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Abstract: Garbage collection is an important part of municipal engineering. An effective service
network design can help to reduce the municipal operation cost and improve its service level.
In this paper, we propose an optimization model for the network design of municipal solid waste
(MSW) collection in the Nanjing Jiangbei new area. The problem was formulated as a mixed integer
nonlinear programming (MINLP) model with an emphasis on minimizing the annual operation
cost. The model simultaneously decides on the optimal number of refuse transfer stations (RTSs),
determines the relative size and location for each RTS, allocates each community to a specific RTS, and
finally identifies the annual operation cost and service level for the optimal scenario as well as other
scenarios. A custom solution procedure which hybrids an enumeration rule and a genetic algorithm
was designed to solve the proposed model. A sensitivity analysis was also conducted to illustrate the
impact of changes in parameters on the optimality of the proposed model. Test results revealed that
our model could provide tangible policy recommendations for managing the MSW collection.

Keywords: municipal solid waste; location and allocation; network design; mixed integer nonlinear
programming; optimization

1. Introduction

This research was motivated by the practical concern of municipal solid waste (MSW) collection
operations in the Nanjing Jiangbei new area. The new area, established on 27 June 2015, is located in
the north of the Yangtze River in Nanjing and includes the districts of Pukou, Dachang, Liuhe, and
Baguazhou Street of Qixia District. It is the cross point of the Yangtze River economic zone and the
eastern coastal economic zone. Along with the rapid urbanization and the increasing population in
the past three years, more and more garbage needs to be addressed. Nowadays, how to collect and
dispose of the increasing amounts of MSW has become an urgent problem. This concern provides a
good chance to use the operational research (OR) method to help local managers address the problem.

To investigate the existing approaches regarding MSW collection, we searched the related
literature from multiple channels including Web of Science, Elseviser, and Google Scholar. We used
keywords such as ‘solid waste collection’, ‘location and allocation’, ‘solid waste transfer-station location’
and found more than 100 related studies on this topic. We noticed that although research into MSW
collection has been conducted for several years, most of them were published in environmental or
scientific journals. Despite its importance and particularity, only a few studies have used the OR
method to improve the municipal service level. In what follows, we briefly introduce some of the
methods that we believe are most relevant to our study.
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First, with the increasing population, the rapid growth of the economy, and the rise in living
standards [1], more and more scholars have noticed the importance of MSW management in city
living [2]. For example, reference [3] provided several solutions for solid waste management in a
rapidly urbanizing area in Thailand. Reference [4] proposed a method for forecasting MSW generation
in a fast-growing urban region with system dynamics modeling. Reference [5] analyzed some
economic factors and political factors in influencing the privatization of MSW collection. Reference [6]
investigated more than thirty cities in 22 developing countries across four continents to find the factors
influencing the performance of waste management. Although these scholars pointed out that the
capacity design of refuse transfer station (RTS) is an urgent problem because the current sites are
seriously overloaded, they focused on the influencing factors regarding waste management, but did
not design an optimal network for MSW collection.

Second, early scholars developed several optimization models to guide the location decisions
of RTS. For example, Reference [7] proposed a general mathematical programming approach with
four stages to determine the locations of RTSs. Reference [8] provided an analytical model and a
traditional location-allocation model to determine the number, capacities, and locations of RTSs in an
urban region. Reference [9] described the MSW problem as a network flow problem and developed a
special purpose algorithm to solve it. Reference [10] presented a multi-objective optimization model
for locating RTSs. The model sought the best tradeoff between minimizing costs and public opposition.
Considering the inherent uncertainties in both economic and environmental goals, Reference [11]
proposed a fuzzy goal programming approach to determine the best planning of MSW collection.
Although early scholars have proven that resources used for MSW collection can be utilized more
effectively if waste is transported to the disposal area via a RTS, the optimization model they used
were deterministic and discrete, but not continuous.

Third, in the past five years, the optimization problem of MSW collection has attracted more
and more attention due to quick urbanization and population growth. Reference [12] used an integer
programing approach to optimize the route of MSW collection. The route solutions generated by the
proposed methodology performed significantly better than the traditional routes that were manually
designed. In reference [13], the vehicle routing problem (VRP) for MSW collection was complicated
by inter-arrival time constraints. Reference [14] proposed a spatial allocation model to improve the
MSW collection in Singapore. Reference [15] formulated MSW collection as a vehicle routing model
within time windows, and applied their model in Danang City, Vietnam. Reference [16] proposed
a bi-objective mixed integer optimization model to determine the locations of landfills and RTSs
simultaneously, where one objective was the usual cost minimization, while the other minimized
pollution. Unlike traditional approaches that always focus on RTS location, reference [17] surveyed the
landfill location models that have appeared in the literature during the last forty years. In particular,
reference [18] reported on a related literature review regarding operations research in MSW collection.
Note that the majority of existing approaches have preferred to explore the VRP in MSW collection in
recent years. Such an operation is tactical decision-making while network design for MSW collection is
strategic decision-making. We also note that several existing approaches characterize MSW collection
problem as a multi-source Weber problem (MWP) [16] or set cover problem (SCP) [13] on a continuous
space. As is widely known, the number of new facilities to be opened is known in advance in a MWP
and it is totally undetermined in a SCP. Unlike these two extremes, we preset a maximum number of
RTSs that could be constructed in this paper. We tested all the possible scenarios and then determined
the optimal number of RTS. Therefore, our model can be addressed as a middle state between the
above two extremes.

Regarding the solution algorithm, reference [19] provided a heuristic approach combined with
life cycle assessment to optimize MSW collection in Peru. Reference [20] presented a dynamic location
analysis method to determine the optimal MSW collection strategy. Reference [21] designed the
location-allocation problem for waste management by using the genetic algorithm (GA). Reference [22]
used a Tabu search algorithm to design the optimal network for MSW collection. In particular,
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Reference [23] proposed three heuristics (GA, simulated annealing, and relocation search) to solve a
location-allocation problem on a continuous space. The results demonstrated that no single algorithm
dominated another. In other words, the three heuristics were well-matched. The above studies
demonstrate that several algorithms are available to solve the optimization model for MSW collection.

In this paper, we conducted a MSW collection in the Nanjing Jiangbei new area. Figure 1 shows
that people in this new area are mainly concentrated in 64 communities including residential areas,
commercial institutions, schools, colleges, industrial firms, and so on. There are three landfills, which
are respectively located at the southwest, west, and north boundaries of Nanjing. The core questions in
designing the MSW collection network includes: (1) how many refuse transfer stations (RTSs) should
be constructed; (2) where to locate them; (3) what is the relative capacity of each RTS; (4) how to
allocate the 64 communities to these RTSs; and (5) what is the annual operation cost and service level
for the optimal scenario as well as other scenarios.
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The above problems (1), (2), and (4) are commonly addressed in location-allocation problems.
Generally, location and allocation for multiple facilities on a continuous space rests on the multi-source
Weber problem (MWP), where the number of new facilities to be opened is known in advance.
However, determining the number of RTSs is one of the main questions that need to be answered in
the Nanjing Jiangbei new area. Therefore, our model needed to simultaneously decide how many
RTSs should be opened and where to locate them. More important, we defined a relative size for each
RTS and considered the optimal capacity setting for each of them (Question (3)). We tested the annual
operation cost and service level for all possible scenarios, and finally determined the optimal scenario
(Question (5)). The above two works make our paper different from the existing approaches, which
have always preset several constraints for the RTS.

The rest of this paper is organized as follows. We provide details of the model formulation in
Section 2. Section 3 designs an algorithm to effectively solve the optimization model. In Section 4,
we apply the model to the Nanjing Jiangbei new area and provide a sensitivity analysis to examine
the impact of changes in the model parameters on the optimality of the proposed model. Finally, our
conclusions and suggestions for future research are presented in Section 5.
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2. Model Formulation

2.1. Definition for the Relative Parameters

2.1.1. Distance

In most location-allocation problems, distance is an indispensable variable because the core of
optimization pursues that the sum of distance from the facility to the customers is minimized. Among
the many measures proposed to determine the proximity between two points on a plane, the Euclidean
distance is the simplest and easiest to implement [23]. For a RTS at (x, y) and a community l at (al , bl),
the Euclidean distance is computed as follows:

dl(x, y) =
√
(x− al)

2 + (y− bl)
2 (1)

The Euclidean distance between the landfill and the RTS can be similarly calculated. Note that we
did not know how many RTSs should be constructed, and we did not have any potential locations
for them in advance. In other words, the continuous map of the Nanjing Jiangbei new area provides
infinite possibilities for the coordinates of each RTS.

2.1.2. Unit Transportation Cost

In practice, there are two commonly used shipping methods: the full-truckload (TL) and
less-than-truckload (LTL). By TL, we refer to the shipment of a full truckload of solid waste, and
by LTL, we refer to shipments with a relatively small freight that do not fill the truck. According to
our survey, the local government uses the TL mode to ship the processed solid waste from the RTSs
to the landfills to ensure efficiency, and use the LTL mode to ship from the communities to the RTSs
to satisfy the variable demand in different communities. Generally, the unit transportation cost is
calculated on the basis of kilometers and the weight of the shipment. The price is expressed in terms
of load distances, such as ton-kilometer, where a ton-kilometer is the amount of transportation activity
to move a ton of solid waste over a distance of one kilometer. With regard to the speed, truck drivers
are expected to transport freight at an average rate of 30 km per hour all the way to the destination.

2.1.3. Demand Forecasting in the Communities

Assume that ni is the number of people who live in community i. q is the daily output of solid
waste for each person. Generally, it falls in the range of (0.8, 1.2) kilograms. λi is a coefficient to
reflect the variation in consumption level. Let Di be the average amount of solid waste needed to be
transported in community i per day, and it can be formulated as follows:

Di = λiqni, ∀i ∈ I. (2)

2.1.4. Relative Size of the RTS and its Operating Cost

Let sij be the average amount of solid waste shipped from community i to RTS j per day. Ej is
the average amount of solid waste transshipped in RTS j per day. αj is the relative size of RTS j, and
reflects the proportion of solid waste that will be processed at such a RTS [23]. Then, we have the
following Equations (3) and (4):

Ej =
I

∑
i=1

sij, ∀j= 1, 2, · · · , J; (3)

αj =
Ej

J
∑

j=1
Ej

, ∀j= 1, 2, · · · , J. (4)
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Note that if αj equals 1, all solid waste will be transferred through one RTS. The operating cost of
the RTS is defined as follows: First, a fixed investment h1j that is incurred whenever RTS j is enabled.
The fixed investment h1j equals the infrastructure investment of the RTS divided by its expected service
time (years). Second, there is a unit variable cost h2j, which reflects the varying cost to process the
solid waste in the RTS. Let zj be a binary variable that takes the value of 1 if RTS j is opened, then the
annual (365 days) operating cost for RTS j can be defined as follows:

hj = zj[h1j + 365h2jEj], ∀j ∈ J (5)

Note that the linear function hj implies the economies of scale when RTS j is opened. For example,
if zj= 1, h1j = 100, 000, and h2j = 0.5, then the annual operating cost is $101,825 (100,000 + 365 × 0.5
× 10) if RTS j processes 10 tons of solid waste daily. The unit turnover cost is $27.9 (101,825/3650).
However, if 100 tons of solid waste is processed per day in this RTS, the annual operating cost will be
$118,250 and the unit turnover cost will be decreased to $3.24 (118,250/36,500). If we combine the total
transportation cost with the annual operating cost, the annual operation cost for solid waste collection
can be derived.

2.2. The Optimization Model

In this subsection, we describe the optimization model for MSW collection in the Nanjing Jiangbei
new area. We focused on the decisions of location and allocation of the RTS. To facilitate model
formulation in the following context, we provide all notations as follows:

Indexes
I: Set of communities in the Nanjing Jiangbei new area, i ∈ I.
J: Set of RTSs, j ∈ J. As mentioned above, since we did not know the optimal number of RTS in

advance, we used the symbol J to represent the set of possible RTS. In the solution section, we tested
all possibilities of this set from one to the maximum number of RTS that could be constructed (JM).
The optimal number of RTS will be equal to or less than the JM value specified.

K: Set of landfills in the Nanjing Jiangbei new area, k ∈ K.

Parameters
g: Unit transport cost from community i to RTS j.
δ: Unit transport cost from RTS j to landfill k.
(ai, bi): Coordinates of community i.
(a′k, b′k): Coordinates of landfill k.
Di: Average amount of solid waste per day in community i.

Variables
(xj, yj): Coordinates of RTS j.
dk(xj, yj): Distance from RTS j to landfill k.
di(xj, yj): Distance from RTS j to community i.
uij: Binary variable that takes one if RTS j serves community i.
zj: Binary variable that takes one if RTS j is opened.
hj: Operating cost of RTS j.
Ej: Average amount of solid waste transshipped in RTS j per day.
sij: Average amount of solid waste shipped from community i to RTS j per day.
tjk: Average amount of solid waste shipped from RTS j to landfill k per day.

According to the above notations, the optimization model for MSW collection in the new area can
be formulated as follows:

Min[g
I

∑
i=1

J

∑
j=1

di(xj, yj)sijuij + δ
J

∑
j=1

K

∑
k=1

dk(xj, yj)tjk]× 365 +
J

∑
j=1

hj (6)
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s.t.
J

∑
j=1

uij = 1, ∀i ∈ I; (7)

I

∑
i=1

sijuij =
k

∑
k=1

tjk, ∀j ∈ J; (8)

uij ≤ zj, ∀i ∈ I; (9)

J

∑
j=1

sij = Di, ∀i ∈ I; (10)

uij, zj = {0, 1}, ∀i ∈ I, j ∈ J; (11)

sij, tjk ∈ N, ∀i ∈ I, j ∈ J, k ∈ K; (12)

xj, yj are continuous variables. (13)

The proposed model is a mixed integer nonlinear programming model (MINLP). The objective
function, Equation (6), minimizes the annual operation costs, which includes the cost of transportation
between the communities and the RTSs, the cost of shipping solid waste between the RTSs and the
landfills, and the operating cost in these RTSs. Constraint (7) is a single-sourcing constraint that restricts
a community’s solid waste to be collected by a single RTS. Constraint (8) is the flow conservation
constraint, which ensures that all solid waste will be finally transported to the landfills. Constraint (9)
means that the community can only be assigned to the opened RTS. Constraint (10) ensures that solid
waste in all communities will be collected. Constraint (11) ensures that uij and zj are binary variables.
Constraint (12) requires that all flow variables, sij and tjk, are non-negative integers. Finally, (xj, yj) in
Constraint (13) take any coordinates in the new area.

The above model simultaneously decides how many RTSs should be opened and where to locate
them. Furthermore, it determines the relative size of each RTS and the annual operation costs for
different scenarios. Note that our model is an extension of MWP and thus is a nondeterministic
polynomial-time hard (NP-hard) problem. The main difficulty in solving NP-hard problems arise
because the objective function is not convex and has a large number of local minima. Therefore, we
need to design an effective algorithm to solve the proposed model.

3. Solution Procedure

3.1. Model Modification

To solve the proposed model, we first modified it as an equivalent MINLP model and then
designed an efficient algorithm to solve it. Note that the term sij × uij in the objective function is
non-linear because it involves the multiplication of two decision variables. To avoid the complexity of
such terms, we introduced an auxiliary variable θij and defined it as follows:

θij = sij × uij, ∀i ∈ I, j ∈ J; (14)

Note that there is a special relationship between the decision variable sij and the binary variable
uij. If uij equals one, that means that RTS j serves community i. Therefore, sij is the amount of solid
waste shipped from community i to RTS j. Otherwise, if uij equals zero, which represents that RTS j
does not collect the solid waste in community i, thus sij should be equal to zero. In order to guarantee
that the value of θij is equal to the exact value of sij, we can linearize the related constraints by using
McCormick inequalities [24]. Let M be a large positive number, and the following constraints should
be added to the optimization model:

θij − uij M ≤ 0, ∀i ∈ I, j ∈ J; (15)
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θij − sij ≤ 0, ∀i ∈ I, j ∈ J; (16)

sij − θij + uij M ≤ M, ∀i ∈ I, j ∈ J; (17)

θij ∈ N, ∀i ∈ I, j ∈ J. (18)

Accordingly, Equation (8) can be rewritten as:

I

∑
i=1

θij =
k

∑
k=1

tjk, ∀j ∈ J. (19)

Similarly, let ψj = zj × Ej and we can linearize the term of
J

∑
j=1

hj in the objective function.

Correspondingly, the following constraints should be added to the model.

ψj − zj M ≤ 0, ∀j ∈ J; (20)

ψj − Ej ≤ 0, ∀j ∈ J; (21)

Ej − ψj + zj M ≤ M, ∀j ∈ J; (22)

ψj ∈ N, ∀j ∈ J. (23)

Finally, the objective function of Equation (6) can be rewritten as:

Min[g
I

∑
i=1

J

∑
j=1

di(xj, yj)θij + δ
J

∑
j=1

K

∑
k=1

dk(xj, yj)tjk]× 365 + h1j

J

∑
j=1

zj + 365h2j

J

∑
j=1

ψj (24)

Since di(xj, yj) and dk(xj, yj) are not known in advance, the modified model (Equation (24)
together with all constraints) is still a MINLP model. However, once the number and the corresponding
locations of these RTSs are given, all distance variables di(xj, yj) and dk(xj, yj) can be determined, and
the proposed MINLP model can be addressed as a mixed integer linear programming (MIP) model.
In that situation, commercial software such as Cplex and MATLAB can be adopted to solve the MIP
model efficiently. The solution algorithm is illustrated in the following subsection.

3.2. Solution Algorithm

This subsection developed a solution procedure for the proposed optimization model. Compared
with the exact mathematical optimum, a relatively good solution was more in line with the actual
needs for MSW collection planning. Therefore, the goal of designing an algorithm in this subsection
was to search the solution space efficiently and generate a relatively good solution within a reasonable
amount of time (i.e., several minutes or hours, not days or weeks). In this paper, we used the genetic
algorithm (GA) to solve the proposed optimization model because if we can code the solution of
the problem as a chromosome, GA will then evolve itself until the termination condition is satisfied.
Of course, the development of other algorithms for solving this type of problem and comparing the
results with our method could also be a direction of future research.

Figure 2 shows the basic structure of the chromosome for our GA. The first two columns represent
coordinates of the RTSs. The following three columns indicate the waste flows between the RTSs
and the three landfills. The third part specifies the service relationship between the RTSs and the
64 communities. Since we solved the model for each value of j, if there are j RTSs, a chromosome
will include j rows of code. For each chromosome, the coordinates of RTSs are randomly generated.
Once the number and the corresponding locations of RTSs are given, the logistics planning among
communities, RTSs, and landfills can be addressed as a MIP model and be efficiently solved. Therefore,
the latter 67 columns (3 + 64) in each chromosome represent the optimal solution of the corresponding
scenario. GA starts by randomly generating a large set of chromosomes. Each chromosome is a
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feasible solution of the problem. All the initial chromosomes form the initial solutions set, called a
“population”.
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It is well known that GA is a kind of mature algorithm and is not sensitive to its parameters
including the crossover rate and the mutation rate. The details of GA to solve the MWP model were
introduced in [23] and thus we omitted it in this paper. Herein, we briefly introduce the core steps.
The fitness of each chromosome is evaluated by calculating the objective function of the proposed
optimization model. The roulette wheel selection is used to select the new population. Arithmetical
crossover is adopted to explore a better solution between two random points. Finally, a mutation
operation helps create offspring that is far from the rest of the population to avoid being stuck at a local
optimum. Since we need to test the model for each value of j, it is worth mentioning that our solution
procedure hybrids an enumeration rule and the proposed GA. The solution procedure is demonstrated
in Figure 3.
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Figure 3. The solution procedure.

4. Case Study and Discussion

4.1. Data Collection

In our test, coordinates of the three landfills and the 64 communities were obtained in advance.
We investigated the number of residents and estimated the average amount of solid waste needed to
be collected in each community. The fixed annual investment for a RTS was estimated as $250,000.
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The unit cost for compressing solid waste in the RTS was set as $2 per ton. As mentioned before, the
local government uses the TL mode to ship the condensed solid waste from RTSs to landfills, and
uses the LTL mode to collect the scattered solid waste from communities to RTSs. We derived the
corresponding parameters δ and g as follows: Initially, we obtained the total TL shipping cost and
the total LTL expenditures from the local environmental protection department. Then, we obtained
the value for g by dividing the total LTL expenditures by the weighted distance traveled. Similarly,
dividing the total TL shipping cost by the total TL weighted distance traveled gives the cost δ. Finally,
the parameters g and δ are $1.0 and $0.5, respectively. Moreover, parameters for GA were obtained
from Reference [23]. The crossover probability was set at 0.6; the mutation probability was set at 0.1;
the population size was set at 200; and finally, the maximum iteration number was set at 500.

4.2. Test Result Analysis

As introduced in Section 1, our model simultaneously addressed five issues related to the location
of the RTSs and allocation of the 64 communities. Obviously, having fewer RTSs can lower the fixed
and variable operating costs associated with the RTSs, but also increases both the inbound and the
outbound transportation cost as a result of longer delivery distance. As these two costs are inversely
related, our optimization objective was to find the best trade-off between the operating costs of the
RTSs and the total transportation cost. We detail our test results below.

Initially, Table 1 shows the annual operation cost under different scenarios. The columns of Table 1
represent the RTS number in different scenarios, the fixed cost for establishing the corresponding
number of RTS (RTS cost), the transportation cost between RTSs and landfills (TL cost), the logistics
cost between communities and RTSs (LTL cost) and the total operation cost. As we can see in this table,
the annual operation cost varied with the total number of RTSs and there was an obvious trade-off
between the RTS expenditure and the transport spending. For example, when there was only one RTS,
the total transportation cost was 8.74 million dollars (the sum of 4.93 and 3.81) and the RTS operating
cost was 0.72 million dollars. When there were three RTSs, the total transportation cost decreased
to 6.91 million dollars (the sum of 4.68 and 2.23), while the operating costs of the RTSs increased
to 1.22 million dollars. Compared to the six scenarios in Table 1, we observed that the three-RTS
plan represents the optimal balance because the annual operation cost decreases from the one-RTS
solution and reaches a minimum at the three-RTS plan (8.14 million dollars), beyond which it increases
again. The test results in Table 1 answered question (1) and the first part of question (5) that were
presented in Section 1. The test results also revealed the proportion of different components in annual
operation cost. This information can help managers in the Jiangbei new area to effectively allocate the
government budget.

Table 1. Annual operation costs under different scenarios (unit: million dollars).

RTS Number RTS Cost TL Cost LTL Cost Total Cost

1 0.72 4.93 3.81 9.47
2 0.97 4.86 2.90 8.73
3 1.22 4.68 2.23 8.14
4 1.47 4.67 2.13 8.27
5 1.72 4.58 2.11 8.42
6 1.97 4.48 2.19 8.65

RTS: refuse transfer stations; TL: full-truckload; LTL: less-than-truckload.

Second, Table 2 demonstrates the corresponding locations for the optimal three RTSs in
Table 1. The three coordinates represent three sites in the Nanjing Jiangbei new area, respectively.
More precisely, the first coordinate (99.5, 132.5) represents No. 132, Laoshan Street in Pukou District,
the second coordinate (114, 158.6) denotes No. 246, Xinhua Road in Dachang District, the third
coordinate (79.2, 89.3) specifies No. 540, Ningliu Road in Liuhe District. Table 2 also illustrates



Int. J. Environ. Res. Public Health 2018, 15, 2812 10 of 15

the relative size of each RTS. Note that the relative size in this study was defined to reflect the
corresponding proportion of solid waste assigned to that specific RTS. This definition is significant and
can guide local managers to determine the daily processing capacity of each RTS. For example, the
results showed that the relative size of RTS-2 was 0.36. This means that 36% of the total amount of
solid waste in the Nanjing Jiangbei new area (about 300,000 ton per year) needs to be transferred in
such a RTS. Dividing it by 365 days, this means that the processing capacity of this RTS should not be
less than 300 ton/day. Finally, the test results in Table 2 have answered questions (2) and (3), which
were proposed in Section 1.

Table 2. Location and relative size for the optimal three RTSs.

RTS Number Location Relative Size

1 (99.5, 132.5) 0.27
2 (114, 158.6) 0.36
3 (79.2, 89.3) 0.37

RTS: refuse transfer stations.

Third, our optimization model also assigned each community to one of the three RTSs to minimize
the annual operation costs. We mapped the results in Figure 4. In addition, the relationship between
the three landfills and the three RTSs are also described in this figure. The test results in Figure 4
answered question (4), which was defined in Section 1. From this figure, we can see that RTS-1 in
Pukou District is mainly responsible for the MSW collection of the southwest region in the Nanjing
Jiangbei new area (the blue communities in Figure 4). Then, it transports the compressed solid waste
to the landfill-SW due to the minimization in transportation costs. Similarly, RTS-2 in Dachang District
provides solid waste collection service for people who live in the center region of the Nanjing Jiangbei
new area (the yellow communities in Figure 4). RTS-3 in Liuhe District covers the demand of MSW
collection in the north region of the Nanjing Jiangbei new area (the red communities on Figure 4).
Both of them deliver the compressed solid waste to landfill-W at the west boundary of Nanjing. Note
that landfill-N at the north boundary of Nanjing was not enabled according to our optimal solution.
This result may be different from the managers’ intuition. In practice, the landfill-N could be used as
an alternative site. Managers can enable it when landfill-W exhausts its capacity.
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Finally, Table 3 shows the service level under different scenarios and answers the second part
of question (5) that was presented in Section 1. In practice, the percentage of solid waste that can be
collected within one hour is an important metric of MSW management, especially at special times,
i.e., the Spring Festival in China, when people produce a large amount of solid waste. A popular
MSW collection network would be one where the majority of communities are located within 30 km
from the corresponding RTS. As can be observed in Table 3, when there is only one RTS, 73.44% of
the total amount of solid waste could be transferred in one hour. Among them, only 23.44% of the
solid waste could be treated in half an hour and the remaining 50% needs to be addressed in one
hour. However, with the optimal three-RTS plan, 98.44% of solid waste in the 64 communities can be
collected in one hour and 100% can be treated in 1.5 h. Among them, one can see that the majority of
solid waste (71.88%) could be transferred in half an hour, while only a few of them (26.56%) needed
to be addressed in one hour. The above results demonstrate that the slight increase in RTS number
could extremely improve the corresponding service level. We also noted that the service level was
not improved even if there were two more RTSs. The test results in Table 3 are meaningful in practice.
Considering that the operating cost for a new RTS is relatively high, managers could decide to adopt
our three-RTS plan as the main plan for MSW collection in this new area.

Table 3. Service level under different scenarios.

RTS Number
Service Level for Each Scenario (km) Total Percentage of Communities Served (h)

0–15 15–30 30–45 45–60 1 1.5 2

1 23.44% 50.00% 25.00% 1.56% 73.44% 98.44% 100.00%
2 65.63% 29.69% 4.69% 0.00% 95.31% 100.00% 100.00%
3 71.88% 26.56% 1.56% 0.00% 98.44% 100.00% 100.00%
4 75.00% 23.44% 1.56% 0.00% 98.44% 100.00% 100.00%
5 78.13% 20.31% 1.56% 0.00% 98.44% 100.00% 100.00%
6 85.94% 14.06% 0.00% 0.00% 100.00% 100.00% 100.00%

RTS: refuse transfer stations.

In summary, our model answered the five questions in Section 1. However, we still need to know
whether the proposed three-RTS solution remains optimal under different environments. We answered
these questions by conducting a sensitivity analysis in the following discussion section.

4.3. Sensitivity Analysis

4.3.1. Changes in Unit Transportation Cost

To understand the impact of unit transportation cost uncertainty on the efficiency of the designed
network, we conducted a sensitivity analysis with respect to five levels of unit transportation cost (80%,
90%, 100%, 110%, and 120%). Still, we tested each level of unit transportation cost with six scenarios,
which corresponded to the possible number of RTS. In total, there were 30 test results in this sensitivity
analysis, which are demonstrated in Figure 5. First, we observed that the annual operation cost was
proportional to the unit transportation cost in each scenario. The higher the unit transportation cost,
the higher the annual operation cost. In practice, fuel types and price may affect unit transportation
cost, especially in recent years when fuel prices have frequently fluctuated. Generally, to mitigate
the negative impact of increasing transportation cost, it is desirable to adopt more RTSs. However,
recalling that the operating cost for a new RTS is relatively high, and constitutes a significant portion
of the annual operation costs, thus, the savings in transportation cost from having more RTSs may
be offset by the additional RTS cost. A desirable decision hinges on balancing the transportation cost
and the RTS expenses. When both costs were taken into consideration, our model recommended the
three-RTS solution when unit transportation cost varied from 100% to 120% of the current price. When
unit transportation cost decreased (80% or 90%), a new RTS will be suggested. This means that four
RTSs need to be opened.
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4.3.2. Changes in Costs of a RTS

As mentioned in Section 1, the optimization objective in this paper was to find the best trade-off
between the total transportation cost and the operating cost of the RTS, while the latter includes the
fixed annual investment and the variable processing cost. To examine whether the three-RTS solution
remains optimal or not, we tested our optimization model by changing the fixed annual investment
from 80% of the current scale to 120% of it (80%, 90%, 100%, 110%, and 120%). Similarly, we tested
each level of fixed annual investment with six possible numbers of RTSs, thus we also had 30 test
results in the sensitivity analysis. The results are illustrated in Figure 6. On one hand, when there is
only one RTS, we observed that the total operation cost was absolutely high, and even the fixed annual
investment of RTS was decreased to 80% of its current price. On the other hand, we also observed that
when the variation of the fixed annual investment fell in range of (100%, 120%), the three-RTS plan
was still recommended. However, when the fixed annual investment of RTS decreased to (80%, 90%),
the four-RTS plan would be better.Int. J. Environ. Res. Public Health 2018, 15, x 13 of 15 
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Figure 6. Sensitivity analysis of the fixed annual investment cost in the RTS (refuse transfer stations).

We also constructed 30 scenarios for testing the impact of unit processing cost on the RTS, where
the test results are shown in Figure 7. Compared with the sensitivity analysis of the fixed operating
costs above, we observed a similar conclusion. When there was only one RTS, the total operation cost
was extremely high. The total cost decreased rapidly at first, then increased again after reaching the
bottom. The test results in Figure 7 illustrate that the proposed three-RTS plan was still the optimal
program when unit variable cost in RTS varied from 90% to 120%. However, when the unit variable
cost decreased to 80% of its current price, a four-RTS plan was recommended. Note that the unit
processing cost in our optimization model reflects the labor cost, energy consumption, and other
influence factors in practice. This makes our test results more significant because the rising labor cost
and the strict environmental policies will be the booming challenges in recent years. Managers in local
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authorities can promptly open and adjust the necessary number of RTSs according to the sensitivity
analysis results.
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5. Conclusions

In this paper, we proposed a MINLP model for designing the MSW collection network in the
Nanjing Jiangbei new area. The model simultaneously decided the optimal number of RTSs, identified
the appropriate site for each RTS, determined the relative size of each RTS, allocated each community
to a specific RTS, and determined the annual operation cost and service level for the optimal scenario
as well as other scenarios. The main contributions of this study are summarized below.

First, our optimization model determined the optimal number of RTSs. This model was different
to the classic MWP where the number of new facilities to be opened is known in advance. Our model is
also different to the classic SCP where the number of new facilities to be opened is totally undetermined.
As mentioned in Section 1, our model can be seen as a middle state between the above two extremes.
In this study, although we did not preset the number of RTSs, we set a maximum number limitation of
RTS. Then, we tested all possible scenarios and finally determined the optimal number of RTSs. These
results are significant because it helps to identify the annual operation cost and service level for the
optimal scenario as well as other scenarios.

Second, our model simultaneously determined the relative size of each RTS. Note that the relative
size of a RTS is proportional to the total amount of solid waste assigned to that specific station,
and the operating cost of such a RTS is also related to its relative size. Combined with the first
conclusion, we used the optimal result to guide managers to make decisions of how many RTSs should
be constructed, where they should be located, and the optimal capacity for each of them. To the best of
our knowledge, our method is different from most existing approaches that always preset the capacity
of RTS or provide some potential points as the candidate alternatives when modeling the problem.

As for the limitations of this study, we used Euclidean distance to calculate the distance between
two points on the planning area. This may alleviate the optimality of the optimal result when applied
in practice. Second, the forecasting model for solid waste produced was rather simplified. This may
provide an inaccurate forecast at the demand points and thus influence the final network design.
Moreover, we used GA in this study to solve the optimization model. This may give an approximate
optimal solution within a reasonable amount of time, but not a real optimal result.

Future research can be extended and enhanced in the following directions. Initially, the parameter
setting in this study is relatively simple. Further measurements regarding particular parameters need
to be conducted to improve the accuracy of the estimated data. Second, we only considered the
relationship between the communities, the RTSs, and the landfills in this study. Other recycling
infrastructures and processes were not within the scope of this paper. Finally, factors such as
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environmental emission regulations can be combined into the model, which can help to improve
the accurate application of the mathematical model.
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