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Abstract
Cardiorespiratory fitness was found to influence age-related changes of resting state brain network organization. However,

the influence on dedifferentiated involvement of wider and more unspecialized brain regions during task completion is

barely understood. We analyzed EEG data recorded during rest and different tasks (sensory, motor, cognitive) with

dynamic mode decomposition, which accounts for topological characteristics as well as temporal dynamics of brain

networks. As a main feature the dominant spatio-temporal EEG pattern was extracted in multiple frequency bands per

participant. To deduce a pattern’s stability, we calculated its proportion of total variance among all activation patterns over

time for each task. By comparing fit (N = 15) and less fit older adults (N = 16) characterized by their performance on a

6-min walking test, we found signs of a lower task specificity of the obtained network features for the less fit compared to

the fit group. This was indicated by fewer significant differences between tasks in the theta and high beta frequency band in

the less fit group. Repeated measures ANOVA revealed that a significantly lower proportion of total variance can be

explained by the main pattern in high beta frequency range for the less fit compared to the fit group [F(1,29) = 12.572,

p = .001, partial g2 = .300]. Our results indicate that the dedifferentiation in task-related brain activation is lower in fit

compared to less fit older adults. Thus, our study supports the idea that cardiorespiratory fitness influences task-related

brain network organization in different task domains.

Keywords Spatio-temporal coherent patterns � Electroencephalography � Dynamic mode decomposition � Cardiorespiratory
fitness � Older adults

Introduction

Age-related changes in brain network activity are charac-

terized by dedifferentiated and compensatory involvement

of wider and more unspecialized brain regions during task

completion which relates to a decline of sensory, motor and

cognitive skills (Baltes and Lindenberger 1997; Park et al.

2004; Sala-Llonch et al. 2015). Despite the general

tendency towards a decline, brain activity and network

interaction in older adults were shown to be highly

dependent on the individual’s lifestyle (Smith and Thelen

2003). One influencing factor might be cardiorespiratory

fitness, which has the potential to diminish the described

age effects in resting state networks (Voss et al. 2016).

Here, we aimed to detect characteristics of brain network

activity representing rest- and task-related specificity of

information processing in elderly with different cardiores-

piratory fitness levels.

Dedifferentiation was detected in task-related fMRI

studies investigating reduced neural specialization as well

as compensatory involvement of task relevant brain areas

in older adults, which is considered part of dedifferentia-

tion in this work (Sala-Llonch et al. 2015). Furthermore, it

was shown that regional hyperactivation in older compared

to younger participants was related to changes in both

fMRI- and EEG-derived task-related functional networks

Supplementary information The online version of this article
(https://doi.org/10.1007/s11571-020-09656-9) contains sup-
plementary material, which is available to authorized users.

& Solveig Vieluf

vieluf@sportmed.upb.de

1 Institute of Sports Medicine, Paderborn University,

Warburger Str. 100, 33098 Paderborn, Germany

2 Department of Mathematics, Paderborn University,

Paderborn, Germany

123

Cognitive Neurodynamics (2021) 15:847–859
https://doi.org/10.1007/s11571-020-09656-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5532-8690
https://doi.org/10.1007/s11571-020-09656-9
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-020-09656-9&amp;domain=pdf
https://doi.org/10.1007/s11571-020-09656-9


(Geerligs et al. 2012, 2014). These changes also showed up

across different tasks leading to a less task-specific acti-

vation of task-related brain network processes (Dennis and

Cabeza 2011). Moreover, age-related changes seem to be

multidimensional and complex. Chen et al. (2017) and

Nobukawa et al. (2019) found age-related reorganization in

the dynamics of brain networks, indicated by either higher

complexity or irregularity in brain network patterns

(Nobukawa et al. 2019) or changes in variations of func-

tional connectivity over time (Chen et al. 2017). These

findings might relate to increased background activity or

neural noise throughout task execution (Hong and Rebec

2012). Increases in neuronal noise have been suggested as

contributing factors to cognitive deficits and have been

linked to neurobiological mechanisms (such as a decline in

the dopaminergic neuromodulation) associated with a

decrease in the distinction of cortical representations due to

dedifferentiated brain activation (Li et al. 2001; Sala-

Llonch et al. 2015).

Douw et al. (2014) related a higher interconnected

functional modular topology of MEG derived resting state

brain networks to cardiorespiratory fitness in middle aged

participants. The findings indicate that cardiorespiratory

fitness has an influence on brain networks and might bear

the potential to counteract age-related changes, i.e., ded-

ifferentiation and compensatory mechanisms. Indeed,

Stillman et al. (2019) reviewed effects of physical activity

and fitness on fMRI derived resting state brain networks in

older adults and reported opposing effects on age-related

changes. In this context, several authors reported an

increase of connectivity within resting state networks in

older adults due to cardiorespiratory fitness, which suggests

less dedifferentiated brain functioning (Prakash et al. 2011;

Voss et al. 2010, 2016). However, less is known about the

influence of cardiorespiratory fitness on task-related brain

network processes and dedifferentiation across different

tasks in older adults. The influence of cardiovascular fitness

on the decrease in specificity of information processing in

the sensory, motor, and cognitive areas, in which age-re-

lated decline is reported, seems to be particularly relevant

for everyday life and is yet unclear. Especially the inves-

tigation of dynamic processes of central information pro-

cessing could provide new insights into this impact.

EEG allows to study brain dynamics with high temporal

resolution capture changes of the temporal characteristics

of functional networks. Due to the high complexity of age-

related reorganization of brain activity and its interaction

with cardiorespiratory fitness, we chose a holistic approach

which combines the representation of spatial and temporal

brain activity patterns. Dynamic mode decomposition

(DMD) is an algorithm that was developed in the field of

fluid dynamics (Rowley et al. 2009; Schmid and Sester-

henn 2008). It was recently applied to various other fields,

including neuroscientific data (Brunton et al. 2016; Casorso

et al. 2019; Gölz et al. 2018; Kunert-Graf et al. 2019;

Vieluf et al. 2018). DMD combines the properties of spatial

and temporal decomposition methods enlarging classical

functional connectivity (FC) approaches based on bivariate

connectedness between voxels or electrodes, which is fre-

quently done in literature (Sporns 2013).

Utilizing DMD, we therefore aimed to study the influ-

ence of cardiorespiratory fitness on task-related brain net-

work activity by assessing coherent spatio-temporal

patterns of EEG in rest as well as tasks representing the

sensory, motor, and cognitive domains, respectively. Albeit

exploratory, we expected electrophysiological signatures of

dedifferentiation, i.e., less task specificity in different tasks

in fit compared to less fit individuals. In addition, we

hypothesized that fit older adults have lower levels of

neural noise, which translates into a higher prominence of

dominant brain network patterns.

Materials and methods

The data were collected during an intervention study,

which was registered at the German Clinical Trials

Register (DRKS00014921) and took place at Paderborn

University. The study protocol was approved by the ethics

committee of the University of Muenster. Written informed

consent to participate in the study was obtained by each

participant before the experiments. No compensation was

offered.

Participants

Participants were recruited via local newspaper and social

media advertisements as well as by personal contact with

organizations providing leisure activities for seniors. Par-

ticipants were included if they (1) were above 60 years old,

(2) free of diagnosed neurological or mental diseases and

(3) right-handed. Half of the participants participated in a

golf training and half continued their normal activities prior

to the recording. In the context of this study golf was

considered as part of the daily activities. All included

participants reported subjective memory complaints in

daily life but had no diagnosed form of dementia or its

preclinical manifestation mild cognitive impairment, and

were therefore considered healthy. All participants scored

below 13 on a neuropsychological test battery (see Alz-

heimer’s Disease Assessment Scale-Cognitive Subscale

(ADAS-cog) Table 1). In sum, a total of 41 participants

between 60 and 77 years of age participated in this study

(age: 67 ± 4.16, gender: 22 $, 19 #; see Table 1). All

participants had normal or corrected to normal vision.
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Screening

In preceding appointments, participants’ cardiorespiratory

fitness was assessed with a 6 min walking test (Enright

2003). Participants had to walk 6 min as far as possible

with a fast and constant pace. The distance was assessed as

marker of cardiorespiratory fitness as this test was shown to

be a reliable and valid way to test physical endurance in

older adults (Rikli and Jones 1998; Zhang et al. 2017).

Prior to the EEG measurement and in relation to the

domains of the main tasks, maximum voluntary contraction

(MVC) as well as reaction time (RT) and tactile threshold

(TT) were assessed. MVC measurements consisted of three

5 s lasting maximum precision grip trials with 60 s rest in

between (Vieluf et al. 2013). RT was assessed with audi-

tive stimuli, i.e., 60 spoken letters presented via speakers.

As soon as a letter was presented, participants had to press

a foot switch immediately with the right foot. The foot

switch was positioned in a standardized position next to the

right foot. Reaction time was measured in relation to

stimulus onset (Voelcker-Rehage and Alberts 2007). The

TT was detected on the non-dominant hand as a 2-point

discrimination test. Participants were asked to distinguish

between one-point and two-point stimulation. The distance

between the stimulation points was successively increased

by 1 mm starting at a minimum distance of 1 mm. TT was

achieved when the participant could clearly distinguish 7

out of 10 stimulations presented (Finnell et al. 2004).

EEG experiments

All EEG measurements were recorded with an actiCap

electrode cap and BrainAmp standard amplifiers (Brain

Products, Munich, Germany). We recorded brain activity at

128 electrodes with a sampling rate of 500 Hz. Ground and

reference electrodes were fixed at FPz and FCz, respec-

tively. Impedances were kept below 15 kX.
At first, EEG was recorded four minutes in a rest con-

dition in supine position with eyes closed. During the tasks,

participants sat 80 cm in front of a screen (2300,
1920 9 1080 pixels at 60 Hz, AOC, Taipei, Taiwan).

Their right arm rested comfortably on an armrest grasping

a force transducer with index finger and thumb in precision

grip (1022-C3-20 kg, SOEMER, Lennestadt-Elspe, Ger-

many). Participants placed their left index finger on a

braille device (P11, Metec Ag, Stuttgart Germany). In

addition, speakers were placed approximately 50 cm

behind the participants as well as a footswitch (StealthS-

witch SS1R4 Pro USB, StealthSwitch, Highwood, IL,

United States) next to their right foot. The tasks consisted

of a motor task (force control), a cognitive task (auditive 2

back), and a sensory task (sensory oddball task) lasting

90 s. Each task was presented 2 times.

Motor task

Participants had to apply force to a force transducer with

their index finger and thumb in precision grip to match a

visually presented target (Voelcker-Rehage et al. 2006).

The visual target was a line that moved from the right to

the left on the screen for 90 s and changed level every 3 s

in randomized order between heights that represents 10%,

20% and 30% of their individual MVC (see Fig. 1). Mean

force level was set to 20% of participants MVC throughout

the experiment. Participants were given online feedback on

a screen 80 cm in front of them. Target line was displayed

in blue whereas a red curser represented the applied force

(see Fig. 1d).

Cognitive task

Participants were asked to listen to a sequence of letters

presented via two speakers behind them and press the foot

switch with the right foot, if a letter appeared again two

letters later (2-back; see Fig. 1c). The sequences consisted

of 60 letters in predefined randomized selections with 20%

matching rate (Bopp and Verhaeghen 2018; Gajewski and

Falkenstein 2014).

Fig. 1 Experimental setup of the sensory (a, b), n-back (c), and motor

task (d)
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Sensory task

The braille device presented two stimuli (see Fig. 1a and

1b) to the participants with a randomized inter stimulus

interval of 0.8–1.2 s (mean 1 s) and a duration of 0.5 s

each. In this passive oddball design no response was

required from the participants. Pattern (a) was set to 80%

occurrence and pattern (b) to 20% (Reuter et al.

2012, 2013, 2014).

Data analysis

Data analysis was performed with BrainVision Analyzer

2.1.2 (Brain Products, Munich, Germany), MATLAB

2018b (Mathworks, Natick, MA, United States), EEGLAB

14.1.2 (Brunner et al. 2013), as well as Brainstorm 3.4

(Tadel et al. 2011) software packages. EEG data were cut

from task onset to offset. Next, data were filtered with a

zero-phase shift 4th order Butterworth filter from 1 to

30 Hz and an additional notch filter at 50 Hz implemented

in Brain Vision Analyzer 2.1.2 was applied. After down

sampling to 200 Hz, data were inspected for bad channels

as well as electrode bridges using Alschuler’s et al. (2014)

algorithm, which is based on the electrical distance of

neighboring electrodes. To avoid false positives, coherence

between adjacent channels was additionally checked for

each pair of channels, where a value of 1 indicates com-

plete coherence and a value of 0 indicates complete inco-

herence. Bad channels or channel pairs identified by

Alschuler’s et al. (2014) algorithm and with a coherence

above 0.97 were rejected. Participants whose rejection rate

was above 15% or exhibited a bridged reference were

excluded from further analysis. Seven participants had to

be excluded here. From the remaining participants, we

excluded on average 4% of the electrodes per participant.

Then, data was re-referenced to common average and

segmented into non-overlapping segments of 150 data

points (0.75 s). Before performing an ICA on the re-con-

catenated data in EEGlab (AMICA, Palmer et al. 2011) for

artifact rejection, segments containing non stereotypical

artifacts identified by visual inspection were excluded. ICA

components reflecting unambiguous artifacts such as eye

blinks, heartbeat or muscle activity were marked as bad

(mean rejection rate: 19 ± 5%) and excluded. After

reconstruction of the signals all rejected channels were

interpolated using spherical spline interpolation (Perrin

et al. 1989) and checked again visually for segments con-

taining artifacts.

In order to extract spatio-temporal coherent patterns

within the EEG we decomposed the preprocessed data

segments with the exact DMD algorithm described in

Brunton et al. (2016) after Tu et al. (2014). Specifically, we

constructed the two data matrices X 2 Rn� m�1ð Þ and

X0 2 Rn� m�1ð Þ, where X is the original data matrix and X0 is
the data matrix shifted by one time point containing m� 1

datapoints of n electrodes. Moreover, the relationship

between these two matrices can be expressed with a linear

operator A describing the underlying dynamical process

such that

X0 ¼ AX:

The DMD of X is then obtained via eigen-decomposi-

tion of A. In other words by analyzing the relationship

between X and X0 in a given time window (see Brunton

et al. 2016 for details of the algorithm) it is possible to

approximate the linked spatial and temporal characteristics.

Therefore, we can obtain an approximation X̂ of the

observed measurement X by defining a dynamical model

X̂ ¼ U exp Xtð Þz:

The matrix U contains the dynamic modes, i.e., eigen-

vectors of A (see Theorem 1 in Tu et al. 2014) and X ¼
log Kð Þ
Dt reveals the dynamics of the system, where the diag-

onal matrix K contains the DMD eigenvalues, i.e., eigen-

values of A, on its diagonal. The variable t denotes time

whereby Dt ¼ 0:005 s. The constant z can be obtained from

the initial conditions x1 ¼ Uz: Moreover, it is possible to

obtain the oscillation frequencies in cycles per second (Hz)

from X:

f ¼ imag Xð Þ
2p

:

We conjecture that the dimension of the underlying

system is larger than the one obtainable from the original

data matrix X. Thus to avoid an underestimation, we pro-

pose to increase the dimension of the data matrix via the

delay embedding method applied by Tu et al. (2014) and

described in Brunton et al. (2016) as well as in Cohen

(2018). In order to estimate the optimal values of the

stacking factor h and the window size w we applied an

error analysis on participant data of five randomly selected

participants as described in Brunton et al. (2016). Based on

these results we decided to choose a stacking depth of

h = 5 and w = 150 data points.

To obtain the influence of each electrode in the DMD

mode, the absolute DMD values associated with the h (4 to

\7 Hz), a (7 to\12 Hz), low b (12 to\16 Hz) and high

b (16 to\ 30 Hz) frequencies were determined obtaining

DMD mode magnitudes. Each DMD mode reflects a spa-

tially coherent structure associated with a certain dynamic

behavior, i.e., growth or decay and oscillation, where
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magnitude indicates the element’s (electrode) involvement

in the mode. Next, we calculated a singular value decom-

position (SVD) over all frequency specific modes over all

time windows per participant to reduce the dimension of all

time windows to its main features. Besides we calculated

the proportion of variance among all activation patterns

over time for each SVD mode:

R2 ¼ s2iP
j s

2
j

� 100;

where sj are the singular values obtained via SVD and si
denotes the i-th singular value corresponding to the i-th

SVD mode. Since the first SVD mode explained most of

the variance of the activation patterns in all subjects

(M = 81.7% ± 1.1%) we extracted only the first mode to

obtain the dominant feature of all DMD modes (DMD

main mode) in all analyzed time windows. Moreover, we

calculated the proportion of variance among all activation

patterns explained by the obtained DMD main mode. The

higher the proportion the more variation among all acti-

vation patterns during task completion is captured by this

dominant mode which is considered representative for

stability or prominence of this pattern.

As DMD is closely related to source separation, we used

sLoreta to visualize the obtained spatial DMD maps in

source space to demonstrate its relation. We created a three

layer Boundary Element (BEM) forward model using the

brainstorm toolbox based on a template of the McConnell

Brain Imaging Center (MNI/ICBM152) and fitted the

electrodes using recorded individual electrode positions per

subject (Fonov et al. 2009; Gramfort et al. 2010; Pascual-

Marqui 2002; Tadel et al. 2011).

Statistical analysis

All statistical analyses were conducted using SPSS 24 for

Windows (IBM, Armonk, NY, United States), Matlab

2018b (Mathworks, Natick, MA, United States) with the

additional Brainstorm package (Tadel et al. 2011) as well

as R with RStudio (version 1.1.456) and the additional

cramer-package (Baringhaus and Franz, 2004). To test

differences between fit and less fit participants we divided

them based on their performance in the 6-min walking test

with a median split for men and women separately to

account for gender differences (Bohannon 2007) in two

groups. In order to characterize brain network activity and

test for task specificity of the obtained DMD maps we

compared the task- and rest-specific DMD mode maps

pairwise with a permutation t-test for dependent measure-

ments. The permutation approach was chosen as a non-

parametric alternative and offers the advantage of calcu-

lating the exact test statistic. For this we chose a Monte

Carlo approach with 10,000 randomizations, i.e., all pos-

sible values of the test statistics have been determined with

a 10,000-fold random reordering of the data, the distribu-

tion of the t-test statistics under the null hypothesis (Maris

2012; Maris and Oostenveld 2007). By choosing this

nonparametric statistic, we intended to account for the high

dimensionality of the EEG data causing possible inaccu-

racies in test assumption requirements. By using an exact

test statistics we intended a reduction of type I and type II

errors (Maris and Oostenveld 2007). All p values were

corrected with false discovery rate to account for type I

errors (Benjamini and Hochberg 1995). For a statistical

evaluation of the group differences, we exploratively

compared the multivariate distribution of obtained t-values

in each frequency band with Cramér tests between the

groups. This nonparametric two sample test works on

Euclidean interpoint distances to test the equality of the

underlying distributions (Baringhaus and Franz, 2004).

We further analyzed the variance of all DMD modes

explained by the DMD main mode with repeated mea-

surement analysis of variance (ANOVA) with the between

factor group (2; fit, less fit) and the within factor task (4;

rest, motor, cognitive, sensory) for each frequency band (h,
a, low b, high b). Shapiro–Wilk and Box tests showed no

violation of normal distribution and homogeneity of error

variances (all p[ .05). There was homogeneity of the error

variances, as assessed by Levene’s test except for the

variables in the theta and alpha band during n-back and

sensory tasks. We nevertheless report those values, as

ANOVA was shown to be a robust test statistics in groups

with almost the same size larger than 10 (Box 1954; Sch-

mider et al. 2010). Significant interactions and main effects

were followed by Bonferroni corrected pairwise compar-

isons. Independent t-tests and Mann–Whitney U tests, in

case of violation of normal distribution, were used to check

for differences in characteristics between the groups. The

level of significance was set a priori to a = 0.05 for all

tests.

Results

The personal characteristics of the final sub-sample are

shown in Table 1. Mann–Whitney U tests and independent

t-tests showed no significant differences between the

groups of fit and less fit participants for personal charac-

teristics or screening variables, except for the walked dis-

tance in the six minute walking test (fit: M = 765 m,

SD = 127 m; less fit: M = 549 m, SD = 100 m,

t(29) = - 5.25, p\ .001).
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DMD mode maps

Figure 2 illustrates the DMD topographical maps with an

estimated source localization. Note that the source local-

ization is only presented for visualization purposes here.

Each DMD mode reflects a pattern of correlation in space

at certain frequencies (Kutz et al. 2016). Low values

indicate low contribution to the mode whereas high values

indicate high contribution to that mode. Noticeable DMD

main mode maps at rest showed frequency specific char-

acteristics. The h activity was dominant over frontal-cen-

tral areas and showed highest values in the motor task.

Dominant a activity over occipital regions during rest was

suppressed and shifted to temporo-parietal areas. The low b
activation showed the highest values at rest above the

central areas and became more extensive in temporal

direction during tasks. While the high b-band showed a

similar central activation during rest, the activity in this

frequency band changed towards a dominant activation

over frontal with a shift towards centro-temporal areas that

seemed to be most pronounced during the motor task (see

Fig. 2).

Figure 3a–d illustrates the comparisons between the

tasks for the fit and less fit groups separately in the ana-

lyzed frequency bands (h, a, low b and high b) as topo-

graphic t-maps. For simplicity and clarity of presentation

only minimum and maximum t- and corresponding p-val-

ues as well as their electrode position are presented in

Tables 2 and 3. Means and standard deviations per elec-

trode are available in the supplementary material (Online

Resource 1).

For both groups and frequency bands, DMD main mode

maps differed between each task and rest with the strongest

differences in the h-band and in the high b-band. Both

groups h-band main mode during task was characterized by

higher activity over parieto-occipital areas and lower

activity over fronto-temporal areas compared to rest. In

contrast, in the high b-band, the differences between task

execution and rest are marked by lower activation over

(parieto-) central and higher activation over frontal and

occipital areas in both groups.

Comparing the t-distributions with Cramér tests between

the two groups revealed significant differences for all fre-

quency bands (all p\ .001). Studying the t-maps in group

comparison, finer spatial differences can be observed. The

differences between task and rest seem to be similar

between the groups in the h-band and in the high b-band.
However, the differences between tasks and rest might be

stronger in a- and low b-bands in the fit compared to the

less fit group. This is especially observed in the a-band
with lower parieto-occipital/frontal and higher temporal-

central activation during motor task compared to the rest

condition. Similar trends could be observed in the low b-
band with higher parieto-occipital and lower central acti-

vation in the cognitive task compared to (see Fig. 3;

Table 2).

There were likewise fewer pronounced differences

between the task conditions with the highest expression

between the motor task and the two other tasks in both

groups. The differences, however, seemed to predominate

in the fit group, especially in the h-band and in the high b-
band in the motor task compared to the sensory and cog-

nitive tasks. In the fit group the h-band is characterized by

reduced activation of parieto-occipital and higher activa-

tion of temporo-parietal areas in the n-back task as well as

higher temporo-frontal and a reduced activation of central

and parietal areas of the sensory compared to the motor

task. High b-band differences were present in form of

Table 1 Comparison of characteristics of the fit and less fit group

Parameter Less fit N = 16 Fit N = 15 Statistical value p-value

Sex 8$, 8# 8$, 7#

Age (years) M = 68.56, SD = 4.13 M = 66.26, SD = 3.67 t = 1.637 .114

Height (cm) M = 173.75, SD = 10.93 M = 171.93, SD = 10.02 t = 0.481 .634

Weight (kg) M = 78.38, SD = 15.06 M = 79.60, SD = 10.76 t = - .259 .898

ADAS-Cog M = 7.13, SD = 2.5 M = 5.87, SD = 3.14 t = 1.230 .225

Tactile Threshold (mm) Median = 3, SD = 0.72 Median = 3, SD = 0.70 U = 103 .459

RT (s) M = 1.03, SD = 0.29 M = 0.91, SD = 0.19 t = 1.290 .207

MVC (N) M = 53.91, SD = 18.30 M = 62.32, SD = 21.45 t = - 1.177 .249

PASE score Median = 144.9, SD = 46.75 Median = 161.35, SD = 50.40 U = 93 .600

Six-minute walking (m) M = 563.29, SD = 115.6 M = 750.21, SD = 138.5 t = - 5.249 .000*

(norm: $ C 60 years: 475 (95%-CI [448, 503])/# C 60 years: 560 (95%-CI [511, 609])

*Indicates a significant difference. Norm values of six-minute walking test from Bohannon (2007). MVC Maximum voluntary contraction,

ADAS-cog Alzheimer’s disease assessment scale-cognitive subscale, PASE physical activity scale for the elderly
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activation over central areas and sporadically decreased

over frontal or occipital areas of the cognitive and sensory

tasks compared to the motor task. There were likewise only

small differences in both groups in task comparisons in the

low b-band. Comparison of cognitive and sensory task

revealed almost no differences in both groups (see

Table 3).

Explained variance

Results of DMD main mode explained variance are illus-

trated in Fig. 3e–h. Repeated measures ANOVA revealed a

significant effect of task in the h-band [F(3, 87) = 26.704,

p\ .001, partial g2 = .479] but none for group [F(1,

29) = 3.174, p = .085, partial g2 = .099]. Post hoc tests

revealed significant differences between the motor and the

n-back task independent of group (p = .023).

Moreover, there was a significant main effect of task in

the a-band [F(3, 87) = 4647, p = .005, partial g2 = .138]

but no significant effect of group [F(1, 29) = 2.79,

p = .106, partial g2 = .088]. All tasks differed significantly

from rest (sensory: p\ .001; motor: p\ .001; cognitive:

p = .002). Sensory and motor differed significantly

(p = .008) as well as motor and n-back (p\ .001).

In the low b-band there was a significant effect of task

[F(3, 87) = 31.399, p\ .001, partial g2 = .520], but nei-

ther an effect of group [F(1, 29) = 1.034, p = .318, partial

g2 = .030] nor an interaction between task and group [F(3,

87) = 1.204, p = .313, partial g2 = .040] were significant.

The sensory task and motor task explained variance

showed significantly lower values compared to rest

(p\ .001). Motor task was characterized by significantly

lower values compared to the sensory task (p\ .001) and

cognitive task (p = .001) as well as higher values of the

cognitive compared to the sensory task (p = .020).

Repeated measures ANOVA revealed a significant main

effect of task [F(3, 87) = 41.855, p\ .001, partial

g2 = .600] and group [F(1, 29) = 12.572, p = .001, partial

g2 = .300] in the high b-band. There was no significant

interaction of task and group [F(3, 87) = 2.004, p = .119,

partial g2 = .070]. Bonferroni-corrected post hoc tests

demonstrated significantly higher values in rest compared

to all tasks (all p\ .001).

Fig. 2 DMD main mode

features during rest with eyes

closed and the three different

task conditions (motor, sensory,

cognitive) in the frequency

ranges of h (4 to\ 7 Hz), a
(7 to\ 12 Hz), low (12 to

\ 16 Hz) and high b (16 to

\ 30 Hz) as well as their source

representation. Each row

represents a condition and each

column represents a frequency

band, thus there are four

topographic maps per condition.

Maps represent the mean over

all participants
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Discussion

Utilizing the multivariate analysis method dynamic mode

decomposition (DMD), we aimed to find characteristics of

task specific brain network patterns and their differences in

fit compared to less fit elderly. We analyzed EEG data

recorded during sensory, motor, and cognitive tasks in

comparison to rest. DMD revealed frequency-dependent

spatio-temporal scalp patterns that appear at rest and three

different tasks. In fit older adults, these patterns showed

trends of higher task specificity pointing to less

dedifferentiated brain activity. Furthermore, we found this

pattern’s proportion of total variance explained higher in fit

participants which might indicate less neural noise during

task execution. The results jointly support the idea that

physical fitness reduces the impact of dedifferentiation.

We identified main features of frequency specific brain

network dynamics expressed in task-specific EEG patterns.

As DMD can be conceptualized as a combination of well-

known spectral analysis methods like the Fourier Trans-

form with the Fast Fourier Transform algorithm (FFT) and

spatial decomposition with principle component analysis

Fig. 3 a–d Statistical t-maps of

significant differences of DMD

main mode features in h, a, low-
and high b between the

conditions divided in fit (green)

and less fit (grey) participants.

Only t-values with
corresponding corrected

p value\ .05 are visualized.

The opposite side of each group

served as second term in the t-
test for each group. e–h DMD

main mode goodness of fit

expressed in % of variance they

explain as group mean and

standard deviation. * indicates

significant pairwise

comparisons of the main effect

group. # indicates significant

pairwise comparisons of the

main effect task
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(PCA) our results are comparable to well-known EEG-

power characteristics modified throughout the tasks

reflecting markers of frequency specific network interac-

tion and modulation dominant throughout the tasks. How-

ever, in addition DMD links the assessed spatial and

temporal properties providing a low-dimensional repre-

sentation of the underlying time-variable complex system.

In examining the DMD derived EEG patterns we aimed

to study selectivity of neural responses, or dedifferentia-

tion, across rest and three different tasks. The dominant

fronto-central h activation found here has been discussed as
being sensitive to cognitive involvement and was dominant

in the task conditions compared to rest (Jensen and

Mazaheri 2010; Onton et al. 2005; Siegel et al. 2012).

Occipital a activity being suppressed in the task conditions

in this study has been discussed as a marker for the sup-

pression of the visual network during visual attention. In

general, the activity of a could play a role in so-called

gating by inhibition processes, i.e., the selective activation

of task-relevant and suppression of task-irrelevant areas

and networks (Jensen and Mazaheri 2010). Moreover, high

b was discussed as a marker of large-scale coupling and

sensorimotor information integration showing wider dis-

tribution in the tasks compared to the rest condition (Siegel

et al. 2012). Overall, the expression of these patterns was

different in rest and the three tasks and can be regarded as

reflection of task-specific network activation processes

linked to aforementioned processes. Indeed, comparing

these patterns across tasks both groups showed differences

between rest and all tasks in all frequency bands, most

dominant in h- and high b-bands. The role of these two

frequency bands could indicate the importance of cognitive

control and large-scale coupling in maintaining functioning

in older age pointing to compensatory activity as it was

found by Vlahou et al. (2014) and Knyazev et al. (2015).

In line with the influence of cardiorespiratory fitness on

resting state networks we hypothesized to find task speci-

ficity of these task-related brain network patterns less

pronounced in less fit participants compared to fit partici-

pants. By comparing information processing between a

motor, cognitive, and sensory task, we were able to study

the influence of cardiorespiratory fitness on the reduction

of neuronal specialization between tasks. These task

domains should correspond to the domains in which age-

related decline is reported and thus provide a high rele-

vance for everyday life. In fact, the differences between the

tasks seem to be more pronounced in the fit group com-

pared to the less fit group. In other words, task-related

neural responses of fit compared to less fit participants

showed higher differentiation across task. This finding thus

might indicate opposing effects of cardiorespiratory fitness

on age-related reduction of neuronal dedifferentiation

Table 2 Minimum and maximum t-values as well as corresponding p-value and their electrode position (loc.) of the group specific comparison

between task conditions and resting state condition

vs. Rest

Fit Less fit

tmin p Loc. tmax p Loc. tmin p Loc. tmax p Loc.

h

Motor - 8.64 \ .001* TP7 9.32 \ .001* PO4 - 6.52 .005* FTT9h 7.32 .005* PPO6h

Sensory - 5.65 \ .001* TP7 5.34 \ .001* POO1 - 5.57 .009* F5 3.79 .024* PPO6h

Cognitive - 5.70 .01* CP5 4.58 .01* PPO6h - 8.23 .006* FFC6h 4.19 .007* Cz

a

Motor - 6.82 .003* AFp2 6.56 .003* CCP5h - 4.25 .002* PO3 5.00 .020* F10

Sensory - 4.67 .038* O2 5.49 .038* FT9 - 4.29 .023* O2 4.43 .024* FT9

Cognitive - 4.12 .050* POO1 4.24 .047* FT9 - 4.61 .009* O2 5.92 .009* FT9

Low b

Motor - 5.10 .021* C4 3.99 .030* AFF5h - 7.44 .006* C3 4.92 .009* P7

Sensory - 5.83 .003* T7 5.80 .003* PO8 - 3.57 .129 C3 4.05 .129 P7

Cognitive - 4.61 .013* FCC4h 4.07 .013* P4 - 5.49 .003* C3 4.37 .030* P8

High b

Motor - 9.73 .009* C2 6.07 .003* O1 - 7.09 .003* CCP3h 4.80 .003* PPO10h

Sensory - 7.90 .010* FCC4h 3.61 .017* PO8 - 7.62 .003* CP3 3.62 .013* AF7

Cognitive - 7.73 .002* FCC4h 4.83 \ .001* PPO6h - 6 - 57 .003* CCP1h 4.95 .003* TP8

*Indicates a statistically significant difference
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found in literature in motor, cognitive as well as visual

tasks (Carp et al. 2011; Park et al. 2004; Rajah and

D’Esposito 2005) and is in line with findings showing these

effects on resting state networks (Voss et al. 2016). How-

ever, there were no clear significant differences between

the sensory and the cognitive task in both groups. The

undetectable difference indicates a similar degree of ded-

ifferentiation that is independent of the cardiorespiratory

fitness level. On the other side it has been shown that both

tasks are highly dependent on the cognitive resources of

working memory, this may have masked task-specific dif-

ferences between the two tasks (Dehghan Nayyeri et al.

2019). It is also noteworthy that the clearest differences

between the tasks were again found in the theta and high

beta range. This could again show the influence of cogni-

tive control processes and large-scale coupling in main-

taining function in older adults and could also indicate that

these processes are influenced by cardiorespiratory fitness.

Based on recent reports on age-related changes in the

dynamics of reorganization processes linking increased

levels of neural noise and dedifferentiation, we character-

ized each DMD main mode in terms of the proportion of

the total variance of all activation patterns explained by the

dominant pattern. By analyzing this as stability or promi-

nence of the main DMD mode throughout task execution,

we intended to take into account the changes in the

dynamics of age-related reorganization reported in the lit-

erature (Chen et al. 2017; Li et al. 2001; Nobukawa et al.

2019). Furthermore, we aimed to investigate differences in

this dynamic between subjects with different levels of

cardiorespiratory fitness. Expecting lower levels of neural

noise in the fit group, we found lower values in high b main

mode explained variance in the less fit group independent

of the task. Carefully interpreted, this could lead to a more

targeted, task-specific information processing throughout

task execution. With this finding, the present study can

Table 3 Minimum and maximum t-values as well as corresponding p-value and their electrode position (loc.) of the group specific comparison

between all task conditions

vs. Motor

Fit Less fit

tmin p Loc. tmax p Loc. tmin p Loc. tmax p Loc.

h

Sensory - 3.29 .032* PO4 4.69 .031* FFT10h - 3.36 .181 PPO6h 3.42 .181 T8

Cognitive - 7.48 .002* P3 6.63 .002* TP7 - 4.13 .029* P6 4.16 .029* TP10

a

Sensory - 426 .006* P9 5.25 .006* PPO1h - 4.44 .018 TTP7h 5.92 .018* PPO1h

Cognitive - 5.49 .006* FCz 6.84 .006* PPO1h - 4.31 .031* F10 4.98 .029* CPP6h

Low b

Sensory - 3.12 .131 AF3 4.61 .043* C1 - 3.61 .100 P9 4.03 .100 F9

Cognitive - 3.10 .240 Fp2 3.76 .24 CP1 - 8.02 .004* O9 4.43 .016* CPP6h

High b

Sensory - 4.15 .013* AFp2 6.10 .003* Cz - 3.81 .037* PPO10h 6.41 .013* FT7

Cognitive - 4.13 .014* PPO9h 4.50 .014* TP7 - 4.68 .070 Iz 3.87 .070 F10

vs. Sensory

Fit Less fit

tmin p Loc. tmax p Loc. tmin p Loc. tmax p Loc.

h

Cognitive - 2.93 .292 FFC6h 3.11 .292 T7 - 3.66 .146 TP10 3.65 .146 FC4

a

Cognitive - 3.08 .606 FFC4h 2.33 .292 F9 - 4.05 .013 FFC1h 4.23 .013* CCP4h

Low b

Cognitive - 3.61 .039* FFC4h 3.16 .221 PO3 - 2.72 .155 Iz 3.47 .155 P8

High b

Cognitive - 3.73 .103 Cz 3.42 .103 PPO1h - 3.28 .219 C1 2.36 .44 AF8

*Indicates a statistically significant difference
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contribute to previous literature describing effects of car-

diorespiratory fitness on age-related cognitive changes and

brain network dynamics. To the best of our knowledge, no

study has yet investigated the influence of cardiorespiratory

fitness on dynamic brain network processes in older adults

in the context of dedifferentiation. The comparison of brain

networks during a variety of tasks and analyzing the sim-

ilarities and differences allows to gain insights into func-

tional organizations of task relevant activities. Our results

point to less neural noise throughout task execution in the

fit group and extend the existing knowledge about the

influence of cardiorespiratory fitness on dynamic processes

and age-related changes in these processes.

On a methodological level, decomposing EEG spatial

temporal dynamics with DMD is dependent on delay

embedding, i.e., stacking factor, as well as number of

electrodes and chosen window size. We picked the

parameters according to an error analyses over several

participants to choose the optimal parameters. Moreover,

delay embedding was used by other authors before

(Brunton et al. 2016; Cohen 2017). As we measured high

density EEG, we decided to check for bridging artifacts.

Therefore, we used an algorithm proposed by Alschuler

et al. (2014) which identifies bridges based on the electrical

distance distribution of the signals. However, Alschuler

et al. (2014) note that this algorithm might be too conser-

vative. We therefore decided to double check this step and

calculated the coherence between neighboring channels.

In order to achieve a high level of comparability

between tasks and groups of participants, we decided to

reduce dimensionality of the variables with SVD and chose

the most important characteristic, i.e., the first principle

component. We decided not to study further components

since we describe a coarse phenomenon such as

dedifferentiation.

Moreover, we used the 6-min walking test to asses

cardiorespiratory fitness instead of VO2max measurements.

This test is highly influenced by motivational aspects.

However, there is a strong relation between the 6-min

walking test and VO2max and it is used as a common

standard for indirect measurement of cardiorespiratory

performance (Zhang et al. 2017) and the practicability as

well as the motivation of the participants was very high for

the selected test. Although all participants can be seen as

rather fit in comparison to norm values reported in litera-

ture (Bohannon 2007) we found differences between fit and

less fit in line with dedifferentiation. When measurements

took place, participants had either learned golf within the

last 22 weeks or continued with their normal daily activi-

ties. The golf training could have obviously influenced the

results. In this study we were more interested in the long-

term effects associated with cardiorespiratory fitness,

reflected by the 6-min walking test, than in short-term

effects caused by golf training. Moreover, Voss et al.

(2016) pointed out that the influence of cardiorespiratory

fitness and short-term physical activity on brain networks

are independent phenomena. Of course, longitudinal

recordings and a more objective measurement of car-

diorespiratory fitness and daily activity would extend pre-

sented findings. As this study was part of a bigger

intervention study, sample size was fixed a priori. The

primary outcome of this study was the ADAS-Cog based

on the randomized controlled trial of Lautenschlager et al.

(2008). The standardized mean difference for ADAS-Cog

was -1.22. The drop-out rate was set to 20%. It was esti-

mated that a sample size of 46 participants (23 in each

group) would provide 95% power for detecting a signifi-

cant group difference. A healthy young control group

would be beneficial in order to categorize our findings.

Conclusion

In applying DMD to continuous EEG recordings during

rest and three different tasks, we considered both topo-

logical properties and the temporal dynamics of task-re-

lated brain networks. Thus, we identified

electrophysiological signatures of age-related brain reor-

ganization processes in fit and less fit older adults. Fit

participants showed higher task specificity, i.e., more dif-

ferentiated brain activation patterns, as well as higher

prominence of these patterns, indicating less neural noise

throughout task execution. Our findings support the idea

that physical fitness manifests in task-related brain network

activation patterns that are in line with reduced dediffer-

entiation in older adults.
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brain networks in aging: a review of functional connectivity

studies. Front Psychol 6:663. https://doi.org/10.3389/fpsyg.2015.

00663

Schmid P, Sesterhenn J (2008) Dynamic mode decomposition of

numerical and experimental data. In: APS division of fluid

dynamics meeting abstracts, MR.007

Schmider E, Ziegler M, Danay E, Beyer L, Buehner M (2010) Is it

really robust? Reinvestigating the robustness of ANOVA against

the normal distribution. Eur J Res Methods Behav Soc Sci

6:15–147. https://doi.org/10.1027/1614-2241/a000016

Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-

scale neuronal interactions. Nat Rev Neurosci 13:121–134.

https://doi.org/10.1038/nrn3137

Smith LB, Thelen E (2003) Development as a dynamic system.

Trends Cogn Sci 7:343–348. https://doi.org/10.1016/S1364-

6613(03)00156-6

Sporns O (2013) Structure and function of complex brain networks.

Dialogues Clin Neurosci 15:247–262

Stillman CM, Donofry SD, Erickson KI (2019) Exercise, fitness and

the aging brain: a review of functional connectivity in aging.

Arch Sci Psychol. https://doi.org/10.31296/aop.v3i4.98

Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011)

Brainstorm: a user-friendly application for MEG/EEG analysis.

Comput Intell Neurosci 2011:879716. https://doi.org/10.1155/

2011/879716

Tu J, Rowley C, Luchtenburg D, Brunton S, Kutz J (2014) On

dynamic mode decomposition: theory and applications. JCD

1:391–421. https://doi.org/10.3934/jcd.2014.1.391

Vieluf S, Godde B, Reuter E-M, Voelcker-Rehage C (2013) Age-

related differences in finger force control are characterized by

reduced force production. Exp Brain Res 224:107–117. https://

doi.org/10.1007/s00221-012-3292-4

Vieluf S, Mora K, Gölz C, Reuter E-M, Godde B, Dellnitz M,

Reinsberger C, Voelcker-Rehage C (2018) Age- and expertise-

related differences of sensorimotor network dynamics during

force control. Neurosci 388:203–213. https://doi.org/10.1016/j.

neuroscience.2018.07.025

Vlahou EL, Thurm F, Kolassa I-T, Schlee W (2014) Resting-state

slow wave power, healthy aging and cognitive performance. Sci

Rep 4:5101. https://doi.org/10.1038/srep05101

Voelcker-Rehage C, Alberts JL (2007) Effect of motor practice on

dual-task performance in older adults. J Gerontol B Psychol Sci

Soc Sci 62:P141–P148. https://doi.org/10.1093/geronb/62.3.

P141

Voelcker-Rehage C, Stronge AJ, Alberts JL (2006) Age-related

differences in working memory and force control under dual-task

conditions. Neuropsychol Dev Cogn B Aging Neuropsychol

Cogn 13:366–384. https://doi.org/10.1080/138255890969339

Voss MW, Prakash RS, Erickson KI, Basak C, Chaddock L, Kim JS,

Alves H, Heo S, Szabo AN, White SM, Wójcicki TR, Mailey
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