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Abstract. Protein kinase CK2 appears as a tetramer or higher 
molecular weight oligomer composed of catalytic CK2α, 
CK2α' subunits and non‑catalytic regulatory CK2β subunits or 
as individual subunits. It is implicated in a variety of different 
regulatory processes, such as Akt signalling, splicing and DNA 
repair within eukaryotic cells. The present review evaluates 
the influence of CK2 on ion channels in the plasma membrane. 
CK2 phosphorylates platform proteins such as calmodulin and 
ankyrin G, which bind to channel proteins for a physiological 
transport to and positioning into the membrane. In addition, 
CK2 directly phosphorylates a variety of channel proteins 
directly to regulate opening and closing of the channels. Thus, 
modulation of CK2 activities by specific inhibitors, by siRNA 
technology or by CRISPR/Cas technology has an influence 
on intracellular ion concentrations and thereby on cellular 
signalling. The physiological regulation of the intracellular ion 
concentration is important for cell survival and correct intra‑
cellular signalling. Disturbance of this regulation results in a 
variety of different diseases including epilepsy, heart failure, 
cystic fibrosis and diabetes. Therefore, these effects should be 
considered when using CK2 inhibition as a treatment option 
for cancer.
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1. Introduction

Genes for 122 protein kinases have been identified in yeast 
cells, 540 in mice and 518 genes in the human genome (1). 
One of these protein kinases is protein kinase CK2, 
formerly known as casein kinase 2, which is a ubiquitously 
expressed, constitutively active serine/threonine and tyro‑
sine kinase (2). In total, more than 500 protein substrates 
have been identified and CK2 is estimated to be responsible 
for up to 10% of the human phosphoproteome (3,4). CK2 is 
a soluble, readily extractable form in all eukaryotic cells. 
Moreover, Burnett and Kennedy (5) purified the soluble 
kinase activity from rat liver and named the enzyme 
according to ‘casein’, which was used as a substrate to 
analyse the kinase activity.

The CK2 holoenzyme is a tetramer, comprised of two 
catalytic α‑ or α'‑ and two non‑catalytic β‑subunits (6). The 
α‑subunits are encoded by two distinct homologous genes, 
CSNK2A1 which encodes CK2α (7) and CSNK2A2 which 
encodes CK2α' (8). The β‑subunit is encoded by CSNK2B (9). 
CK2β is not a simple on‑off regulator of the catalytic activity 
of CK2α. It regulates thermostability, substrate specificity and 
the ability to attach and penetrate cell membranes (10‑13). In 
addition to the tetramer, higher molecular weight forms of 
CK2 have been identified (14,15). Although the CK2 tetramer 
has a dissociation constant of around 4 nM (16,17) suggesting 
a permanent or a strong transient hetero complex, there is 
increasing evidence that the catalytic CK2α subunits exist in 
the absence of CK2β (18) and that CK2β exists in the absence 
of CK2α and CK2α' (19,20).

CK2α is known to have oncogenic potential (21). While 
no germline mutations in any of the CK2 genes have been 
described, patients with somatic mutations in the CSNK2A1 
gene coding for CK2α have been identified (22). These 
patients suffered from intellectual disability, hypotonia, 
speech problems, gastrointestinal problems and immune 
dysfunctions (23‑25).

CK2α and CK2β are essential for embryonic develop‑
ment. For instance, mortality occurs in CK2α‑/‑ embryos 
in mid‑gestation, with defects in heart and neural tube (26). 
CK2β‑/‑ mice die shortly after implantation with no signs of 
apoptosis but reduced cell proliferation. Furthermore, CK2β‑/‑ 
blastocysts cannot develop an inner cell mass in vitro (27). It 
has also been revealed that CK2α' knockout mice are viable 
but the male knockout mice exhibit globozoospermia (28). A 
recent review summarizes the knowledge about the role of 
CK2 in development and differentiation (29).
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CK2 can use ATP as well as GTP as phosphate donor (30,31). 
Although CK2 is not responsible for the regulation of a single 
particular pathway, it can regulate various signalling pathways 
including NFκB pathway, STAT3‑, PTEN/PI3K/Akt‑ and the 
Wnt/β‑catenin pathway (32‑37). In addition, CK2 may be 
involved in the regulation of stress‑ elicited pathways, such 
as proteotoxic stress, unfolded protein response and DNA 
damage pathways (38,39). It has previously been reported that 
the kinase activity of CK2 is elevated in rapidly proliferating 
cells and in particular in tumour cells (21). Multiple attempts 
have been conducted to develop inhibitors for the CK2 kinase 
activity (40‑43) including the use of small organic compounds 
such as 5‑3‑chlorophenylamino)benzo[c][2,6]naphthyridine‑8‑ 
caboxylic acid (CX‑4945), 4,5,6,7‑tetrabromo‑1H‑benzotriazole 
(TBB), 5,6‑dichloro‑1‑beta‑D‑ribofuranosylbenz‑imidazole  
(DRB), 2‑dimethylamino‑4,5,6,7‑tetrabromo‑1H‑benzimidazole  
(DMAT), 5,6‑dihydro‑5‑oxo‑indolo‑[1,2‑a]‑quinazoline‑7‑ 
acetic acid (IQA), 1,3,8‑trihydroxy‑6‑methylanthracene‑9,10‑dione 
(emodin) and a whole group of flavonoids, which can target 
the ATP binding site on the catalytic CK2α or CK2α' 
subunits (44‑50). CX‑4945 has been tested on more than 145 
kinases and is demonstrated to be highly specific for CK2 
and effective at micromolar concentrations (50). Recently, it 
was reported that CX‑4945 also strongly inhibits cdc2 like 
kinases (51). Despite the large influence of CK2 on the human 
phosphoproteome, CX‑4945 has been well tolerated in phase I 
clinical trials, (for example multiple myeloma clinical trial 
no. NT01199718), reviewed in (52).

CK2 is ubiquitously scattered within eukaryotic 
cells (53‑56) and is present on the cell surface as an 
ecto‑kinase (57). Moreover, CK2 is located in lipid rafts of 
brain synaptosomes and uterine cell membranes (58,59). 
In brain synaptosomes, inhibition of CK2 resulted in an 
enhanced neurotransmitter release (59). There is increasing 
evidence that CK2 phosphorylates numerous ion channels 
located within membranes. The present review evaluated ion 
channels in the plasma membrane as substrates or binding 
partners of CK2.

2. CK2 and sodium channels

There are two major classes of sodium channels in mammals 
known as the voltage gated sodium channels (VGSCs, Nav) 
and the epithelial sodium channels (ESCs) (60). A major 
physiological role for VGSCs is the generation of action poten‑
tials at the axonal initial segments (AIS) and in myelinated 
axons (61,62). The generation and propagation of action poten‑
tials requires the precise accumulation of the voltage‑gated 
sodium channels, such as Nav1.1, Nav1.2 and Nav1.6 at the AIS 
and in the nodes of Ranvier, which is achieved via ankyrin G 
scaffolding (Fig. 1A). It has been observed that the large intra‑
cellular domain of the VGSCs contains a highly conserved 
ankyrin G binding motif. However, the binding motif for the 
Navs is also highly conserved on the polypeptide chain of 
ankyrin G (63,64). Brachet et al (62) reported that CK2 phos‑
phorylates the ankyrin G binding motif on the polypeptide 
chain of Nav1 (Fig. 1A). Moreover, mutation of the CK2 phos‑
phorylation site on Nav1 to a non‑phosphorylatable alanine 
abrogated the Nav1/ankyrin G interaction. This mutation, as 
well as the use of the CK2 kinase inhibitor DMAT, leads to 

a decrease of Nav1 at AIS (62). Thus, CK2 may be involved 
in the modulation of Nav1 binding to ankyrin G as well as 
the accumulation of Nav1 at AIS at least in young neurons. In 
agreement with these observations, CK2 is enriched in AIS 
and nodes of Ranvier (65).

Amiloride‑sensitive epithelial sodium channels (ENaCs) 
mediate the transport of Na+ ions across membranes of 
epithelial cells and are composed of α, β and γ subunits or 
δ, β and γ subunits (66). Alterations in the composition of 
the ENaCs are responsible for differences in conductance, 
open probability, sensitivity to amiloride, and sensitivity to 
extra‑cellular protons (66). The activity of ENaC is regulated 
by various protein kinases such as protein kinase A (PKA), 
PKC, ERK1/2 and CK2 (67). CK2 phosphorylates the 
ENaC β subunit at serine 631 and the γ subunit at threonine 
599 (68). Inhibition of the CK2 kinase activity as well as the 
use of ENaC subunits, in which both CK2 sites were mutated, 
demonstrates a reduced amiloride sensitive Na+ trans‑
port (69). Furthermore, it was shown that CK2 directly binds 
to ENaC (68) and CK2 is transported to the cell membrane 
by wild‑type ENaC, but not by ENaC, in which both CK2 
phosphorylation sites are mutated (69). Regulation of ENaC 
by signalling molecules including hormones is critical for 
the regulation of electrolyte and water excretion and conse‑
quently for the regulation of blood pressure (70). Recently, 
the influence of CK2 on ENaC and sodium excretion was 
analysed in living organisms. For instance, Berman et al 
found that inhibition of CK2 kinase activity leads to a 
significant decrease in ENaC activity and natriuresis in mice. 
These results demonstrate that an appropriate regulation of 
ENaC by CK2 is necessary for fine regulation of the sodium 
concentration (71). 

3. CK2 and potassium channels

The largest group of potassium channels are the voltage‑gated 
channels known as Kv channels (72). While ligand activated 
potassium channels also exist, their interaction with CK2 is yet 
to be elucidated. Similar to Navs, Kvs are located in different 
parts of the AIS and carry an ankyrin G binding site (73). 
Pharmacological inhibition of the CK2 kinase activity using 
TBB or tetrabromocinnamide acid (TBCA) prevents the distal 
redistribution of Kv7.3 channels along the AIS (74). Although 
not directly analysed by Lezmy et al (74), according to their 
results, it was suggested, that CK2 phosphorylates Kv7.2/3 
to increase their affinity to ankyrin G (Fig. 1A). A possible 
explanation for these results is that inhibition of CK2 kinase 
activity may prevent the insertion of new Kv7.2/3 into the 
AIS. Alternatively, or in addition, CK2 may phosphorylate 
calmodulin, which increases its interaction with the Kv7.2 
subunit, and is crucial for the aforementioned redistribution 
(Fig. 1B) (75).

The firing rate of neurons is generated by M‑type K+ current 
generated by channels that contain Kv7/KCNQ2‑5 subunits (76). 
Physiological functioning of these channels is necessary to 
maintain physiological neuronal excitability, and dysfunction 
of these channels may result in neurological disorders such as 
epilepsy (77). The transport of the KCNQ2 channel from the 
endoplasmic reticulum to the plasma membrane is regulated by 
calmodulin. According to the aforementioned findings, CK2 
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phosphorylation of KCNQ2 may be implicated in the transport 
of this channel to the plasma membrane. Moreover, the CK2 
inhibitors TBB and TBCA have been used to study the interac‑
tion between ankyrin G and KCNQ2 and it was demonstrated 
that inhibition of CK2 kinase activity results in a reduced 
interaction of ankyrin G with KCNQ2 (Fig. 1A) (64,65,75). It 
has been observed that CK2, which accumulates at the AIS, 
phosphorylates calmodulin and thereby regulates the activity 
of KCNQ2. A previous study has also shown that ankyrin G 
binds stronger to Nav1.2 than to KCNQ2 (64).

A second family of potassium channels comprises the 
Ca2+ activated transmembrane potassium channels, which 
are divided into big‑conductance (BK), small conductance 
(SK) and intermediate conductance channels. SK channels 
are widely expressed in the central nervous system and the 
cardiovascular system, and are structurally similar Kvs. 
Gating of SK is achieved via the constitutive interaction 
between the pore‑forming subunits and calmodulin. Binding 
and unbinding of Ca2+ ions to calmodulin are transduced 

via conformational changes in channel opening and closure, 
respectively (78). SK channels couple the membrane 
potential to fluctuation in the intracellular Ca2+ concentra‑
tion. Each of the four SK α‑subunits harbours one bound 
calmodulin molecule (79). Moreover, calmodulin, which is 
phosphorylated by CK2 (80,81) inhibits SK channels (82‑84). 
Calmodulin is phosphorylated by CK2α but not by the 
holoenzyme consisting of CK2α and CK2β. CK2 phosphory‑
lation of calmodulin reduces the affinity of calmodulin for 
intracellular Ca2+ ions, which leads to a deactivation of the 
SK channel (82). Furthermore, this effect is reversed by 
protein phosphatase 2A (PP2A), which dephosphorylates 
calmodulin leading to a recovery of the Ca2+ binding affinity 
of calmodulin and thereby to a recovery of the channel 
activity (84).

SK2 channel phosphorylation by CK2 results in a deactiva‑
tion of the channel, while dephosphorylation has the reverse 
effect (83). Allen et al (84) and Bildl et al (83) reported, that 
both CK2α and CK2β and PP2A bind to the cytoplasmic N‑ and 

Figure 1. Influence of CK2 phosphorylation on binding of channel proteins to (A) ankyrin G or (B) calmodulin. Green arrows represent phosphorylation and 
interaction. Blue lines indicate an interaction. P, phosphate; CK2, casein kinase 2; SK, small conductance; KCNQ2, potassium voltage‑gated channel subfamily 
Q member 2; Nav, sodium voltage‑gated channels.
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C‑termini of SK channels to form a multiprotein complex at 
the plasma membrane of rat brains. Furthermore, PP2A binds 
to a region on the polypeptide chain of SK, which was previ‑
ously identified as the PP2A binding site on the polypeptide 
chain of SV40 small T antigen and CK2α (18,85). Positively 
charged compounds, such as spermine or poly‑L‑lysine, are 
known to stimulate the kinase activity of CK2 (79). The 
N‑terminal domain of SK2 contains a cluster of positively 
charged residues close to the site of interaction with CK2α 
and it was revealed that this region stimulated CK2 similar 
to poly‑L‑lysine (84). Within this complex, CK2 phosphory‑
lates calmodulin, thereby reducing the Ca2+ sensitivity and 
accelerating channel deactivation (86).

Neurotransmitters, such as noradrenalin, inhibit SK2 chan‑
nels independently of changes in the activity of the priming Ca2+ 
channels (82). In total, there are three homologous SK chan‑
nels, namely SK1‑3, expressed in the mammalian brain (87). 
Inhibition of CK2 by TBB or the use of a dominant‑negative 
CK2α K68M mutant strongly reduces the effect of noradrenalin 
on SK channels (82). However, the signalling pathway from the 
activated receptor to CK2 awaits further analysis.

The influence of CK2 and potassium channels in disease 
is yet to be fully elucidated. However, it has been shown that 
increased expression of CK2 in the infarct border is associated 
with reduced SK1/Kir2.1 protein levels (88). Furthermore, over‑
expression of CK2 suppressed the KCNJ2/Kir2.1 expression 
and inhibition of CK2 kinase activity enhanced KCNJ2/Kir2.1 
expression (89). It has been shown that hypoxia leads to 
increased CK2 expression in the heart of male Wistar rats, and 
the CK2/Kir2.1 pathway may be a potential therapeutic target for 
ventricular arrhythmias (vAs) after myocardial infarction (89). 
CK2 phosphorylates the transcription factor SP1, which regu‑
lates the expression of the potassium inwardly rectifying channel 
subfamily J member 2 gene, encoding Kir2.1. The angiotensin 
1 receptor antagonist valsartan reduces CK2 activation at the 
infarct border and increases Kir2.1 expression (89). These find‑
ings provide an insight into the pathophysiological molecular 
mechanisms which occur following myocardial infarction, and 
in particular, into the role of CK2 in this process.

The KCa2.2 channel represents the major isoform of 
voltage small conductance Ca2+ activated K+ channels in the 
hippocampus (90). The KCa2.2 channel is phosphorylated by 
CK2 (83,84) and gated by the intracellular assembly with 
calmodulin (91). CK2 phosphorylation leads to an impairment 
of the KCa2.2 channel activity. Previously, in a rat pilocarpine 
epilepsy model, it was reported that oral administration of the 
CK2 kinase inhibitor TBB enhances K+ currents and it blocks 
the occurrence of spontaneous epileptic activity (92). TBB 
also enhances the KCa2.2 protein level in the Cornus Ammonis 
(CA1) region from post status epilepticus (93). Moreover, there 
is a reduced expression of CK2 proteins in CA1 of epileptic 
animals (94). The mechanism for the reduced abundance of 
CK2 proteins remains to be elucidated.

4. CK2 and calcium channels

Ca2+ ions are essential for nearly all aspects of cell functions. 
Ca2+ channels in the plasma membrane play an important 
role in controlling intracellular calcium homeostasis (95). 
Recently, Afzal et al revealed that inhibition of CK2 with 

high concentrations of TBB leads to a considerable loss of 
total cellular Ca2+ in prostate cancer cells. In addition, inhi‑
bition of CK2 results in a decrease of cytosolic Ca2+ levels, 
along with an increase in mitochondrial and endoplasmic 
levels of Ca2+ in these cells (96). Thus, these results indicate 
CK2 may be involved in the regulation of the intracellular 
Ca2+ homeostasis.

Ca2+ channels include voltage‑gated (Cav) and ligand‑gated 
channels. Voltage‑gated channels (Cav) channels are 
sub‑divided into L‑type (Cav1.1‑ Cav1.4), P/Q‑type (Cav2.1), 
N‑type (Cav2.2), R‑type (Cav2.3) and T‑type (Cav3.1‑Cav3.3) 
channels, while the ligand‑gated channels include IP3‑receptor 
type, ryanodine receptor type, store operated channels amongst 
others (97‑100).

In response to membrane depolarization the conformation 
of Cav channels switches from a close to an open state, and 
Ca2+ influx via Cav channels serves as a second messenger to 
couple electric signalling to chemical signalling (99,100). The 
Ca2+ concentration controls a diverse range of intracellular 
events such as endocytosis, exocytosis, muscle contraction, 
synaptic transmission and metabolism (101) thus controlling 
proliferation, differentiation and development. Cav channels 
share a common subunit composition, where Cavα1 subunits 
are pore forming, and Cavβ and Cavδ as well as in some cases 
Cavγ, are ancillary subunits (99). The α1 subunit is composed 
of four homologous transmembrane domains and cytoplasmic 
N‑ and C‑termini. In addition to these subunits, calmodulin is 
also present in these complexes (102).

The L‑type calcium current is critical for the development, 
function and regulation of many different cell types including 
physiologic functions of nerve and muscle cells (103). L‑type 
calcium channels are implicated in the excitation‑contraction 
coupling in cardiac, skeletal and smooth muscle, in the 
regulation of Ca2+ homeostasis and secretion, tissue develop‑
ment, neuron excitability, excitation‑transcription coupling 
and in learning and memory in the brain, reviewed in (104). 
Furthermore, L‑type Ca2+ channel activation results in uterine 
contraction of mice, the activation of which is suppressed by 
inhibition of CK2 (58). Cav1.1 is the L‑type Ca2+ channel 
present in the skeletal muscle and Cav1.2 is the L‑type channel 
present in the heart. Both of these channels are regulated via 
phosphorylation by a number of different protein kinases, 
such as PKA, Akt, PKC and CK2 (103). Multiple regulatory 
sites are located in the large C‑terminal domain of Cav1.1 and 
Cav1.2 channels (105‑107). For instance, the PKA phosphory‑
lation site at serine 1700 was required for the stimulation of 
channel activity (108), while threonine 1704 phosphorylation 
by CK2 is necessary for the regulation of basal channel 
activity. Mice with mutations at these two phosphoryla‑
tion sites have a significantly reduced basal L‑type calcium 
current and a reduced response to β‑adrenergic stimula‑
tion (109,110). In addition these mutant mice have an impaired 
contractile function, decreased exercise capacity and cardiac 
hypertrophy (109,110).

The L‑type Ca2+ channel Cav1.2 regulates Ca2+ influx and 
initiates the human heartbeat (103,111). In immature but not 
mature, mouse cardiomyocytes, Kashihara et al (111) have 
shown that angiotensin II regulates Cav1.2 via the angiotensin 
type 1 receptor and induces a signalling cascade involving 
β‑arrestin 2, which stimulates the tyrosine kinase src, thus 
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phosphorylating p27kip1. This phosphorylation prevents 
p27kip1 from inhibiting the phosphorylation of a C‑terminal 
fragment of Cav1.2 by CK2 (111). It has been reported that 
unphosphorylated p27kip1 is one of the very few proteins 
that specifically inhibits CK2α' (112). Moreover, CK2β 
binds to Cav1.2 and recruits p27kip1 and CK2α' to the Cav1.2 
complex (111). However, it remains unknown whether CK2α' 
functions alone or as a holoenzyme consisting of CK2α' and 
CK2β.

A C‑terminal fragment of Cav1.2 translocates to the 
nucleus and regulates transcription (113) of a variety of 
different genes, such as the gap junction protein Cx31.1, the 
axon guidance factor Netrin 4, the regulator of G‑protein 
signalling RGS5 and the tight junction protein claudin19, 
which are implicated in neuronal signalling and excitability. 
This result suggested that Cav1.2 has a dual function as a 
channel and as a transcription factor. However, it is yet to be 
analysed whether the Cav1.2 C‑terminus remains associated 
with CK2α'/CK2β after translocation to the nucleus. The 
mechanism that triggers the cleavage of the C‑terminus is 
also not fully understood. It has been revealed that adenosine 
triphosphate regulates at least the activity of guinea pig 
Cav1.2 by direct binding to the channel in a dose dependent 
manner (114). In addition, as further studies have reported 
that calmodulin and Ca2+ regulate ATP binding activities, it 
was hypothesized that this channel‑bound ATP is directly 
necessary as a phosphate donor for protein kinases, which 
phosphorylate Cav1.2.

Modulation of Cav2.1 channel activity serves a key role 
in inter‑neuronal communication and synaptic plasticity as 
well as in the regulation of exocytosis of insulin from storage 
granules of the human pancreas especially at low glucose 
concentrations (115). Ca2+ influx via Cav2.1 promotes channel 
inactivation (116). In a recent study we identified Cav2.1 as a 
substrate and as a binding partner for CK2 (117). Inhibition of 
CK2 by CX‑4945 enhances the intracellular Ca2+ level, which 
corresponds with an increase in insulin secretion from pancre‑
atic β‑cells (117). Moreover, quercetin is a potent inhibitor 
of CK2 at IC50 values <1 µM (118), which induces insulin 
secretion by direct activation of L‑type calcium channels in 
pancreatic β‑cells.

A transient Ca2+ micro‑domain is essential for synaptic 
exocytosis leading to the fast release of neurotransmit‑
ters (119). Cav2.1 is regulated by interaction with its β‑subunit, 
by SNARE proteins binding to Cav2.1, and by Ca2+‑ calmodulin 
attached to the C‑terminal tail of the Cav2.1α1A subunit (120). 
As aforementioned, CK2 phosphorylates calmodulin (80,81), 
but it has to be elucidated whether CK2 phosphorylation 
affects the calmodulin/Cav2.1 interaction.

In total, at least two other proteins, including syntaxin‑1 
and synaptotagmin‑1, specifically interact with Cav2.1 chan‑
nels by binding to a synaptic protein interaction site within an 
intracellular loop of the channel (121,122). CK2 is present in 
the membrane micro‑domains from rat brain nerve endings 
and it phosphorylates syntaxin‑1 at serine 14 as assessed using 
phospho‑specific antibodies (59). This N‑terminal segment of 
syntaxin‑1 including the CK2 phosphorylation site is involved 
in direct protein‑protein interactions and leads to alterations 
in the neurotransmitter release (59). Furthermore, it has been 
demonstrated that the CK2 phosphorylation of syntaxin‑1 

may play a role in the pathophysiology of schizophrenia (123). 
Therefore, these data might suggest a differential regulation 
of Cav2.1 by CK2, where syntaxin‑1 and synaptotagmin‑1 are 
phosphorylated by the CK2 holoenzyme while calmodulin is 
phosphorylated by CK2α alone.

5. CK2 and anion channels

Chloride or bicarbonate are transported across membranes 
by complex membrane proteins called anion channels. 
The transport of chloride and bicarbonate ions results in 
alterations of the pH within cells and also in alterations in 
the transport of water (124). A reduction in chloride and 
bicarbonate concentrations leads to a disease called cystic 
fibrosis. The cystic fibrosis transmembrane conductance 
regulator (CFTR) is an example of an anion channel present 
in epithelial cells and is a member of the family of ATP 
binding cassette (ABC) proteins (125,126). The activity of 
CFTR is, in part regulated by the cAMP‑dependent protein 
kinase PKA (126). In addition, CK2 is implicated in the 
regulation of CFTR (127‑133). It has been reported that TBB 
treatment of Calu‑3 cells resulted in a significant inhibition 
of the basolateral Cl‑/HCO3

‑ exchanger. Treatment with the 
more efficient and specific inhibitor CX‑4945 completely 
abolishes Cl‑/HCO3

‑ exchanger activity.
Recently, it has been revealed that CK2 is required for 

the physiological expression of the Ca2+ activated Cl‑ channel 
anoctamin 1 (ANO1), previously known as TMEM16A, in the 
plasma membrane. ANO1 is stimulated via G‑protein coupled 
receptors (134). Small interfering RNA knockdown of CK2α' 
or inhibition of the kinase activity by TBB or CX‑4945 leads 
to a reduced expression in the plasma membrane and an inhibi‑
tion of the whole cell current in airways epithelial cells (134). 
Furthermore, these treatments result in an inhibition of cell 
proliferation. However, it remains to be analysed whether 
CK2α' directly phosphorylates ANO1 alone or as a CKα'/CK2β 
holoenzyme and whether CK2α might have the same effect.

CK2 is not only stimulatory for the functions of chan‑
nels. It inhibits the lipid flippase ABCA1, which is a CFTR 
related protein (135). A total of three residues, threonine 
1,242, threonine 1,243 and serine 1,255 in the cytoplasmic 
part of ABCA1 have been identified as CK2 phosphorylation 
sites (135). Moreover, mutation analysis and the use of CK2 
specific inhibitors has revealed that CK2 phosphorylation 
affects flippase activity, apolipoprotein AI and AII binding 
and phospholipid and cholesterol efflux (80,135).

The cellular uptake of a wide range of endogenous and 
exogenous molecules including many clinically used drugs 
is mediated by solute carrier transporters (SLC), which are 
transmembrane proteins (136). SLC4A2 is another member 
of the Cl‑/HCO3

‑ exchanger in human airway epithelia cells, 
which is phosphorylated by CK2 and whose activity is reduced 
by inhibition of CK2 by TBB or CX‑4945 or by knockdown 
experiments, suggesting that CK2 may be a key regulator of 
trans‑epithelial transport in human airways (137). However, 
it remains unknown whether CK2 regulates SLC4A2 directly 
or indirectly by regulating calmodulin. CK2 has also been 
shown to influence the activity of the nucleoside transporters 
SLC29A1 and SLC29A2, previously known as ENT1 and 
ENT2, respectively (138).
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6. Conclusion

In conclusion, protein kinase CK2 is implicated in central 
cellular processes, such as regulation of cell proliferation, 
differentiation, RNA splicing, DNA repair and angiogenesis. 
The present review has summarized the knowledge regarding 
the regulation of cation and anion channels. This regulation is 
achieved either by direct phosphorylation of proteins building 
the channels (Table I) or via phosphorylation of platform 
proteins such as calmodulin and ankyrin G (Fig. 1), which are 
responsible for binding, transport and physiological orientation 
of channel proteins into the plasma membrane. In addition, 
CK2 subunits bind to certain proteins which compose the 
channels (Table II), which might reflect an enzyme /substrate 
interaction or a currently unknown function. Regulation of 
the intracellular ion concentration contributes to an altered 
membrane potential, which influences cellular excitability of a 
variety of different cell systems including neuronal and muscle 
cells. Moreover, the intracellular ion concentrations plays an 
important role in a variety of different conditions such as heart 
failure, epilepsy, cystic fibrosis and diabetes. These effects have 
been considered when CK2 inhibitors are used for the treatment 

of cancer. Furthermore, the knowledge of the role of CK2 in 
the regulation of ion channels in the plasma membrane may 
facilitate the targeting CK2 for the regulation of intracellular 
ion concentrations and ultimately cellular signalling.
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Table II. Binding of CK2 to channel proteins.

First author, year CK2 binding partner Function (Refs.)

Shi et al, 2002 ENaC Transport to the plasma membrane (68)
Bildl et al, 2004; Allen et al, 2007 SK channels Formation of multi‑protein complex at the plasma membrane (83,84)
  of rat brain increase of CK2 kinase activity
Kashihara et al, 2017 Cav1.2 Recruitment of p27kip1 and CK2α' to the membrane (111)
Scheuer et al, 2020 Cav2.1 Ca2+ transport (117)

CK2, protein kinase CK22; SK, small conductance; ENaC, Amiloride‑sensitive epithelial sodium channels; Cav, Ca2+ voltage‑gated channels.

Table I. CK2 phosphorylation of channel proteins.

First author, year Substrates of CK2  Function (Refs.)

Brachet et al, 2010 Nav1 Interaction with ankyrin G (62)
Shi et al, 2002 ENaC β‑subunit and γ‑subunit Amiloride sensitive Na+ transport (68)
Xu and Cooper, 2015;  Kv7.2/3 Distribution of Kv7.2/3 along AIS (64,65)
Brechet et al, 2008
Zhang et al, 2014 Calmodulin/SK Regulation of SK channel activity (86)
Xu et al, 2020; Fuller et al, 2010;  Cav1.2, Cav1.1, Cav2.1 Ca2+ transport (103,108,117)
Scheuer et al, 2020
Cesaro et al, 2013; Luz et al, 2011 CFTR Chloride/bicarbonate transport (127,128)
Roosbeek et al, 2004 ABCA1 Regulation of flippase activity (135)
Ibrahim et al, 2017 SLC4A2 Chloride/bicarbonate transport (137)
Stolk et al, 2005 SLC29A1, SLC29A2 Nucleoside transport (138)

CK2, protein kinase CK2; SK, small conductance; ENaC, Amiloride‑sensitive epithelial sodium channels; Cav, Ca2+ voltage‑gated channels; 
SLC4A2, solute carrier family 4 member 2; Kv, potassium voltage‑gated channels; CFTR, cystic fibrosis transmembrane conductance regulator; 
ABCA1, ATP binding cassette subfamily A member 1; AIS, axonal initial segments; Nav, sodium voltage‑gated channels.
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