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Abstract
Microtubule dynamics are fundamental for many aspects of cell physiology, but
their mechanistic underpinnings remain unclear despite 40 years of intense
research. In recent years, the continued union of reconstitution biochemistry,
structural biology, and modeling has yielded important discoveries that deepen
our understanding of microtubule dynamics. These studies, which we review
here, underscore the importance of GTP hydrolysis-induced changes in tubulin
structure as microtubules assemble, and highlight the fact that each aspect of
microtubule behavior is the output of complex, multi-step processes. Although
this body of work moves us closer to appreciating the key features of
microtubule biochemistry that drive dynamic instability, the divide between our
understanding of microtubules in isolation versus within the cellular milieu
remains vast. Bridging this gap will serve as fertile grounds of
cytoskeleton-focused research for many years to come.
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Introduction
Microtubules are hollow, cylindrical polymers of αβ-tubulin that 
are vital for many biological processes, including cell division, 
polarization, and migration. In cells, microtubules are composed of 
13 laterally associated protofilaments, strands of αβ-tubulin subunits 
lined up in a head-to-tail fashion. Key to their functional versatility 
is that microtubules are capable of assembling and disassembling 
over many cycles, as first revealed by Shinya Inoue’s seminal 
polarization microscopy studies of mitosis1. The dynamic nature of 
microtubules is intrinsic to tubulin, as microtubules formed in vitro 
with tubulin alone coexist as growing and shortening polymers 
that switch between these states2. This non-equilibrium behav-
ior, termed dynamic instability, is in turn dependent on the abil-
ity of β-tubulin to bind and hydrolyze GTP: an αβ-tubulin 
heterodimer that contains GTP-β-tubulin can add on to the grow-
ing end of a microtubule, but polymerization induces GTP hydrol-
ysis. GDP-β-tubulin is restricted to the lattice, as ends rich in 
GDP-β-tubulin are unstable and prone to depolymerization. These 
observations laid the foundation for the “GTP cap” model, which 
postulates that microtubules can grow only when non-hydrolyzed 
GTP-β-tubulin subunits crown the end of a microtubule3,4. Although 
GTP hydrolysis plays an indisputable role in fueling dynamic 
instability, structural aspects of microtubule subunit interactions—
both longitudinally and laterally—ultimately lie at the heart of 
microtubule dynamics.

Whereas the general principles of dynamic instability are well 
established, individual aspects of a microtubule’s life—nucleation, 
growth, and the growth-to-shortening transition (catastrophe)—are 
complex and represent the output of poorly understood multi-step 
processes. In this commentary, we review recent progress in the 
field, focusing on nucleation and microtubule assembly, where 
significant advances have been made. This progress reflects our 
improved understanding of key microtubule-associated proteins 
(MAPs), development of in vitro assays that probe novel aspects of 
microtubule assembly and disassembly, and technological break-
throughs that have increased the resolving power of cryo-electron 
microscopy (cryo-EM)-based structural approaches.

Nucleation
For a microtubule to form, it must first be nucleated. What does this 
mean in the context of microtubules? A nucleus is a multimer that 
forms through sequential subunit addition and allows growth to be 
thermodynamically favorable5. Nuclei can assemble in the absence 
of cellular factors and have been observed by EM to be two- 
dimensional sheets6,7 or short oligomers8, which presumably grow 
until tube closure is possible. Such spontaneous nucleation is a 
slow and energetically unfavorable process, involving a considera-
ble lag phase. Importantly, cells bypass the kinetic barrier to nuclea-
tion by using factors that accelerate microtubule formation.

The best-understood microtubule nucleation factor is a pro-
tein complex that contains γ-tubulin, a protein closely related to 
α- and β-tubulin. The γ-tubulin ring complex (γ-TuRC) specifi-
cally templates 13-protofilament microtubules9 and participates 
in microtubule nucleation at microtubule-organizing centers such 
as the centrosome, as well as in the chromosome-mediated10–12, 
Golgi-mediated13,14, and microtubule-dependent15–17 microtubule 

nucleation pathways. The γ-TuRC fulfills the expected function of 
a microtubule nucleating factor; that is, microtubules form more 
rapidly in its presence18, and it is easy to imagine how it does so: 
the γ-TuRC mimics an early assembly intermediate of αβ-tubulin19. 
However, studies of the chromosome-mediated microtubule 
nucleation pathway have demonstrated that two additional 
MAPs—TPX220 and XMAP21521—also play key roles in facilitat-
ing microtubule nucleation22,23. In fact, these proteins can nucleate 
microtubules independently of the γ-TuRC23,24 when added to con-
centrations of tubulin at which polymer does not form. As MAPs, 
the γ-TuRC, TPX2, and XMAP215 have distinct biochemical prop-
erties. XMAP215, through the concerted activities of an array of 
tubulin-binding TOG domains, processively catalyzes microtubule 
assembly25, increasing microtubule growth rates up to 10-fold26. 
This activity depends on the ability of XMAP215 to bind tubulin 
subunits while retaining a grip on the microtubule plus end27. TPX2, 
on the other hand, has not been reported to bind tubulin subunits 
and therefore seems to be a conventional MAP that stabilizes and 
crosslinks microtubules24. On a molecular level, these findings sug-
gest that multiple non-redundant activities can be integrated dur-
ing microtubule nucleation, providing support that nucleation is 
a multi-step process. Interestingly, TPX2 and XMAP215 interact 
with proteins that co-locate their activities with the γ-TuRC at the 
centrosome. TPX2 binds RHAMM28, which is present in a micro-
tubule nucleation complex that contains γ-TuRC, and NEDD1, 
a centrosome-targeting factor29. XMAP215 family proteins are 
targeted to the centrosome through direct interaction with a 
group of coiled-coil proteins called TACCs30. Therefore, it is 
likely that TPX2 and XMAP215 family proteins synergize with 
γ-TuRC in the context of the cell, but how they do so remains 
unclear.

At a molecular level, recent studies have shed light on how TPX2 
and XMAP215 promote nucleation31,32. Previous in vitro work 
showed that TPX2 induces the formation of disordered tubulin 
aggregates, which were speculated to be small oligomers capable 
of elongation24. This finding has recently been recapitulated by the 
Surrey laboratory by using total internal reflection microscopy-
based assays; TPX2 induces the formation of granular tubulin foci 
(“stubs”), which elongate in solution31. In addition, Roostalu et al. 
show that chTOG, the human ortholog of XMAP215, only mildly 
promotes microtubule nucleation31. Interestingly, this result differs 
from conclusions reached through previous work, where XMAP215 
alone was sufficient for robust microtubule formation23. However, 
it is worth noting that the ability of XMAP215 to nucleate micro-
tubules in the previous study was dependent on its conjugation to 
beads, an experimental setup that locally concentrates the protein. 
Strikingly, Roostalu et al. find that a combination of chTOG and 
TPX2 produces more microtubule polymer, leading to the idea that 
chTOG and TPX2 perform distinct functions during the nuclea-
tion process. The authors speculate that TPX2 promotes nuclea-
tion by stabilizing early oligomeric intermediates, whereas chTOG 
acts by accelerating subunit addition to nuclei31. chTOG activity 
may be crucial for oligomers to form a sheet large enough to fold 
into a tube. In this view, the γ-TuRC may simply act to ensure that 
microtubules are built using 13 protofilaments, as microtubules 
nucleated by TPX2 and chTOG are likely of mixed protofilament 
composition.
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Whereas nucleation de novo can easily be imagined to be a multi-step 
process, microtubule assembly on pre-existing templates such as 
axonemes is also complex, as initially demonstrated by Walker et al.33.
This problem was revisited in a recent article from the Brouhard 
laboratory32. Wieczorek et al. found that a lag phase always precedes 
microtubule assembly, regardless of whether the nucleating source 
is a centrosome, axoneme, or a pre-formed microtubule end32. This 
lag phase is attenuated by TPX2 and XMAP215, or extended by 
catastrophe factors such as MCAK and EB1. Although the Roostalu 
et al. and Wieczorek et al. studies demonstrate a role for TPX2 and 
XMAP215 in microtubule nucleation, it is important to note that 
the two proteins may act differently during templated nucleation 
versus microtubule formation de novo. Both reports show that TPX2 
is a strong anti-catastrophe factor that slows depolymerization31,32. 
Therefore, it is possible that TPX2 acts as a traditional MAP dur-
ing templated nucleation, simply increasing a filament’s probabil-
ity to extend. Mechanism aside, the picture we are left with is that 
the birth of a microtubule is complex, requiring the formation of a 
plus-end structure that is compatible with subunit addition.

Microtubule assembly and tubulin structure
Once formed from a nucleus, the growing microtubule will continue 
to elongate, sometimes for minutes at a time. Our understanding of 
the structure of the elongating microtubule end is shaped by early 
cryo-EM studies34,35. These images show that growing microtubule 
ends display “sheets” of interconnected protofilaments, which are 
thought to dynamically close into a tube as the microtubule grows. 
After more than 20 years, direct visualization of the structure of 
growing microtubule ends in real time remains an open challenge.

The highest-resolution studies of microtubule growth dynamics 
to date employed optical trapping methods to observe changes 
in microtubule length with up to 3.5 nm resolution36,37. In these 
experiments, microtubules were grown against barriers, such that 
the observed length fluctuations represent the length changes of the 
longest individual protofilament or group of protofilaments, and 
do not uncover the structure of the end. Nevertheless, these studies 
showed that microtubule growth is irregular with frequent shorten-
ing excursions that can retract the longest protofilaments more than 
40 nm (corresponding to the length of five tubulin dimer subunits) 
while a microtubule remains in the overall growth phase.

Large fluctuations in polymer length observed during microtubule 
growth can be understood as a consequence of a very unproductive 
growth process38. Indeed, further studies by Gardner et al.39 found 
that the vast majority of tubulin subunits that associate with the 
growing microtubule end rapidly dissociate. The underlying cause 
of this high tubulin off-rate is unclear; efficient subunit incorpora-
tion into the microtubule lattice might require an additional step 
(for example, a structural alteration that would promote formation 
of stabilizing lateral bonds). The exact structure of tubulin subunits 
when bound to different nucleotides, both in solution as well as 
within the microtubule polymer, has been somewhat controversial. 
Whereas earlier studies proposed that GTP-tubulin is straight40–42, 
allowing it to readily incorporate into the microtubule lattice, more 
recent studies suggest that GTP-tubulin dimers are curved, simi-
lar to their hydrolyzed, GDP-bound counterparts43–45. Additionally, 

detailed structural changes that accompany GTP hydrolysis once 
a subunit is incorporated in the microtubule polymer have, until 
recently, been unknown.

A recent study by Alushin et al.46 used high-resolution cryo-EM, 
combined with computational modeling, to investigate the effect of 
GTP-hydrolysis on the structure of tubulin dimers within the micro-
tubule lattice. With a 5Å resolution, the authors report that GDP-
bound tubulin dimers undergo longitudinal compaction close to the 
exchangeable nucleotide site with tubulin dimers within microtu-
bules grown with a slowly hydrolyzable GTP-analog GMPCPP. In 
contrast to a previous lower-resolution EM study, performed with 
a different nucleotide analog (GTPyS)47, Alushin et al. found no 
evidence for changes in lateral interactions between the tubulin 
dimers. Rather, the authors hypothesize that the observed struc-
tural rearrangements in the intermediate domain and the H7 helix of 
α-tubulin increase lattice strain, which ultimately results in micro-
tubule lattice destabilization. A new study by Geyer et al.48 supports 
the idea that structural changes associated with GTP-hydrolysis 
underlie microtubule instability. Here, the authors studied the 
polymerization dynamics of purified yeast tubulin with a muta-
tion in helix H7 of β-tubulin (T238A), which is expected to block 
H7 movement upon nucleotide hydrolysis. Although the GTPase 
activity of these microtubules was unaffected, the mutation indeed 
appeared to prevent structural changes that accompany hydroly-
sis. Interestingly, microtubules assembled from T238A tubulin are 
hyperstable, suggesting that allosteric effects of GTP hydrolysis, 
rather than hydrolysis itself, drive microtubule instability. Future 
studies with additional tubulin mutants are likely to provide a more 
detailed link between tubulin structure and microtubule dynamics.

Microtubule-associated proteins recognize and 
modulate microtubule structure
Structural features at the microtubule plus end also govern the 
action of MAPs. XMAP215, for example, is thought to promote 
microtubule assembly by tethering a weakly bound tubulin dimer 
to the microtubule end until it becomes stably incorporated into the 
microtubule lattice25. In the absence of soluble tubulin, XMAP215 
is thought to convert a tightly bound subunit at the microtubule 
end into one that is only loosely associated. This can explain why 
XMAP215 can promote microtubule depolymerization49 in addition 
to assembly. Indeed, recent structural studies with TOG domains of 
Stu2, the yeast homolog of XMAP215, report that TOG domains 
preferably bind the curved GTP-like conformation of tubulin50. The 
authors propose that the TOG domain dissociates from the tubulin 
dimer once it straightens, a structural transition that presumably 
accompanies its stable incorporation into the microtubule lattice. 
This “hand-off” mechanism in turn allows the TOG domain to 
move forward and processively add the next tubulin dimer. Thus, 
XMAP215 is thought to bind a specific curved conformation of 
tubulin dimers expected to be found only at the very end of the 
growing microtubule.

EB proteins comprise another major family of proteins known 
for their ability to bind growing microtubule ends. In vitro stud-
ies with nucleotide analogs established that EBs recognize the 
nucleotide state of tubulin dimers in the microtubule, preferentially 
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binding to GTP-like tubulin over GDP-tubulin51,52. Interestingly, 
EBs discriminate between microtubules formed from two GTP 
mimics—GMPCPP and GTPγS—favoring the latter51. In this 
context, it is noteworthy that EBs form comets that lag behind the 
distal microtubule tip occupied by XMAP215, both in vitro and in 
cells53,54. It is thus speculated that GTPγS mimics GDP-Pi- 
tubulin, a post-GTP hydrolysis state wherein phosphate has not yet 
dissociated.

Given that XMAP215 and EB proteins bind different features of 
the growing microtubule end, it is interesting that the two proteins 
synergize in vitro to promote fast microtubule growth, with rates 
matching those previously observed only inside of cells55. This syn-
ergy is not realized through direct interaction between XMAP215 
and EB1. Rather, it is due to an allosteric interaction involving 
the microtubule end structure. The authors hypothesized that EBs 
induce structural changes, such as protofilament straightening, that 
could in turn promote lateral protofilament interactions and sheet 
closure. Such EB-induced structural changes at the plus end could 
increase the polymerase activity of XMAP215 by accelerating 
subunit “hand-off”50.

Previous studies have reported that EB family proteins can affect 
the structure of the microtubule lattice56 as well as modulate the 
number of microtubule protofilaments47,57. Binding of EBs at the 
interface of four tubulin dimers47 could facilitate such structural 
effects. The latest evidence that EBs modulate the structure of the 
tubulin dimers in the microtubule lattice comes from a new study 
by the Nogales lab58. Here, the authors determined the structures 
of GMPCPP-, GTPγS-, and GDP-bound microtubules copolymer-
ized with EB3 at an unprecedented resolution of 3.5Å. The authors 
found all three structures grown with EB3 to be compacted, similar 
to GDP lattice in the absence of EB3, suggesting that EB binding 
induces compaction of the microtubule lattice. Unfortunately, the 
authors were unable to obtain the structure of the GTPγS lattice 
in the absence of EBs, leaving open the question of whether com-
paction occurs prior to, or after, phosphate release. In either case, 
induction of lattice compaction via EBs is consistent with the view 
that EBs promote GTP hydrolysis in the microtubule lattice.

Allosteric interactions between MAPs are not limited to XMAP215 
and EB159. A recent study found similar interactions between EB1 
and another TOG-domain protein, CLASP60. The authors reported 
that EBs have a lower binding affinity for microtubules that are 
grown in the presence of CLASP. The exact features encoded in the 
microtubule by CLASP that are recognized by EBs remain unknown. 
Interestingly, the CLASP TOG2 domain exhibits a strongly bent 
conformation, raising the possibility that CLASP is binding highly 
curved protofilaments at the microtubule end61. The theme of 
MAPs recognizing aspects of microtubule curvature is highlighted 
by other recent studies. Doublecortin, which preferentially binds 
13-protofilament microtubules62,63, enriches on curved microtubule 
segments64. TPX2 was found to strongly bind curved microtubule 
ends31. CENP-F associates more strongly with vinblastine-generated 
tubulin curls compared with straight protofilaments that are found 
within the microtubule lattice65. Kinesin-5 has been found to associate 
with curved tubulin protofilaments at growing microtubule ends, 

where it stimulates microtubule assembly66. Lastly, kinesin-13s, the 
most potent catastrophe factors known, are well appreciated to rec-
ognize and stabilize a bent tubulin protofilament conformation67,68 
observed on depolymerizing microtubule ends34,35.

Catastrophe
Even though the link between GTP hydrolysis, structure, and 
dynamics might be established, we still do not know what features 
define the stabilizing cap. The observations that EB end binding is 
largely lost well before the onset of catastrophe47,53,55 might imply 
that GDP-Pi subunits also confer stability to the growing end, if 
GTPγS tubulin dimers are indeed to be viewed as a model of GDP-Pi 
state. In that context, and given that EBs bind very strongly to 
GTPγS microtubule lattice, and much more weakly to the GDP 
lattice, it is interesting that the only structural difference observed 
between these two is a small relative rotation of tubulin dimers along 
a protofilament, resulting in a different lattice twist58. Whether it is 
this twist that ultimately leads to the high off-rate of GDP tubulin 
remains to be understood.

Whatever the stabilizing cap looks like, its loss is a complex proc-
ess intimately linked to structural features of the microtubule end. 
Recently, Gardner et al. reported that the probability of undergoing 
catastrophe grows with microtubule age69, a finding that confirms 
older work performed by Odde et al.70. Thus, catastrophe cannot be 
caused by a single-step mechanism unless catalyzed by protein fac-
tors such as kinesin-1369. The process by which microtubule aging 
causes catastrophes could involve changes in protofilament numbers 
and/or structural evolution of the growing microtubule end such as 
tapering and protofilament curling71–74. In any case, the fate of the 
microtubule is likely to be encoded in the structure of its end.

Closing statements
The work reviewed here has significantly advanced our understand-
ing of microtubule assembly and disassembly, but many questions 
remain. The complexity of the microtubule cytoskeleton in cells, 
difficult to capture in reconstitution-based approaches, can and 
should provide a useful framework for posing further questions. An 
interesting discrepancy concerning the relationship between micro-
tubule end structure and dynamics, for example, is highlighted by 
the observation that all protofilaments are curved at the plus ends 
of microtubules during mitosis75. The implication of this finding 
is that microtubule growth in cells may be governed by differ-
ent constraints that permit assembly to occur without a sheet-like 
intermediate that has been observed in vitro. Cell cycle-dependent 
variations involved in the regulation of microtubule biology are 
also likely to exist. Recent studies on microtubule nucleation have 
focused on factors that are principally active during cell divi-
sion. TPX2, for example, is sequestered in the nucleus during 
interphase76 and requires Ran-GTP to become active during 
mitosis24. The factors and mechanisms that regulate microtubule 
nucleation during interphase remain to be elucidated. Lastly, given 
that most, if not all, aspects of microtubule dynamics involve multi-
step processes, an important challenge will be to understand the 
emergent properties of the network of MAPs that synergistically 
modulate the kinetics of microtubule assembly and disassembly in 
ways relevant for cell physiology.
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