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We have investigated the interactions between cationic NN16 and BDBR0011 carbosilane dendrimers with red
blood cells or their cell membranes. The carbosilane dendrimers used possess 16 cationic functional groups.
Both the dendrimers are made of water-stable carbon–silicon bonds, but NN16 possesses some oxygen–silicon
bonds that are unstable in water. The nucleic acid used in the experiments was targeted against GAG-1 gene
from the human immunodeficiency virus, HIV-1.
By binding to the outer leaflet of themembrane, carbosilane dendrimers decreased the fluidity of the hydrophilic
part of themembrane but increased the fluidity of the hydrophobic interior. They induced hemolysis, but did not
change the morphology of the cells. Increasing concentrations of dendrimers induced erythrocyte aggregation.
Binding of short interfering ribonucleic acid (siRNA) to a dendrimermolecule decreased the availability of cation-
ic groups and diminished their cytotoxicity. siRNA–dendrimer complexes changed neither the fluidity of biolog-
ical membranes nor caused cell hemolysis. Addition of dendriplexes to red blood cell suspension induced
echinocyte formation.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Medicine in the start of the XX century looks very archaic when
comparedwith current knowledge and technical achievements. Progress
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is truly impressive, but even today there are many diseases that remain
impossible to cure or at least to reduce symptoms burdensome for the
patient. One of the more promising therapies that can be used for
treating cancer, some infectious disease and even genetic diseases, is
gene therapy based on ribonucleic acid interference (RNAi). RNAi
is a natural defensemechanism that exists inmany eukaryotes; it is acti-
vated by double-stranded RNAs (dsRNA)with specific sequences. dsRNA
causes selective post-transcriptional gene silencing, which means that
production of the corresponding protein is blocked. In mammalian
cells, dsRNA longer than 30 nucleotides shuts down protein syntheses
by non-specific degradation of messenger RNA (mRNA), and activates
production of interferon-γ–interferon (IFN) pathway 4. This is why
20–25nucleotide length RNAs are being used, known as short interfering
RNA (siRNA). These RNA fragments are short enough to avoid a cellular
interferon response, but are long enough to suppress genes [1]. RNAi
therapy holds promise for some diseases, such as cancer [2,3], virus
infection (HIV, hepatitis, severe acute respiratory syndrome (SARS))
[4–6], respiratory diseases (asthma, chronic obstructive pulmonary
disease (COPD), cystic fibrosis) [7–9] and parasitic infections (malaria,
human amoebiasis) [10,11]. Ribonucleic acid can be used as a short
hair-pin RNA transported by viral vectors or as a double-stranded
siRNA. The first system is very efficient, but viral vectors can induce
immunogenic response, making the use of many of them unsuitable.
The other seems to be less problematical, but it is not easy to create an
efficient delivery system for siRNA protection and transportation. There
are several types of non-viral carriers used for delivery of nucleic acids,
including lipids, polymeric amines and dendrimers.

There is confidence that dendrimers may be ideal molecules as drug
carriers because of their highly branched structure andunique properties.
The dendrimer surface is an excellent site for binding drugs or cell-
specific targeting groups through electrostatic forces or covalent bonds.
They possess high drug-loading capacity and they can bemade relatively
non-toxic to cells by appropriate surface modifications [12–14].

To create ideal drug carriers, the mechanism of interaction of
dendrimers and dendrimer–drug conjugates with lipid membranes
needs to be understood, which can improve the properties of themole-
cule by increasing its targeting efficiency and protective properties. In
basic investigations, liposomes are often used as model membranes be-
cause of their simple composition, uncomplicated preparation and high
stability [15–30]. Studies onmodel membranes gives information about
their interaction with a relatively simple lipid structure, leading to phe-
nomena that are not disturbed by the proteins associated with them. In
addition to model membranes, erythrocytes have been frequently
Fig. 1. Structure of carbosilane dendri
undertaken. While there are some reports on interactions of PAMAM
dendrimers with cells and biomembranes [31,32], this article focuses
those involving cationic carbosilane dendrimers (CBS) and their com-
plexes with siRNA (dendriplexes) in terms of their action on red blood
cells. CBS dendrimers were synthesized for siRNA and an oligonucleo-
tide delivery system. They possess 16 cationic groups on their surface
and can bind negatively charged nucleotide backbones through electro-
static interactions. Two second generation carbosilane dendrimerswere
used, BDBR0011 and NN16. Second generation CBS dendrimers show
good toxicity profiles (low toxicity) up to 5 μM [33]. They can form sta-
ble complexes with nucleic acids and protect them from degradation
and sequestration by proteins [34,35]. Both these dendrimers are
made of water-stable carbon–silicon bonds, but NN16 possesses some
oxygen–silicon bonds that are unstable in water (Fig. 1). Slow hydroly-
zation in aqueous solutions released cargos from dendrimers gradually,
and this degradation takes over 4 to 24 h [36]. Since both appear to be
promising candidates as drug carriers, we have tested these two very
similar compounds to check which one is superior as a conveyor for
siRNA in gene therapy.
2. Materials and methods

2.1. Materials

Blood from healthy donors was obtained from the Central
Blood Bank (Lodz, Poland); fluorescent probes: 1,6-diphenyl-1,3,5-
hexatriene (DPH); N,N,N-trimethyl-4-(6-phenyl-1,3,5-hexatriene-
1-yl) phenylammonium p-toluenesulfonate (TMA-DPH); Hepes and
Tris–HCl buffers were purchased from Sigma Chemical Company;
10 mM Hepes buffer at pH 7.4 was made in distilled water and NaCl
was added to 150 mM.Water-soluble carbosilane dendrimers of gener-
ation 3 were synthesized in the Departamento de Quimica Inorganica,
Universidad de Alcala, Spain [33,36]. Themolecular formula andmolec-
ular weights of those compounds are: NN16—C128H316 I16N16O8Si1316+,
Mw = 4 603.56 g/mol and BDBR0011—C144H348I16N16Si1316+, Mw = 4
699.99 g/mol.

Non-labeled siRNA was synthesized by Sigma-Aldrich. Nucleic
acid was targeted against the GAG-1 gene from HIV-1 virus, with the
sequence:

sense: GAGAACCAAGGGGAAGUGACAdTdT,
antisense: UGUCACUUCCCCUUGGUUCUCdTdT.
mers; (A) NN16; (B) BDBR0011.



Fig. 2. Fluorescence anisotropy of TMA-DPH (A) and DPH (B) in cell membrane; ■—NN16 dendrimer, ●—BDBR0011 dendrimer. All data were expressed as mean ± S.E.M. n = 4;
* p b 0.05 for each point vs control.
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2.2. Blood preparation

Fresh bloodwas anticoagulatedwith 3% sodium citrate. Erythrocytes
were separated from the plasma and leukocytes by centrifugation
(5000 g, 5 min) at 4 °C, washed 3 times with 150 mM NaCl and
suspended in 10 mM Hepes buffer with 150 mM NaCl (pH 7.4). They
were used immediately after isolation.

2.3. Membrane preparation

Erythrocytes were hemolyzed in cold (4 °C) Tris–HCl buffer for
30 min and centrifuged (20 min, 15,000 g, 4 °C). Ghostswere separated
from hemoglobin and washed several times with Tris–HCl diluted with
water (1:1). Membranes were washed until their color became creamy.
Membrane protein concentration was measured by the Lowry method
[37]. Erythrocyte membranes were frozen and used within 2 weeks.

2.4. Dendriplex preparation

Carbosilane dendrimers and siRNA were diluted in 10 mM Hepes
buffer with 150 mMNaCl at pH 7.4, filtered to remove any particulates
(polycarbone filter of 100 nm pore size). Carbosilane dendrimer/siRNA
complexes were formed by mixing appropriate volumes of dendrimers
(16 positive charges) and siRNA (46 negative charges) solutions in a
molar ratio of 4:1 (dendrimer:siRNA) and stirring for 15 min prior to
Fig. 3. Fluorescence anisotropy of TMA-DPH (A) and DPH (B) in cell membrane;■—NN16 dend
n = 4; * p b 0.05 for each point vs control.
analysis. The final concentration of dendrimers was 200 μM and siRNA
was 50 μM. The molar ratio 1:4 was chosen based on previous experi-
ments. The process of forming complexes and their characterization
have already been described [38]. Complexes were prepared in 10 mM
Hepes with 150 mM NaCl buffer, pH 7.4.
2.5. Fluorescence spectroscopy

Fluorescence anisotropywasmeasuredwith a LS-50B (Perkin-Elmer,
U.K.) spectrofluorimeter. Tomonitor the fluidity of a biomembrane, two
fluorescent probes were used; one, DPH (an apolar molecule), was in-
corporated into the hydrophobic region of the membrane, whereas
TMA-DPH was anchored on its surface, exposed to a hydrophilic envi-
ronment due to its positively charged amino groups. The excitation
and emission wavelengths were 348 nm and 426 nm, respectively
[39–42]. The slit width of the excitation monochromator was 8 nm
and that of the emission monochromator was 6 nm for both labels.
The cuvette holder was temperature controlled. Erythrocyte mem-
branes were dissolved at 50 μg proteins/ml and the fluorescent probe
added. The concentration of each fluorescent probe was 1 nM. Subse-
quently the samplewas incubated for 15 min and the fluorescencemea-
sured. All dendrimers were dissolved in 10 mM Hepes buffer, pH 7.4,
with 150 mM NaCl, and added to the sample to reach the appropriate
concentration.
rimer/siRNA,●—BDBR0011 dendrimer/siRNA. All data were expressed as mean ± S.E.M.

image of Fig.�2
image of Fig.�3


885D. Wrobel et al. / Biochimica et Biophysica Acta 1838 (2014) 882–889
Fluorescence polarization values (r) were calculated by the fluores-
cence data manager program using Jablonski's equation:

r ¼ IVV−GIVHð Þ= IVV þ 2GIVHð Þ

where IVV and IVH are the vertical and horizontal fluorescence intensi-
ties, respectively, to the vertical polarization of the excitation light
beam. Factor G = IHV / IHH (the grating correction factor) corrects the
polarizing effects of the monochromator.

2.6. Hemolysis

The absorbance of released hemoglobin was measured with a
Jasco V-650 spectrophotometer. Eythrocyteswere suspended in dendri-
mer solution at a hematocrit of 2% and incubated for 30 min at 37 °C.
As a control, erythrocytes were suspended in a 10 mM Hepes buffer,
pH 7.4, with 150 mM NaCl; for reference, they were treated with
double-distilledwater. The percent of hemolysiswasmeasured spectro-
photometrically by their absorbance at 540 nm.

2.7. Microscopy method

Erythrocytes were suspended in dendrimer solution at a hematocrit
of 2% and incubated for 30 min at 37 °C. They were resuspended in a
10 mM Hepes buffer, pH 7.4, with 150 mM NaCl serving as a control.
Cell samples were viewed under an Olympus IX70 microscope at a
magnification of 400×.

2.8. Statistical analysis

Statistical analysis and exponential curve fitting used Statistica 9
(StatSoft) software. The distribution was checked by the Shapiro–Wilk
test; if the distribution was normal, student's t-test was used. Results
are expressed as mean ± standard error of the mean (S.E.M.).

3. Results

3.1. Fluorescent anisotropy measurements

Changes in the fluorescence anisotropy show that dendrimers inter-
act with the erythrocyte membranes. This parameter increases when a
membrane becomes more rigid, reflecting the fact that dendrimers
have probably moved into the membrane. Fluorescence anisotropy
of TMA-DPH increased with both dendrimers (Fig. 2A), whereas they
reduced that of DPH (Fig. 2B).
Fig. 4. Red blood cell hemolysis; (A) ■—NN16 dendrimer, ●—BDBR0011 dendrimer; (B) □
mean ± S.E.M. n = 4; * p b 0.05 for each point vs control.
Significant changes in the fluorescence anisotropy of DPH and TMA-
DPH were seen that indicated that both of the dendrimers affected the
lipid order packing of erythrocyte membranes both in the hydrophilic
and hydrophobic regions of the bilayer.

The dendrimers are of similar size and possess 16 cationic groups
on their surface. For NN16 dendrimer, stronger interactions with mem-
branes labeled with both fluorescent probes were seen compared
to BDBR0011. Both caused the hydrophilic part of the membrane to be-
comemore rigid (Fig. 2A), whereas the hydrophobic part became more
fluid (Fig. 2B).

The dendriplexes did not induce any significant change in fluores-
cence anisotropy of either fluorescent probe (Fig. 3).

3.2. Erythrocyte hemolysis

Hemolysis occurring as hemoglobin is released from erythrocytes
when their membranes are destroyed (Fig. 4A). Both the carbosilane
dendrimers caused hemolysis; however the BDBR0011dendrimer had
a stronger lytic effect. A 0.4 μM concentration induced 19 times higher
hemolysis for BDBR0011 than for the other dendrimer. The concentra-
tion of NN16 dendrimer that caused 5% hemolysis was 1.8 μM, whereas
BDBR0011 was as much as 32% at this concentration. The relationship
between dendrimer concentration and hemolysis was not non-linear;
the shape of both of their hemolysis curves suggests that erythrocytes
aggregate.

Hemolysis experiments were also carried out with the dendriplexes.
The concentration of dendriplexes was taken as the pure dendrimer
concentration and 5 measurement points were chosen to compare he-
molysis caused by pure dendrimers. Both kinds of dendriplexes failed
to destroy erythrocyte membranes and no hemoglobin was released
(Fig. 4B).

3.3. Morphology changes

Microscopy showed changes in the erythrocyte shape; the control
erythrocytes were discocytes (Fig. 5), whereas increasing dendrimer
or dendriplex concentrations led to changed morphology (Figs. 5
and 6). Both dendrimers at 0.4 μM induced echinocytic transformation.
Many cells were shrunk and had characteristically irregular contours.
For higher dendrimer concentrations, aggregates occurred but without
echinocytes, the cells having regular shapes. Themost striking difference
between the effects of the two dendrimers was seen at 50 μM, at which
erythrocytes with BDBR0011 formed huge aggregates (~140 μm)
whereas the NN16 dendrimer led tomuch smaller aggregates (~30 μm).
—NN16 dendrimer/siRNA, ○—BDBR0011 dendrimer/siRNA. All data were expressed as

image of Fig.�4


Fig. 5. Erythrocytes morphology changes; NN16 dendrimer, BDBR0011 dendrimer.
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The presence of dendriplexes changed erythrocyte morphology
(Fig. 6); only the lowest and the highest concentrations of dendriplexes
were selected to follow morphological changes. Erythrocytes were
crenated, covered with short, sharply pointed projections.

4. Discussion

Dendrimers are promising molecules in medicine; their structure
and properties predispose them as potential drug or nucleic acid carriers.
Because of their chemical and physical properties, they can effectively
interact with biological membranes, proteins and organelles [21,22,43],
and their molecules are easily subject to chemical transformation.

The positively charged surface groups of cationic dendrimers inter-
act strongly with negatively charged biological membranes, which dis-
turb membrane structure or in severe cases lead too collapse of the
structure of the membrane. Numerous plausible models of dendrimers
and model lipid membrane interactions have been reported. Globular
polymers can remove lipids from the bilayer structure, forming nano-
scale holes [16,17,22,23,44–47]. Cationic nanoparticles lyze cells be-
cause of their ability to increase permeability and destroy the integrity
of the cell membrane [40–42]. Dendrimers can also interact with hydro-
phobic parts of the lipid bilayer and change its fluidity [18,19,24,26].

The strength of interaction depends on the charge and shape of the
molecule. Higher generations of globular polymers havemore function-
al groups anda stronger effect onmembrane structure [18,19,28,48–50].
Cationic dendrimers, like PPI or PAMAM, aremore cytotoxic than anion-
ic or those with surface modifications [51,52]. But there are not many
reports on the interaction of dendrimers with biological membranes.
The high complexity of the structure is found with biological mem-
branes, which is important in the regulation of its properties and
shape, including protein activity and diffusion pathways.

Our results relate specifically to biologicalmembrane–dendrimer in-
teractions. Changes in the membrane fluidity suggest that dendrimers
change the physical properties of the whole membrane. The strongest
interactions occurred in the hydrophilic region of the membrane
which became more rigid, and thus dendrimers may have been bound
to the lipid head groups. NN16 dendrimer which possesses not only
Si\C, but also Si\O bonds, structurally stiffened the hydrophilic part
of the membrane more than BDBR0011. Differences in the strength of
the interaction between the two compounds are probably related to
the Si\O bonds associated with affinity to water. Dendrimer properties
regarding the back-folding phenomenon were evident; this is a reorga-
nization process due to dendrimer conformation by their folding into
the interior of the molecule. Neutral pH induces protonation of surface
amines of PAMAM dendrimers; as a consequence hydrogen bonding
between surface and interior amines appears [53]. In the two kinds of
carbosilane dendrimers investigated, the only real difference between
them was in the Si\O bonds of NN16e through which interactions
occurred. This can be due to the back-folding process and hydrogen
bonding between the positively charged surface amines and oxygen
atoms. This phenomenon may explain the higher affinity of the NN16
dendrimer for the hydrophilic part of the bilayer. The less ordered
state of the dendrimer molecule and its higher water accessibility
makes it preferable to the charged hydrophilic part of a bilayer, which
causes greater destabilization of a bilayer.

In the hydrophobic part of the membrane, fluidity increases, with
the NN16 dendrimer affecting the membrane more strongly than the
other dendrimer. Increasing fluidity of themembrane in the hydropho-
bic part of bilayermay be due to extraction of lipids from themembrane
structure by dendrimers. Thismay increase themobility of acyl chains in
themembrane tail region. Themodel used here was that of erythrocyte
ghosts. Biological membranes consist of lipids, proteins and sugars, so
the observed changes can have also been related to dendrimer–protein
interactions [19].

Both dendrimers caused lysis, but the BDBR0011 dendrimer was
more lytic than NN16. Hemolysis was concentration dependent. For
high concentrations of dendrimers, hemolysis kinetics gave a non-
linear shape that may be evidence of aggregation between dendrimers
and erythrocytes. High hemolytic behavior of these dendrimers is due
to the cationic groups on their surfaces [54,55]. Those molecules, with
or without surface modification, are designed as carriers in drug deliv-
ery systems [56]. The surface charge of dendrimers has been modified
in our experiments, which is a result of interaction between dendrimers
and siRNA. The toxicity of dendrimers bound to siRNA (dendriplexes)
decreases, which is easily seen when the results for carbosilane

image of Fig.�5


Fig. 6. Erythrocytes morphology changes; NN16 dendrimer/siRNA, BDBR0011 dendrimer/siRNA.
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dendrimers alone and dendriplexes are compared. The hemolytic be-
havior of dendrimers can be reduced by 32% and 7% for the BDBR0011
dendrimer and NN16 dendrimer, respectively, in a concentration of
2.5 μM to zero for both dendriplexes given in an equimolar level to
the dendrimer. It is interesting that the BDBR0011 dendrimer was
more hemolytic. As already mentioned, its structure is more ordered;
thus it could destabilize membranes in a different way and induce
mainly fragmentation or pore formation. At neutral pH, all protonated
cationic groups are presented on the surface of BDBR0011, which
can result in hemolysis and aggregation of erythrocytes even at very
low concentrations. For the NN16 dendrimer, toxicity is reduced due
to the back-folding phenomenon that hides some cationic groups. How-
ever, interactionswithmembranes are still strong because of remaining
positive surface charges, higher affinity towater and hydrogen bonding.

Usually hemolysis is preceded by echinocytic transformation
[29,51]. For both dendrimers, erythrocytes only changed their shapes
at the lowest concentration (0.4 μM). Some cells had characteristic, ir-
regular, deformable shapes, with many small knoblike projections.
Echinocyteswere not observed at a higher concentration of dendrimers.
Erythrocytes had regular shapes (particularly in the case of NN16), and
stuck together (particularly in the case of BDBR0011). Aggregation
occurred in hemolysis experiments. Membrane cell degradation was
dependent on dendrimer concentration, the number of erythrocytes
decreasingwith increasing amounts of globular polymers in the sample.
Aggregation was observed above a 10 μM concentration.

Research on the influence of dendrimers on erythrocyte concen-
trates has mostly focused on commercially available cationic PAMAM
dendrimers. Earlier studies showed that increasing concentrations of
chemicals with a growing number of functional groups on the surface
produces more toxicity in cells [12,13,31,51,57,58]. Addition of protein
to such samples reduces their toxicity [16,57].

Carbosilane dendrimers complexedwith siRNAneither influenced the
fluidity of membranes nor caused hemolysis. Addition of dendriplexes
induced echinocyte transformations; the cells became shrunken. siRNA
bound to dendrimers decreased their toxicity, which might be due to a
reduction in the availability of functional cationic groups. These results
confirm the data obtained in other experiments for cationic dendrimers,
in which cytotoxicity decreased as a result of the binding of sugars,
peptides or drug molecules to the surface groups [12–14].

5. Conclusions

Carbosilane dendrimers interact mainly with the hydrophilic part of
biological membranes. By binding to the outer leaflet, they decrease its
fluidity while increasing that of the hydrophobic interior. They induce
hemolysis, but they do not change the morphology of erythrocytes.

image of Fig.�6
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Increasing concentrations of dendrimers induced erythrocyte aggrega-
tion. Reduction of the number of cationic groups that follows the
binding of siRNA decreases the toxicity of cationic dendrimers. siRNA–
dendrimer complexes neither change the fluidity of biological mem-
branes nor cause hemolysis. Addition of dendriplexes to erythrocyte
suspensions induces echinocyte transformation. Because of lower toxic-
ity and a weaker ability to form aggregates, NN16 dendrimers may be
better siRNA carriers than BDBR0011.
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