-15 medium with 2 mM L-
glutamine, 35% Dulbecco's modified Eagle's medium
with 4.5 g/L glucose and 4 mM L-glutamine, 15% Ham's
F-12 with 1 mM L-glutamine supplemented with 0.15 g/L
sodium bicarbonate, 15 mM HEPES, 10 μg/mL human
insulin (Sigma), 50 ng/mL recombinant human epider-

mal growth factor (Sigma), and 5% fetal bovine serum.
ZFL cells were grown at 28°C in room air. The Xenopus lae-
vis A6 kidney cell line (ATCC, Manassus, VA, USA) was
grown in 75% NCTC 109 medium, 15% distilled water,
and 10% fetal bovine serum at 26°C in 2% CO2. Except as
noted above, all media and media supplements for the
HepG2, ZFL, and A6 cell lines were obtained from Invit-
rogen (Carlsbad, CA, USA).

Molecular biology
Plasmids containing human VDR, zebrafish PXR, human
organic anion transporting polypeptide (SLC21), as well
as the reporter constructs tk-UAS-Luc and CYP3A4-PXRE-
Luc, and 'empty' vectors pCDNA, PsG5, and PM2 were
generously provided by SA Kliewer, JT Moore, and LB
Moore (GlaxoSmithKline, Research Triangle Park, NC,
USA). Mouse VDR (IMAGE clone 3710866) and pCMV-
sport6 vectors were obtained from Invitrogen (Carlsbad,
CA). The expression vectors were either full-length recep-
tors (i.e., containing both a DBD and LBD; hVDR and
mVDR) or GAL4/VDR chimeras that contain only the LBD
of the VDR (xlVDR, zfVDR, lampVDR, ciVDR/PXR). For
the full-length expression vectors, the reporter plasmid
was CYP3A4-PXRE-Luc, a construct that contains a pro-
moter element from CYP3A4 (recognized by VDR DBDs)
driving luciferase expression. For the GAL4/LBD expres-
sion constructs, the reporter plasmid was tk-UAS-Luc,
which contains GAL4 DNA binding elements driving luci-
ferase expression. xlVDR was cloned by RT-PCR from total
RNA extracted from the frog A6 cell line. zfVDR was
cloned by RT-PCR from total RNA extracted from the ZFL
liver cell line. lampVDR was cloned by PCR from a full-
length sea lamprey VDR clone, described as the 'insertless'
full-length cDNA [8], generously provided by G.K. Whit-
field (University of Arizona College of Medicine, Tucson,
AZ, USA). The LBDs of xlVDR (amino acid residues 90–
422) [Genbank: U91846], zfVDR (amino acid residues
121–453) [Genbank: AF164512], and lampVDR (amino
acid residues 92–406) [Genbank: AY249863] were
inserted into the pM2-GAL4 vector to create GAL4/LBD
chimeras. Details of the cloning of the ciVDR/PXR are
being described in a separate report. The ciVDR/PXR LBD
construct contains amino acid residues 57–391 [Gen-
bank: BR000137].

Co-transfections and transactivation assays
The basic methodology for the luciferase reporter assays in
96-well format was as follows. On day 1, cells were seeded
onto 96-well white opaque plates at 30,000 cells/well. On
day 2, the medium was exchanged, and cells were trans-
fected using calcium phosphate precipitation. Ligand acti-
vation of VDRs was determined by a luciferase-based
functional assay using the HepG2-NTCP cells as previ-
ously described [29]. For hVDR, 3.5 ng/well of VDR plas-
mid was co-transfected with 30 ng/well of the reporter
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CYP3A4-PXRE-Luc and 20 ng/well of pSV-μ-galactosidase
(Promega, Madison, WI, USA). For mVDR, 4.5 ng/well of
VDR plasmid was co-transfected with 45 ng/well of the
CYP3A4-PXRE-Luc reporter and 20 ng/well of β-galactosi-
dase. For xlVDR and ciVDR/PXR, 67 ng/well of VDR plas-
mid was co-transfected with 100 ng/well of the reporter
tk-UAS-Luc and 20 ng/well of β-galactosidase. For zfVDR
and lampVDR, 100 ng/well of VDR plasmid was co-trans-
fected with 150 ng/well tk-UAS-Luc and 20 ng/well of β-
galactosidase. For zebrafish PXR, 75 ng/well of VDR plas-
mid was co-transfected with 100 ng/well tk-UAS-Luc and
20 ng/well of β-galactosidase.

For experiments involving sulfated bile salts or steroids,
human SLC21 was co-transfected at 10 ng/well to facili-
tate compound uptake. On day 3, the cells were washed
with Hanks' buffered salt solution (Invitrogen) and then
exposed to medium containing the ligands or vehicle to
be tested. The medium utilized charcoal-dextran-treated
fetal bovine serum (Hyclone, Logan, UT, USA) to reduce
background activation. Each drug concentration was per-
formed at least in quadruplicate and repeated in separate
experiments for a total of at least three times. For screen-
ing experiments, at least three concentrations of each drug
were tested. On day 4, the cells were washed with Hanks'
buffered salt solution and then exposed to 150 μL lysis
buffer (Reporter Lysis Buffer, Promega). Separate aliquots
were taken for measurement of β-galactosidase activity
(Promega) and luciferase activity (Steady-Glo, Promega).

To facilitate more reliable cross-species comparisons,
complete concentration-response curves for ligands were
determined in the same microplate as determination of
response to a maximal activator. This allows for determi-
nation of relative efficacy, ε defined as the maximal
response to test ligand divided by maximal response to a
reference maximal activator (note than ε can exceed 1).
The maximal activators and their concentrations were as
follows: hVDR, xlVDR, zfVDR – 1 μM calcitriol (BIO-
MOL); mVDR and lampVDR – 0.5 μM calcitriol; ciVDR/
PXR – 6-formylindolo- [3,2-b]-carbazole 20 μM; zebrafish
PXR – 20 μM 5α-androstan-3α-ol. All comparisons to
maximal activators were done within the same micro-
plate. Luciferase data were normalized to the internal β-
galactosidase control and represent means ± SD of the
assays.

Zebrafish primary hepatocyte cultures
Culture of adult zebrafish primary liver cells was adapted
from a procedure published by Collodi and colleagues
[47]. Zebrafish are sacrificed with MS-222 (Sigma-Aldrich,
0.05% v/v) and immersed in 0.5% bleach diluted in LDF
media (50% Leibovitz L-15, 35% Dulbecco's Modified
Essential Medium, 15% Ham's F-12, 15 mM HEPES,
0.015% sodium bicarbonate) for 1 min. The livers are

microdissected and immersed in 0.5% bleach for 2 min,
and then rinsed three times with media. The tissues are
then placed in cold LDF media containing 100 units/mL
penicillin, 100 μg/mL streptomycin, and 0.25 μg/mL
amphotericin. The tissues are minced to 1 mm3 pieces and
washed in Hanks' Balanced Salts (HBS) with calcium and
magnesium, spun at 500 g for 5 minutes at 4°C. The
minceate is digested with 0.25% trypsin for 5 min at room
temperature in a 15 mL conical tube. The tube is gently
inverted several times to facilitate cell dissociation. The
dissociated cells with trypsin are transferred to a tube con-
taining LDF with 5% fetal bovine serum. Fresh trypsin is
then added to the remaining liver pieces for 5 min at room
temperature and the dissociated cells combined with the
other tube of dissociated cells. The total dissociated
minceates are spun at 500 g for 5 minutes at 4°C. The
supernatant is removed, cells are resuspended in LDF with
fetal bovine serum, and spun again at 500 g for 5 minutes
at 4°C. The supernatant is again removed and the cells
resuspended in 67% LDF containing 5% fetal bovine
serum, 100 units/mL penicillin, 100 μg/mL streptomycin,
2 mM glutamine, 50 ng/mL human recombinant growth
factor, and 10 μg/mL human insulin. The cells are then
plated into 24-well plates (5 × 105 cells/well) or 96-well
plates (9 × 104 cells/well) plates that have been previously
coated with Matrigel diluted 1:47 in LDF (BD Biosciences,
San Jose, CA). The cells are cultured at 26°C in ambient
atmosphere.

Zebrafish in vivo transcription studies
Adult zebrafish were purchased from a commercial fish
supplier and acclimatized for at least two-weeks in 20 L
tanks with flow-through freshwater at 22°C. A single dose
of 15 mg/kg of 5α-cyprinol, 5β-cyprinol 27-sulfate, 5α-
scymnol or 5β-scymnol-27 sulfate, dissolved in saline,
was injected intraperitoneally. A control group was
injected with saline. After 48 hr, the animals were decapi-
tated and livers of three fish (n = 5 each group) were
removed, pooled and weighed, totalizing 15 fish per
group. Fish were not fed throughout the experimental
period. The numbers of animals used were the minimum
necessary to demonstrate consistent effects.

To study the transcription of CYP3C1, ABCB5, PXR,
GAPDH and β-actin genes in zebrafish, initial fragments
of these genes were identified (Genbank: AW202769,
Genbank: BQ284593, Genbank: AAM22215, Genbank:
BC083506, Genbank: AF057040, respectively). The PCR
primers for CYP3C1 were designed using MacVector Soft-
ware and primers for MDR1 were designed using Primer 3
Software (Whitehead Institute for Biomedical Research;
[75]). Primer pairs for amplifying CYP3C1 fragment were
5'-TTGAGGAGCGGTGGTGAGCATTAG-3' (sense) and 5'-
TGGAGAGAGTGAACTTCGGATTCG-3' (antisense) and
for amplifying ABCB5 were 5'-CAGAGTGGGCAGACGTA-
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CAA-3' (sense) and 5'-TTCGCAGCAGTAAGCAGAAA-3'
(antisense). The PCR primers for PXR were 5'-ATGCG-
GCGACAAATCTACTGGC-3' (sense) and 5'-TGTGAAGT-
GTGGCAGAGAGGTG-3' (antisense), for amplifying
GAPDH were 5'-CCTCCAAGGAGTAGATGTGACC-3'
(sense) and 5' GCAGAGGACTTTTATTCCATCG 3' (anti-
sense) and for β-actin were 5'-CGACCCAGACATCAG-
GGAGTG-3' (sense) and 5'-GTCCAGGGCCACATAGCA-
3' (antisense). RNA was isolated using Trizol (Invitrogen)
according to manufacturer's instructions. Purity and con-
centration of RNA of each sample were verified at 260 nm.
The RNA integrity was checked by non-denaturing gel
electrophoresis using 1 μg of total RNA in each sample.

Two micrograms of total RNA were reversed transcribed
using Ominiscript RT Kit (Qiagen, Valencia, CA, USA).
cDNA concentration was checked at 260 nm, and the
amount adjusted to 1 μg to perform semi-quantitative RT-
PCR. The expected size of the PXR, Cyp3C1, abcb5,
GAPDH and β-actin fragments were 577, 477, 218, 234
and 550 bp, respectively. Biotools DNA polymerase
(Biotools B&M Labs, S.A., Madrid, Spain) kit was used for
the PCR reaction using a thermocycler Personal Mastercy-
cler (Eppendörf) with the following PCR program: 5
cycles of 94°C for 5 s, 72°C for 35 s; 5 cycles of 94°C for
5 s, 70°C for 10 s, 72°C for 35 s; and 23, 24, 35, 15 and
24 cycles (PXR, Cyp3C1, abcb5, GAPDH and β-actin,
respectively) of 94°C for 5 s, 61, 54, 48, 49 and 61°C for
10 s (PXR, Cyp3C1, abcb5, GAPDH and β-actin, respec-
tively), and 72°C for 35 s. The PXR, CYP3C1, ABCB5 and
GAPDH transcript levels were quantified using Gel-
Quant™ (Multiplexed Biotechologies) and β-actin was
used to normalize the data. The Shapiro-Wilk W test was
used to evaluate normality. When data were parametric
the analysis was performed using Student t test; otherwise
Mann Whitney U test was applied. Differences were con-
sidered significant at the 95% confidence level.

Sea lamprey primary hepatocyte cultures
Culture of sea lamprey primary liver cells was adapted
from procedures published by Ma and Collodi [59].
Transformer stage sea lampreys are sacrificed with MS-222
(Sigma-Aldrich, 0.05% v/v) and immersed in 0.5% bleach
diluted in LDF media (50% Leibovitz L-15, 35% Dul-
becco's Modified Essential Medium, 15% Ham's F-12, 15
mM HEPES, 0.015% sodium bicarbonate) for 1 min. The
livers are microdissected and immersed in 0.5% bleach for
2 min, and then rinsed three times with media. The tissues
are then placed in cold LDF media containing 100 units/
mL penicillin, 100 μg/mL streptomycin, and 0.25 μg/mL
amphotericin. The tissues are minced to 1 mm3 pieces and
washed in Hanks' Balanced Salts (HBS) with calcium and
magnesium, and spun at 500 g for 5 minutes at 4°C. The
minceate is digested with 0.25% trypsin for 5 min at room
temperature in a 15 mL conical tube. The tube is gently

inverted several times to facilitate cell dissociation. The
dissociated cells with trypsin are transferred to a tube con-
taining LDF with 10% fetal bovine serum. Fresh trypsin is
then added to the remaining liver pieces for 5 min at room
temperature and the dissociated cells combined with the
other tube of dissociated cells. The total dissociated
minceates are spun at 500 g for 5 minutes at 4°C. The
supernatant is removed, cells are resuspended in LDF with
10% fetal bovine serum, and spun again at 500 g for 5
minutes at 4°C. The supernatant is again removed and the
cells resuspended in 67% LDF containing 5% fetal bovine
serum, 100 units/mL penicillin, 100 μg/mL streptomycin,
2 mM glutamine, 50 ng/mL human recombinant growth
factor, and 10 μg/mL human insulin. The cells are then
plated into 24-well plates (5 × 105 cells/well) or 96-well
plates (9 × 104 cells/well) plates that have been previously
coated with Matrigel diluted 1:47 in LDF (BD Biosciences,
San Jose, CA). The cells are cultured at 18°C in ambient
atmosphere.

Xenopus laevis primary hepatocyte cultures
Xenopus laevis primary hepatocytes were cultured by a pro-
tocol adapted from a published report [55]. Frogs are sac-
rificed with MS-222, rinsed with 70% ethanol, and the
liver lobes perfused via the heart, initially with 375 mL
Barth (88 mM NaCl, 1 mM K2SO4, and 10 mM HEPES-
NaOH, pH 7.4) containing 0.82 mM MgCl2 and 0.1 mg/
mL heparin, and then with 25 mL Barth containing 2.22
mM Ca(NO3)2, 2.74 mM CaCl2, and 200 U/mL type I col-
lagenase (Worthington Chemicals, Lakewood, NJ). Livers
are minced to fine pieces in 12.5 mL Barth-collagenase
solution and then incubated for 10 min at room temper-
ature, periodically disaggregating the liver pieces with a
Pasteur pipette. The liver cells are then placed on a shak-
ing incubator for 5 min at room temperature, followed by
another 10 min of periodic pipetting to complete disag-
gregation. Cells are then filtered through a 130 μm Nitex
nylon mesh (Fisher Scientific), following by spinning at
500 g for 5 min at 4°C. The supernatant is then aspirated
and diluted to 50 mL with Barth plus MgCl2 and then
allowed to settle while cooled in ice for 30 min. The super-
natant is removed, and the cellular pellet is resuspended
and subjected to one more round of nylon mesh filtra-
tion, dilution in Barth plus MgCl2, and settling while
cooled in ice. The supernatant is removed and the remain-
ing cells are washed once with Barth plus MgCl2 and then
centrifuged at 500 g for 5 min at 4°C. The cells are then
resuspended in 0.6 × Coon's Modified Ham's F-12
medium (Invitrogen) supplemented with 0.1 × Barth (88
mM NaCl, 1 mM K2SO4, 10 mM HEPES), 200 U/mL pen-
icillin G, 100 μg/mL streptomycin sulfate, 2 mM
glutamine, 0.2% glucose, and 10 μg/mL bovine insulin
(Calbiochem), with the final pH adjusted to 7.5. The cells
are plated at a density of 2.5–3.0 × 104/mL in 24-well
plates that have been previously coated with Matrigel
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diluted 1:47 in cell culture medium. Cells are cultured at
20°C in ambient atmosphere.

EROD assay
Cells were incubated with 20 μM 7-ethoxyresorufin
(Sigma) in a buffer composed of 50 mM Tris, 0.1 M NaCl,
pH 7.8. The production of resorufin was assessed by fluo-
rescence measurement with an excitation wavelength of
530 nm and an emission wavelength of 590 nm, with
standards of resorufin made up to determine molar pro-
duction of resorufin. Reactions were stopped with 1.5 vol-
umes of cold methanol. Measurements were normalized
to total protein concentration (BioRad, Hercules, CA,
USA).

HPLC analysis of testosterone metabolites
Testosterone metabolites were identified and quantitated
by HPLC. 100 μL of sample, calibration standard, or qual-
ity material standard were pipetted into separate micro-
centrifuge tubes and mixed with 100 μL of methanol.
Samples were vortexed and centrifuged at 13,000 rpm for
4 min. The supernatant was then injected into the HPLC.

The samples were separated using an isocratic mobile
phase of 60% methanol/40% water on a Lichrospher 100
RP-18 (5 μm, 250 × 4 mm) column (Agilent Technolo-
gies, Santa Clara, CA, USA). The flow rate was 1.2 mL/min
and total run time was 25 min. The samples were detected
by UV absorbance at 242 nm. The retention times for the
testosterone metabolites were as follows: 6α-testosterone
(4.29 min), 15α-testosterone (4.76 min), 7α-testosterone
(5.10 min), 6β-testosterone (5.59 min), 16α-testosterone
(6.16 min), 16β-testosterone (8.18 min), 2α-testosterone
(8.78 min), and testosterone (18.5 min). Measurements
were normalized to total protein concentration (BioRad).

Flurbiprofen hydroxylation assay
Flurbiprofen hydroxylation activity was measured in
intact cultured hepatocytes as an index for CYP2C9 activ-
ity. The formation of 4-hydroxyflurbiprofen was meas-
ured with reverse-phase HPLC adapted from a previously
published method [52]. 100 μL of sample aliquot was
diluted with methanol (1:1, v/v) and injected onto a
Supelcosil LC-18 column (4.9 × 150 mm, 5 μm) with a
mobile phase of 0.02 mol/L potassium phosphate, pH 3.0
buffer/water (60:40) at a flow rate of 1.2 ml/min. Quanti-
fication of 4-hydroxyflurbiprofen was done with fluores-
cence detection (Waters 2475) at 260 nm excitation and
320 nm emission wavelength. Measurements were nor-
malized to total protein concentration (BioRad).

Phylogenetic analysis
The following sequences were used for phylogenetic anal-
ysis (some links are from the Ensembl database [76]):
human VDR [Genbank: NM_000376], rhesus monkey

VDR [Ensembl: ENSMMUT00000009414], cow VDR
[Ensembl: ENSBTAT00000021832], dog VDR [Ensembl:
ENCAFT00000014497], mouse VDR [Genbank:
NM_009504], chicken VDR [Genbank: AF011356], Japa-
nese quail VDR [Genbank: U12641], Xenopus laevis VDR
[Genbank: U91849], fugu VDR [Ensembl:
NEWSINFRUT00000138841], bastard halibut [Genbank:
AB037674], zebrafish VDR [Genbank: AF164512],
medaka VDR [Ensembl: ENSORLT00000001311], sea
lamprey VDR [Genbank: AY249863], Ciona intestinalis
VDR/PXR [Genbank: BR000137], human CAR [Genbank:
NM_005122], rhesus CAR [Genbank: AY116212], cow
CAR [Ensembl: ENSBTAT00000012145], dog CAR
[Ensembl: ENSCAFT00000020528], Baikal seal [Gen-
bank: AB109553], mouse CAR [Genbank: NM_009803],
pig CAR [Genbank: AB214979], opossum CAR [Ensembl:
ENSMODT00000006393], human PXR [Genbank:
AF061056], rhesus monkey PXR [Genbank: AF454671],
cow PXR [Ensembl: ENSBTAT00000026059], mouse PXR
[Genbank: AF031814], rabbit PXR [Genbank: AF188476],
opossum PXR [Ensembl: ENSMODT00000023109],
chicken PXR [Genbank: AF276753], Xenopus laevis PXRα
[Genbank: BC041187], Xenopus tropicalis PXR [Ensembl:
ENSXETT00000039109], fugu PXR [Ensembl:
NEWSINFRUT00000171584], medaka PXR [Ensembl:
ENSORLT00000022473], Tetraodon nigriviridis PXR
[Ensembl: GSTENT00026021001], zebrafish PXR [Gen-
bank: AF454674, Genbank: AF502918], ixotid tick
(Amblyomma americanum) ecdysone receptor [Genbank:
AF020187], and purple sea urchin (Strongylocentrotus pur-
puratus) liver × receptor [Genbank: XM_774904].
Sequences were aligned using ClustalW [77] and Tcoffee
software [78] and manually adjusted as needed. Phylog-
eny was inferred using parsimony analysis by PAUP*4.0-
beta for UNIX/LINUX (Sinauer Associates, Sunderland,
MA, USA) with the ixotid tick ecdysone receptor used as
the outgroup. A heuristic search of 100 replicates of ran-
dom addition plus tree-bisection-reconnection branch
swapping was used; to estimate support, 10,000 bootstrap
replicates were analyzed. Branch labels indicate bootstrap
percentages. The results of the phylogenetic analysis are
shown in Figure 4.
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