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Abstract

BACKGROUND—Peripheral artery disease (PAD) is underdiagnosed due to poor patient and 

clinician awareness. Despite this, no widely accepted PAD screening is recommended.

OBJECTIVES—The authors used machine learning to develop an automated risk stratification 

tool for identifying patients with a high likelihood of PAD.

METHODS—Using data from the electronic health record (EHR), ankle-brachial indices (ABIs) 

were extracted for 3,298 patients. In addition to ABI, we extracted 60 other patient characteristics 

and used a random forest model to rank the features by association with ABI. The model identified 

several features independently correlated with PAD. We then built a logistic regression model to 

predict PAD status on a validation set of patients (n = 1,089), an external cohort of patients (n = 
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2,922), and a national database (n = 2,488). The model was compared to an age-based and random 

forest model.

RESULTS—The model had an area under the curve (AUC) of 0.68 in the validation set. When 

evaluated on an external population using EHR data, it performed similarly with an AUC of 0.68. 

When evaluated on a national database, it had an AUC of 0.72. The model outperformed an 

age-based model (AUC: 0.62; P < 0.001). A random forest model with inclusion of all 60 features 

did not perform significantly better (AUC: 0.71; P = 0.31).

CONCLUSIONS—Statistical techniques can be used to build models which identify individuals 

at high risk for PAD using information accessible from the EHR. Models such as this may 

allow large health care systems to efficiently identify patients that would benefit from aggressive 

preventive strategies or targeted-ABI screening.
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Peripheral artery disease (PAD) affects over 230 million people world-wide.1,2 PAD reduces 

walking ability and increases risk of adverse limb events, such as amputation.2 PAD is also 

associated with increased risk of adverse cardiovascular events. Despite its high burden, 

it remains underdiagnosed as most patients do not manifest typical symptoms. Classic 

intermittent claudication is only found in 10% to 30% of patients and nearly half of patients 

are atypically symptomatic or report being asymptomatic.2–4 Diagnosis of PAD has been 

shown to increase rates of initiation of PAD specific therapies and better outcomes.5

Despite this, there is no consensus on PAD screening. The American College of Cardiology 

and American Heart Association recommend screening in asymptomatic patients who are 

aged 65 years and older or who are aged 50 to 64 years with risk factors for atherosclerosis 

with an ankle-brachial index (ABI).6 The U.S. Preventive Services Task Force (USPSTF) 

concluded that there was insufficient evidence to recommend screening for PAD in 

asymptomatic adults, ie, persons aged >18 years.7 Insurance coverage for preventative health 

screening without cost sharing to the patient in the United States is tied to USPSTF A and 

B recommendations.8 Thus, there is no current mechanism to systemically identify patients 

at risk for PAD, such as those who are older age, have diabetes, or a history of smoking. 

In the absence of a population screening strategy, an automated electronic health record 

(EHR)-based method to identify a group of patients at highest risk of PAD would foster 

earlier institution of medical therapies, promote pedal examination, and enable investigation 

into whether EHR-based screening of patients at high risk of PAD improves outcomes.

We used machine learning and logistic regression to develop models to estimate the presence 

of PAD, as defined by ABI <0.90, in patients without prior ABI testing in their electronic 

records.9 These models were validated on internal validation and external test cohorts 

and their performance was compared to age-based screening. Our goal was to develop a 

pragmatic model to efficiently identify patients at high risk for PAD based on information 

entirely contained within the electronic medical record that could be used to facilitate highly 

targeted screening or initiation of preventive strategies in an undiagnosed population.
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METHODS

COHORT FOR TOOL DEVELOPMENT AND VALIDATION.

This research was approved by the Vanderbilt University Institutional Review Board and 

Northwestern University Institutional Review Board. We collected data on all patients with 

resting ABI testing present in Vanderbilt University Medical Center’s (VUMC) deidentified 

EHR database, the Synthetic Derivative. There were 75,803 ABI tests for 8,093 patients 

within the database that were extracted using regular expression. The earliest recorded ABI 

was chosen for each patient. If multiple tests were present on the earliest date, the lowest 

single ABI value was chosen. We then performed our analysis on all patients over the age of 

18 years (N = 3,298) who had their first ABI measured between January 2015 and October 

2020. External model testing was performed on all adult patients (N = 2,922) who had their 

first ABI measured between January 2015 and December 2020 at Northwestern Medicine 

(NW). There were no exclusion criteria for these populations. External model testing was 

also performed on all patients with ABI testing in the 2003 to 2004 National Health and 

Nutrition Examination Survey (NHANES) database (n = 2,488).10 All patients with ABI 

testing in the database were over the age of 40 years and patients were excluded if they 

weighed over 400 pounds or had bilateral lower extremity amputations.

OUTCOME.

PAD was defined as an ABI <0.90 in either limb on the date of first ABI measurement.

MODEL COVARIATES.

We identified 60 features that were readily extractable from the EHR and had been either 

identified in prior published data or were biologically plausible as influencers of PAD. We 

only used unstructured data. These features consisted of patient demographics, vital signs, 

lab values, diagnoses, and medications. The features were limited to those that were present 

within the EHR on or before the date of ABI measurement. Related features were combined 

into aggregate variables (additional detail in Supplemental Tables 1 to 3). Medications were 

limited to those that were present at any time on the patient’s medication list in the 365 days 

prior to ABI measurement. There was no limit to the look back period for other features. 

Missing data were imputed with the median of the value across the population.

FEATURE PRIORITIZATION AND MODEL CREATION.

We used the 60 vascular disease associated features to train a random forest algorithm 

for predicting patient ABIs. The random forest assigned a variable importance to each 

feature which described the strength of that feature’s independent association with ABI 

(Supplemental Table 1). Vascular medicine specialists (A.W.A., J.A.B.) were consulted to 

build 5 models using features with high variable importance in the random forest algorithm 

and completeness within the EHR while excluding overlapping features (Supplemental Table 

4). An age-based model was built for comparison in which a test statistic ranging from 0 to 1 

was linearly proportional to the patient’s age.
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MODEL IMPLEMENTATION, EVALUATION, AND VALIDATION.

The models described above were trained on a cohort of patients from VUMC (n = 2,209) to 

build logistic regression equations that described the chosen feature’s impact on a patient’s 

risk of having an ABI <0.90. After training, the logistic regression models were then used 

to estimate presence of PAD on 3 separate cohorts of patients: an internal VUMC cohort (n 

= 1,089), an external cohort from NW, another academic medical center (n = 2,922), and an 

external cohort from the 2003 to 2004 NHANES database, a nationally-representative survey 

designed to assess the health and nutritional status of adults and children in the United 

States.11

Each model outputs a continuous test statistic for each patient ranging from 0 to 1. A higher 

test statistic indicates a higher probability of a patient having an ABI <0.90. The test statistic 

threshold for identifying patients as high risk of PAD can be customized to the population 

being studied to prioritize high positive predictive value (PPV) vs negative predictive value 

(NPV). A patient will be identified as high risk of having an abnormally low ABI if their test 

statistic is greater than the threshold chosen.

STATISTICAL ANALYSIS.

All statistical analyses were performed using R (version 3.6.3).12 The random forest used 

conditional interference trees as base learners using the partykit package.13 Conditional 

interference trees were used because variable importance in traditional random forests 

is biased in favor of features that contain more levels (ie, continuous variables such as 

lab values or vital signs).13,14 Conditional interference trees provide unbiased variable 

selection when there are both continuous and categorical features. Logistic regression 

models were built for validation as random forests require more computational time that 

make implementation within the EHR unrealistic. Additionally, random forests are black 

box models that are less interpretable for individual clinicians due to the absence of 

coefficients describing the magnitude of a feature’s effect on the outcome and increased 

interaction between features as the size of the model grows.15,16

Receiver operating characteristic (ROC) curves were built using predictions from the logistic 

regression and area under the curve (AUC) calculations were performed using the pROC 

package.17 All additional statistical analyses including model-level sensitivity, specificity, 

PPV, and NPV were calculated for model test statistic thresholds at percentiles ranging from 

0 to 1.

RESULTS

STUDY POPULATION.

At VUMC, we identified 3,298 unique patients with a first ABI measured between January 

2015 and October 2020, of which 1,545 (47%) <0.90. Patient characteristics are presented in 

Table 1. Among the study population, 76% were White, 17% were Black, 57% were male, 

the mean age was 57.8 ± 16.6 years, and the mean body mass index (BMI) was 29 ± 6.6 

kg/m2. Comorbidities were common, 53% of patients had hypertension, 20% had diabetes 

mellitus, 26% had a history of smoking, and 30% had a prior diagnosis of PAD.
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MODEL PREDICTION RESULTS.

The 5 different logistic regression models performed similarly based on the ROC curve with 

AUCs ranging from 0.67 to 0.69 (Supplemental Table 4). Given similar performance across 

all 5 models, the objective model (AUC: 0.68) was selected because of its parsimony and 

simplicity and will form the basis of this report (Central Illustration). The model consisted 

of the following features: age, gender, systolic blood pressure, diastolic blood pressure, 

pulse pressure, antidiabetic medication use, antihypertensive medication use, history of 

smoking, and total cholesterol to high-density lipoprotein cholesterol ratio. An exclusively 

age-based screening model performed significantly worse in this population as compared 

to the objective model (AUC: 0.62; P < 0.001). A model built using a random forest 

with inclusion of all features did not perform significantly better (AUC: 0.71; P = 0.31). 

The model performance was not significantly different between White (AUC: 0.66) and 

non-White patients (AUC: 0.72; P = 0.10). The model performed significantly better with 

male patients (AUC: 0.71) than female patients (AUC: 0.64; P = 0.03).

The test characteristic was correlated with a patient’s likelihood of having PAD, and this 

relationship was observed for both low- and high-risk patients (Figure 1). At a test statistic 

threshold of 0.3, the model had a sensitivity of 90%, specificity of 26%, PPV of 52%, NPV 

of 74%, and it identified 888 of 1,089 patients as candidates for ABI testing due to high risk 

for having PAD. At a threshold of 0.5, the model had a sensitivity of 58%, specificity of 

69%, PPV 63%, and NPV 65% and identified 482 patients as candidates for ABI testing. At 

a threshold of 0.7, the model had a sensitivity of 11%, specificity 97%, PPV 76%, and NPV 

54% and identified 74 patients for ABI testing.

EXTERNAL TESTING.

The external cohort at Northwestern consisted of 2,922 patients, of which 1,134 (39%) had 

an ABI <0.90. Characteristics of these patients are presented in Table 1. In this cohort, 80% 

of the patients were White, 10% were Black, 56% were male, the mean age was 66.9 ± 12.8 

years, and the mean BMI was 29.1 ± 6.4 kg/m2. Hypertension was present in 70%, 36% had 

diabetes mellitus, and 17% had a history of smoking.

Evaluating the model on the external NW test cohort yielded an AUC of 0.68. To achieve 

similar test statistics on the external cohort as on the internal cohort required setting a higher 

threshold to identify a patient as having PAD. Whereas a threshold of 0.5 for internal data 

yielded a sensitivity of 58% and specificity of 68%, a threshold of 0.53 was required to have 

a sensitivity of 59% and specificity of 68% on external patients. At a threshold of 0.5, the 

model would flag 44% of the internal patient population whereas it would flag 50% of the 

external population. The variance arises from higher rates of traditional PAD risk factors 

in the external cohort (Table 1). Despite an increased prevalence of risk factors such as 

diabetes and hypertension, the external cohort had a lower prevalence of ABI <0.90 in their 

population (39% vs 47%).

This 2003 to 2004 NHANES database consisted of 2,488 patients, of which 227 (9%) had 

an ABI <0.90. Characteristics of these patients are presented in Table 1. In this cohort, 58% 

of patients were White, 18% were Black, 51% were male, the mean age was 61.1 + 13.2 
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years, and the mean BMI was 28. 5 ± 5.5 kg/m2. Hypertension was present in 39%, 14% had 

diabetes mellitus, and 55% had a history of smoking.

Evaluating the model on the NHANES database yielded an AUC of 0.72. To achieve similar 

test statistics on the NHANES cohort required setting a higher threshold to identify a patient 

as having PAD. A threshold of 0.55 yields a sensitivity of 60% and specificity of 71% 

on NHANES patients, similar to results for the internal data at a threshold of 0.5 and 

external data at 0.53. At a threshold of 0.5, the model would flag 42% of the NHANES 

population for ABI screening (as compared to 44% of the internal population and 50% of 

the external population). If more selective screening was desired in this population with a 

lower prevalence of PAD, the threshold could be increased to 0.68 and would flag 10% of 

the population for ABI screening.

DISCUSSION

The aim of our project was to demonstrate the feasibility of using both machine learning 

(random forest) and logistic regression to develop a risk stratification tool for identifying 

patients at increased risk for PAD suitable for ABI testing. Confirmation bias within the 

population was minimized by using a patient’s first ABI within the EHR and excluding 

variables from inclusion in the model that may reflect a diagnosis of PAD (vascular disease 

diagnoses, prior vascular interventions, or cilostazol use). The model estimated abnormally 

low ABI in 2 separate academic medical centers with an AUC of 0.68. The model 

performed similarly when validated in the NHANES database with an AUC of 0.72. The 

model outperformed an age-based ABI screening approach. Despite the model’s consistent 

performance between medical centers, the different thresholds needed to achieve similar 

performance between centers show that the ideal test statistic threshold for identifying 

high-risk patients varies depending on a population’s risk factors, regional PAD prevalence, 

and desired rate of discovery.

Prior studies have also used machine learning for PAD prediction. Ross et al18 developed 

a random forest algorithm which used 120 patient characteristics that had an AUC of 

0.87 for PAD prediction in 1,047 patients not previously diagnosed with PAD presenting 

for coronary angiography. Our work advances screening importantly. First, 40% of all 

PAD patients do not have evidence of other atherosclerosis.19 Second, the presence of 

atherosclerosis in one vascular bed increases the risk significantly of its presence in another 

and incidence of adverse events.20–24 The high accuracy of this study certainly demonstrates 

the power of using machine learning to predict PAD status using a strategy of very high-risk 

patients (76% of patients in this study had coronary artery disease), but we believe the power 

of the EHR is to extend these methods to all patients within a medical center who have 

clinical data within the EHR.

Therefore, it is possible to build machine learning models with improved accuracy over 

our models described in this paper by limiting the population to higher risk cohorts or 

using time-intensive, manually collected data rather than extracting it from the EHR. But 

these methods are difficult to implement outside of the research setting and limit the 

population in who PAD can be diagnosed prior to adverse events. Unstructured data from 
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the EHR can be analyzed retrospectively and built into a model, but it is less practical for 

prospective implementation because of the variation in identification and prevalence across 

EHR platforms. Our model is capable of risk stratifying patients even when components 

of the model are missing. We sacrifice predictive accuracy modestly in exchange for a 

greater discovery of cases. We believe this strikes the right balance between accuracy and 

utility. The risks associated with testing are near nil while the benefits of diagnosis are 

considerable. Fewer features, then, foster easier implementation for routine utilization in 

clinical practice. Including fewer features in our model which reduced overfitting on internal 

data is demonstrated by its consistent performance when evaluated on external data which 

is not typically seen in clinical prediction models.25 Over 40% of clinical prediction models 

described in the literature are not externally evaluated and when they are, the AUC typically 

decreases by 11%.26

The benefit of the model is its continuous test statistic which captures a patient’s 

individualized risk rather than giving a binary response (screen or do not screen) as with 

the American College of Cardiology/American Heart Association screening guidelines or 

evaluated in the DANCAVAS (Danish Cardiovascular Screening Trial).27 This allows the 

model to be tuned to change the number of patients identified through screening and 

maximize true discovery while minimizing missing patients and false positive tests. We 

would prioritize high NPV when implementing the model for screening, and therefore, 

pick a low test statistic threshold. Our model discovered 302 people with PAD for every 

481 people identified for screening at a model threshold of 0.5 in a population of 1,089 

patients with a prevalence of PAD of 47%; 215 patients with PAD were not identified for 

screening (Table 2). This was significantly better than age-based ABI screening and had 

similar performance across all models. In a population that underwent ABI testing without 

regard to symptoms (NHANES), our model discovered 167 people with PAD for every 

1,055 identified for screening in a population of 2,488 patients with a PAD prevalence of 

9%; 60 patients with PAD were not identified for screening. The benefit of the model in this 

paper is its simplicity and pragmatic use case.

Future directions include addressing model performance while maintaining our goal of use 

simplicity. The inclusion of diagnostic data (imaging, electrocardiograms, and physiologic 

data) may improve performance by finding a higher-risk cohort.28 Adding data of similar 

type as already included in this analysis would unlikely improve performance and would 

more likely lead to overfitting data with reduced external validity.16 Our finding that 

model-specific adjustments (comparing logistic regression vs machine learning models) 

did not significantly improve model performance suggests that improving data quality 

within the model is higher yield than building more advanced machine learning models, 

a finding consistent with previous research.29 This paper serves as a proof of concept for 

building data driven models using only information contained within the EHR. Prospective 

implementation of our model with evaluation of both its performance and effect on 

outcomes is the most important next step to determine its clinical utility.
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STUDY LIMITATIONS.

First, the results reported here cannot be generalized to an asymptomatic population. 

Second, the analyses did not discriminate by ordering indication. Third, the model 

aimed to use first measured ABIs to capture index diagnosis of PAD but 30% of the 

internal population had previously been diagnosed with PAD. Prospective implementation 

of this model would address each of these limitations by evaluating its performance 

in an asymptomatic population without a prior PAD diagnosis. Lastly, the population 

used to develop this model was representative of the national Black population, but 

the non-Hispanic, White population was overrepresented as compared to the local and 

national population.30 These variances may impact model accuracy in Hispanic and Asian 

populations.28

CONCLUSIONS

PAD is a disease associated with high morbidity and mortality but is underdiagnosed as 

classic symptoms of claudication are rarely present and screening opportunities are not 

covered. This paper describes the development of a model built using both machine learning 

and logistic regression techniques that identified patients at high risk of having PAD that 

was validated retrospectively at 2 academic medical centers. Further studies to prospectively 

validate the model are needed to evaluate its efficacy in identifying PAD in asymptomatic 

populations.
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Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS AND ACRONYMS

ABI ankle-brachial index

AUC area under the curve

BMI body mass index

EHR electronic health record
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NPV negative predictive value

NW Northwestern Medicine

PAD peripheral artery disease

PPV positive predictive value

ROC receiver operating characteristic
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE:

Ankle-brachial index testing is indicated in patients with exertional leg symptoms and 

risk factors for peripheral artery disease.

COMPETENCY IN PROFESSIONALISM:

When evaluating a clinical prediction model, the external validity of the model is 

dependent on whether the diversity of the population used to train the model reflects 

the population in which it will be used.

COMPETENCY IN SYSTEMS-BASED PRACTICE:

Preventive screening that has an “A” or “B” recommendation from the U.S. Preventive 

Services Task Force must be covered by private insurance without cost sharing to the 

patient.

TRANSLATIONAL OUTLOOK:

Evaluation of clinical prediction models prospectively is needed to evaluate their efficacy 

as a screening tool.
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FIGURE 1. 
Model Output Vs ABI Validated PAD Status

Model calibration demonstrated by mean test statistic as compared to the percentage of 

patients within each quantile that had abnormally low ABIs. Marker size is proportional to 

number of patients with each quantile. ABI = ankle-brachial index; PAD = peripheral artery 

disease.

Sonderman et al. Page 12

JACC Adv. Author manuscript; available in PMC 2023 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CENTRAL ILLUSTRATION. 
Peripheral Artery Disease Predictor Model Development

Ankle-brachial indices (ABIs) were extracted from the EHR using regular expression for 

3,298 patients. A random forest was then used to analyze 60 patient-specific features 

(demographics, vital signs, laboratory values, diagnoses, and medication use) to identify 

features most strongly associated with low ABI. These features were used with a training 

cohort of patients to build 5 logistic regression models. A single model was chosen and 

evaluated on both internal validation and external test cohorts (EHR data and National 

Health and Nutrition Examination Survey) that were not used for model training to evaluate 

how the models approximated PAD risk. Model performance was evaluated using receiver 

operating characteristic curves. EHR = electronic health record.
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TABLE 1

Baseline Characteristics of Patients at Both Clinical Sites and Within the NHANES Database

Internal (n = 3,298) External (n = 2,922) NHANES (n = 2,488)

ABI 0.81 ± 0.33 0.91 ± 0.29 1.07 ± 0.15

Age (y) 57.8 ± 16.6 66.9 ± 12.8 61.1 ± 13.2

Male 1,878 ± 57% 1,650 ± 56% 1,268 ± 51%

Race/ethnicity

 Caucasian 2,423 (73%) 2,215 (76%) 1,436 (58%)

 Black 549 (17%) 303 (10%) 454 (18%)

 Asian 19 (1%) 54 (2%) Not reported

 Hispanic 80 (2%) 125 (4%) 534 (21%)

 Other/missing 227 (7%) 225 (8%) 64 (3%)

BMI 29.2 ± 6.6 29.1 ± 6.4 28.5 ± 5.5

Ever smoker (% yes) 858 (26%) 489 (17%) 1,358 (55%)

SBP (mm Hg) 129 ± 21 132 ± 19 133 ± 21

DBP (mm Hg) 72 ± 14 72 ± 11 72 ± 11

DM (% yes) 662 (20%) 1,061 (36%) 360 (14%)

HTN (% yes) 1,764 (53%) 2,036 (70%) 974 (39%)

GFR 79 ± 33 62 ± 21 76 ± 20

Values are mean ± SD or n (%).

ABI = ankle-brachial index; BMI = body mass index; DBP = diastolic blood pressure; DM = diabetes mellitus diagnosis; GFR = glomerular 
filtration rate; HTN = hypertension diagnosis; NHANES = National Health and Nutrition Examination Survey; SBP = systolic blood pressure.
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