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Comparative metabonomics 
of Wenxin Keli and Verapamil 
reveals differential roles of 
gluconeogenesis and fatty acid 
β-oxidation in myocardial injury 
protection
Miaomiao Jiang1, Qiuying Wang1, Jingrui Chen1, Yanan Wang3, Guanwei Fan1,2 & Yan Zhu1

Metabonomics/metabolomics is a rapid technology for comprehensive profiling of small molecule 
metabolites in cells, tissues, or whole organisms, the application of which has led to understanding 
pathophysiologic mechanisms of cardiometabolic diseases, defining predictive biomarkers for those 
diseases, and also assessing the efficacious effects of incident drugs. In this study, proton nuclear 
magnetic resonance (NMR)-based metabonomics was employed to identify the metabolic changes 
in rat plasma caused by myocardial ischemia-reperfusion injury (MIRI), and to compare the metabolic 
regulatory differences between traditional Chinese medicine Wenxin Keli (WXKL) and Western medicine 
verapamil. The results revealed that energy-substrate metabolism were significantly disturbed by 
ischemia-reperfusion (I/R) in myocardium and bulk of the key metabolites could be further modulated 
by verapamil and/or WXKL. Lipid metabolism and amino acid transamination occurred mainly following 
the treatment of verapamil, whereas glucose oxidation and BCAA degradation were prominently 
ameliorated by WXKL to content the energy demands of heart. Moreover, both WXKL and verapamil 
improved the secretions of taurine and ketone bodies to overcome the oxidative stress and the shortage 
of energy sources induced by ischemia-reperfusion.

Ischemic heart disease has become a worldwide health problem associated with high morbidity and mortality1. 
After myocardial ischemia, thrombolytic therapy or cardiac surgery, myocardial ischemia-reperfusion injury 
(MIRI) contributes to adverse cardiovascular outcomes as an important factor2. It is characterized by an initial 
restriction of blood supply to heart followed by the restoration of perfusion and concomitant reoxygenation3. 
An imbalance in metabolic supply and demand within the ischemic heart may lead to an exacerbation of tissue 
hypoxia, damage and dysfunction, which further result in myocardial stunning, arrhythmias, tachycardia, and 
ventricular fibrillation4, 5. Prevention and management of MIRI has become a critical step during the treatment 
procedures of ischemic heart to avoid its adverse effects.

Currently available Western medicine for preventing MIRI are usually single-targeting molecules, such as an 
oxygen free radical scavenger, antioxidant, calcium channel blocker, or anti-apoptotic agent4, 6. Verapamil is a 
calcium channel blocker that is utilized clinically to treat hypertension, angina pectoris, and cardiac arrhythmia7, 

8. It is also used intra-arterially to reduce ischemia reperfusion injury, control arrhythmias, and limit myocardial 
ischemia size9. Traditional Chinese medicine (TCM), especially complex herbal formulations, also has a long 
history in treatment of ischemic heart diseases in China. Wenxin Keli is a patent Chinese medicine recorded in 
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Pharmacopeia of the People’s Republic of China (the 2010th edition, Z10950026). It is composed of extracts from 
Codonopsis pilosula, Polygonatum sibiricum, Panax notoginseng, and Nardostachys jatamansi as well as amber. A 
randomized, double-blind, placebo-controlled, parallel-group, and multicenter trial conducted with 1200 eligible 
participants showed the efficacy and safety of WXKL in patients with frequent premature ventricular contrac-
tions10. Basic science research confirmed WXKL efficacies on treating atrial fibrillation11, ventricular-triggered 
arrhythmia12, myocardial infarction-induced arrhythmia13 and Brugada syndrome14. Interestingly, in addition to 
its efficacy on arrhythmia, a number of studies also suggested that WXKL might be effective for treating myocar-
dial infarction in rat15 and rabbit16 models. Indeed, a recent systematic review and meta-analysis of randomized 
and controlled trials on WXKL also confirmed a better clinical outcome in the treatment of arrhythmia, angina, 
and heart failure17. Unlike Western medicine with a specific target, TCM, with its characteristic multiple and com-
plex components, is destined to associate with multiple pathological targets and pathways. However, it remains a 
challenge to depict the exact mechanism of TCM.

Metabonomics is a systems biology approach for understanding the metabolic alterations of living systems in 
response to pathophysiological stimuli via multivariate statistical analysis of biological proton nuclear magnetic 
resonance (1H-NMR) spectroscopic data18. It has been extensively used in diagnosis of diseases, to screen poten-
tial biomarkers as well as to discover drug targets involved. In addition, metabonomics may also provide crucial 
insights into the holistic and synergic effects of TCM19. In this study, we employ a rat model of MIRI and utilize 
metabonomics in combination with molecular biological assays to investigate the associations and differences of 
metabolic remodeling effects between verapamil and WXKL, with the objective of an in-depth understanding of 
similar and divergent cardioprotective effects between a Western medicine and a TCM.

Results
Echocardiography.  The beneficial effect of WXKL pretreatment on cardiac insults induced by ischemia-rep-
erfusion (I/R) was confirmed by quantitative analysis of echocardiography. Results in various groups are sum-
marized in Fig. 1. Compared to Sham group, MIRI group had a significant decrease in left ventricular ejection 
fraction (LVEF, 72.6 ± 5.40 vs. 41.46 ± 6.27, p < 0.01), left ventricular fractional shortening (LVFS, 43.03 ± 4.56 
vs. 20.97 ± 3.56, p < 0.01), left ventricular end-systolic anterior wall (LVAWs, 2.58 ± 0.29 vs. 1.56 ± 0.26, p < 0.01) 
and ratio of E-wave to A-wave (E/A, 1.75 ± 0.17 vs. 1.33 ± 0.18, p < 0.01), whereas an increase in left ventricular 
end-systolic dimension (LVIDs, 3.95 ± 0.53 vs. 5.45 ± 0.86, p < 0.01) and left ventricular systolic volume (LV 
Vols, 69.76 ± 22.7 vs. 148.72 ± 54.39, p < 0.05). All of these were attenuated by WXKL or verapamil after pre-
treatment for one week. The respective means and standard deviation of WXKL group were: LVEF, 54.43 ± 6.89, 
p < 0.01; LVFS, 29.15 ± 4.55, p < 0.01; LVAWs, 2.04 ± 0.18, p < 0.01; E/A, 1.74 ± 0.21, p < 0.01; LVIDs, 4.88 ± 0.71, 
p > 0.05; LV Vols, and 114.61 ± 38.26, p > 0.05. The respective means and standard deviation of verapamil group 
were: LVEF, 57.93 ± 5.45, p < 0.01; LVFS, 31.62 ± 3.92, p < 0.01; LVAWs, 2.08 ± 0.23, p < 0.01; E/A, 1.59 ± 0.29, 
p < 0.05; LVIDs, 4.91 ± 0.36, p > 0.05; LV Vols, and 114.12 ± 19.3, p > 0.05. The results of Color Doppler ultra-
sonography showed that aortic valve peak velocity (Peak vel) and aorta velocity time integral mean velocity (AoV 
VTI) of MIRI group were significantly lower than those of Sham group (988.23 ± 89.36 vs. 1628.20 ± 188.38 
and 41.09 ± 6.69 vs. 65.48 ± 8.18, respectively, p < 0.01). Moreover, these parameters were improved markedly by 
either treatment of verapamil (1232.79 ± 240.29, p < 0.05 and 58.41 ± 11.46, p < 0.01, respectively) or treatment 
of WXKL (1172.95 ± 161.30, p < 0.05 and 46.44 ± 7.39, p > 0.05, respectively).

Hemodynamics.  Improvement of the heart functionality by WXKL after I/R injury was further con-
firmed by hemodynamic measurement in each group. As shown in Fig. 2, in comparison with Sham group, I/R 
caused a significant decline in heart rate (HR, 447.87 ± 23.42 vs. 385.92 ± 17.49, p < 0.01) and left ventricular 
development pressure (LVDP, 103.02 ± 3.44 vs. 75.75 ± 10.64, p < 0.01), indicating impairments on heart func-
tion. Evidently, these impairments were prevented by pretreatment with WXKL (421.37 ± 11.12, p < 0.01 and 
94.55 ± 4.67, p < 0.05, respectively). Meanwhile, WXKL (13.60 ± 0.87) and verapamil (14.76 ± 6.81) had no sig-
nificant improvement on LVEDP rise induced by I/R injury (15.73 ± 4.52, p > 0.05). In MIRI group, the max-
imum descent velocity (−dp/dtmax, −3836 ± 946.21, an evaluation of left ventricular diastolic function), left 
ventricular systolic pressure (LVSP, 91.48 ± 7.01) and maximum upstroke velocity (+dp/dtmax, 3923.50 ± 626.61, 
an evaluation of left ventricular systolic function), all decreased significantly compared to those of the sham 
group (−7636.67 ± 1185.33, 109.88 ± 5.54 and 7715.17 ± 887.92, respectively, p < 0.01). Significantly, all of these 
parameters were attenuated by pretreatment with WXKL (−5263.5 ± 462.50, 108.15 ± 4.86 and 5486.50 ± 619.75, 
respectively, p < 0.01).

Metabolites present in serum samples.  Figure 3 shows typical 1H-NMR spectra of rat serum samples 
from the sham, MIRI, Ver and WXKL groups. NMR signals were assigned according to the literatures, stand-
ard references and public databases (http://www.hmdb.ca/), which were further confirmed by two-dimensional 
NMR data. The dominant metabolites present in serum spectra included a range of amino acids such as leu-
cine, isoleucine, valine, alanine, glutamine, phenylalanine, serine, threonine and tyrosine, carboxylic acids such 
as 3-hydroxybutyrate (HB), lactate, acetate, pyruvate, glutamate, acetoacetate, malate and formate, membrane 
metabolite choline, lipids, N-acetyl and O-acetyl glycoproteins, acetone, taurine, methanol, glycerol, glycine, and 
gut microbial-host co-metabolites such as creatine phosphate and trimethylamine N-oxide (TMAO). A detailed 
NMR assignment is shown in Table 1.

Multivariate data analysis of metabolic changes.  To explore the metabolic alterations that associated 
with clustering trends, NMR data of the Sham and MIRI, Ver and MIRI, WXKL and MIRI sets were subjected 
respectively to supervised PLS-DA analysis and the results of which were exported in both the score plots and VIP 
plots as shown in Fig. 4. Clear discriminations between Sham and MIRI, Ver and MIRI, WXKL and MIRI groups 
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were observed in the PLS-DA score plots with the first principal component (PC1) explaining 39.7%, 47.4% and 
55.2% of the total variances. The corresponding R2 and Q2 values yielded from cross-validation were 0.68 and 
0.32, 0.77 and 0.59, 0.56 and 0.28, respectively, indicating good fit and classification of the models on PC1.

Figure 1.  Effects of WXKL and verapamil on rat cardiac function. Quantitative assessment of dilation and 
systolic function as (A) left ventricular ejection fraction (LVEF), (B) left ventricular fractional shortening 
(LVFS), (C) left ventricular end-systolic dimension (LVIDs), (D) left ventricular systolic volume (LV Vols), 
(E) left ventricular end-systolic anterior wall (LVAWs), (F) ratio of E-wave to A-wave (E/A), (G) aorta velocity 
time integral mean velocity (AoV VTI), and (H) aortic valve peak velocity (Peak vel). Data are expressed as 
means ± S.D.; *p < 0.05, **p < 0.01 versus sham group; #p < 0.05, ##p < 0.01 versus model group.
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Another fundamental ability of PLS-DA is to select meaningful variables on the basis of VIP values. With a 
selection criterion of VIP > 1, 13 metabolites were identified for contributing the discrimination between the 
Sham and MIRI groups, including lipids, three branched-chain amino acids (BCAAs: valine, isoleucine and 
leucine), three ketone bodies (HB, acetone and acetoacetate), alanine, lactate, glutamate, choline, taurine, and 
glucose. In the Ver vs. MIRI dataset, 9 of the abovementioned metabolites (except for BCAAs and choline) were 
selected using the same selection criterion. In the WXKL vs. MIRI dataset, 10 of the metabolites (except for lipids, 
glutamate and choline), together with glutamine and creatine phosphate, were extracted for clustering based on 
their VIP values.

Taking the univariate measures (t-test) into consideration, I/R injury caused significant elevations of lipids, 
isoleucine and leucine but reductions of lactate, alanine, and glutamate, compared to those of the control rats with 
p values less than 0.05. Lipids, lactate, alanine and glutamate were uniquely dominant when comparing the Ver 
to MIRI groups, whereas BCAAs, HB, glutamine, creatine phosphate and glucose were uniquely dominant when 
comparing the WXKL to MIRI groups. Besides these significantly altered metabolites, two outstanding ones that 
indicated cluster discrimination were also found in the Ver vs. MIRI and WXKL vs. MIRI datasets, namely: tau-
rine and acetoacetate. The variation trends of these metabolites and the involved pathway were summarized and 
presented in Table 2 and Fig. 5.

Figure 2.  Effects of WXKL and verapamil on hemodynamics post I/R injury. Quantitative hemodynamic 
assessment was carried out on the left ventricle through right carotid artery to evaluate the role of WXKL or 
verapamil for I/R injury. (A) heart rate (HR), (B) left ventricular systolic pressure (LVSP), (C) left ventricular 
development pressure (LVDP), (D) left ventricular end diastolic pressure (LVEDP), (E) left ventricular 
maximum upstroke velocity (+dp/dtmax), and (F) left ventricular maximum descent velocity (−dp/dtmax). Data 
are expressed as means ± S.D.; **p < 0.01 compared with sham group; #p < 0.05, ##p < 0.01 compared with 
model group.
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Figure 3.  Typical standard 1H-NMR spectra of plasma samples collected from sham, MIRI, Ver and WXKL 
rats. The keys for metabolites are given in Table 1.

Peak Metabolites δ1H (multiplicitya)

1 lipids 0.86 (br. s), 1.26 (m), 2.77 (m), 
5.28 (m)

2 leucine 0.92 (d), 0.93 (d), 1.70 (m)

3 isoleucine 0.94 (t), 0.99 (d), 3.66 (d)

4 valine 0.97 (d), 1.04 (d), 3.60 (d)

5 3-hydroxybutyrate 1.18 (d), 2.28 (dd), 2.39 (dd), 
4.14 (m)

6 lactate 1.31 (d), 4.11 (q)

7 alanine 1.47 (d), 3.76 (m)

8 acetate 1.91 (s)

9 N-acetyl glycoprotein 2.02 (br. s)

10 O-acetyl glycoprotein 2.12 (br. s)

11 acetone 2.21 (s)

12 acetoacetate 2.26 (s)

13 pyruvate 2.35 (s)

14 glutamate 2.12 (m), 2.04 (m), 2.34 (m), 
3.76 (m)

15 glutamine 2.13 (m), 2.44 (m), 3.77 (m)

16 malate 2.66 (dd), 2.37 (dd), 4.23 
(br. d)

17 creatine phosphate 3.03 (s), 3.93 (s)

18 choline 3.19 (s)

19 trimethylamine N-oxide 3.25 (s)

20 taurine 3.25 (t), 3.40 (t)

21 methanol 3.34 (s)

22 glycine 3.55 (s)

23 threonine 3.58 (d), 1.32 (d), 4.25 (m)

24 glycerol 3.64 (dd), 3.55 (dd), 3.77 (m)

25 serine 3.93 (dd), 3.98 (dd)

26 glucose
5.22 (d), 4.64 (d), 3.89 (dd), 
3.83 (m), 3.72 (m), 3.53 (dd), 
3.46 (m), 3.40 (t), 3.24 (dd)

27 tyrosine 6.89 (d), 7.18 (d)

28 phenylalanine 7.31 (m), 7.37 (m), 7.41 (m)

29 formate 8.44 (s)

Table 1.  1H-NMR data for metabolites identified from the rat serum samples. aMultiplicity: singlet (s), doublet 
(d), triplet (t), doublet of doublets (dd), quintet (q), multiplet (m).
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Discussion
Traditional Chinese medicine (TCM), built on a foundation of more than 2,500 years of medical practice, has 
been widely used in China and is becoming increasingly accepted elsewhere in the world. However, it remains 
a mounting challenge deciphering the mechanisms of such complex medicine. Metabonomics offers an ideal 
platform and state-of-the-art approach for the scientific investigation of TCM. It has been successfully used to 
group TCM symptoms into clinically useful “patterns” for better diagnosis of diseases, and also to provide crucial 
insights into the holistic assessment of the quality and effectiveness of Chinese medicines20–22. In the present 
study, a systematic metabonomics approach based on 1H-NMR technique was performed to compare the met-
abolic alterations in plasma responding to the modulations of verapamil and WXKL on the myocardial injury 
induced by I/R. Multivariate statistics analysis for NMR profiles revealed distinct metabolite changes between 
Sham and MIRI groups mainly associated with the disturbances of myocardial energy substrate metabolism, bulk 
of which could be further regulated by verapamil and/or WXKL (Fig. 6).

The beneficial effect of WXKL pretreatment on cardiac functions induced by I/R was mainly evaluated by 
quantitative analysis of echocardiography and hemodynamic assessment. It revealed that an ischemia for 30 min 
followed by reperfusion for 2 hours in rats led to a decrease in LVEF and LVFS, a reduction of LVAWs and E/A, 
and an increase in LVIDs and LV Vols. In addition, I/R caused reduction of AV Peak and AoV VTI. All the 
I/R-induced alterations were evidently ameliorated by pre-administration of WXKL or verapamil for one week, 
suggesting the potential of WXKL to relieve I/R-induced cardiac insufficiency. After pretreatment for one week, 
LVDP and −dp/dtmax of the verapamil group were not higher than those of the I/R group. Interestingly, one-week 

Figure 4.  The score plots and VIP plots between (A,B) sham and MIRI groups, (C,D) MIRI and Ver groups, 
(E,F) MIRI and WXKL groups. (G) A summary of the differential metabolites extracted in the three comparison 
cases.
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pretreatment by WXKL led to a significant increase in LVDP and −dp/dtmax compared with the I/R group. These 
results showed that WXKL pretreatment could effectively improve cardiac hemodynamics, increase coronary 
blood flow, enhance myocardial contractility, and reduce myocardial reperfusion injury in a rat I/R model. 
Furthermore, WXKL and verapamil are equally protective for heart function by Echo, but WXKL is somehow 
better by hemodynamics. Previous reports13, 15, 16 have also provided additional supporting evidences, includ-
ing the measurements of infarct area and other crucial biochemical factors, to confirm the effects of WXKL on 
improving myocardial infarction, ventricular arrhythmias and heart failure.

We hypothesize that the above functional change may be correlated to the metabonomic differences as illus-
trated in Fig. 6. Circulating lipids and glucose are known to be the predominant energy providing substrates for 
normal cardiac contractility. Lipids account for the majority (60–80%) of oxidative energy metabolism, while 
carbohydrates accounts for those remaining 20–40%23, 24. After the period of ischemia and following reperfusion, 
the level of lipids significantly increased, while the level of glucose had no significant change in plasma. In the 
first stage of ischemia, fatty acids compete with glucose and become the major source of energy with a high rate 
of uptake resulting in their preferential use in oxidative metabolism25, 26. Within minutes of reperfusion, a large 
burst of ROS is produced27. It can induce membrane injury by lipid peroxide formation and damage on fatty acid 
β-oxidation, further leading to an excessive accumulation of lipids in MIRI plasma. The uptake of glucose from 
the bloodstream into the cardiomyocytes can be inhibited by high circulating lipid concentrations28, hence the 
level of glucose in MIRI-induced plasma was observed remaining relatively unchanged compared to that of the 
control group.

Pyruvate, as the last glycolytic intermediate, can further be reduced to lactate, transaminated to alanine, car-
boxylated to oxaloacetate or malate, or, most importantly, oxidized to acetyl-CoA29. Although we failed to detect 
pyruvate in the present work, lactate and alanine were determined with significantly decreased levels as a result, 
which indicates a depressed glycolysis in the cardiomyocytes induced by MIRI and leading to limited productions 
of pyruvate and its derivatives.

Metabolite (δ1H)

PLS-DA 
(VIP 
value)

t-test (p 
value)

Fold 
change

MIRI vs. Sham

lipids (0.86) 2.38 0.002 2.81

lipids (1.26) 3.21 0.001 6.38

leucine + isoleucine (0.93) 1.52 0.043 1.29

lactate (1.31) 11.39 0.022 0.73

lactate (4.11) 5.02 0.024 0.74

alanine (1.48) 2.86 0.001 0.65

glutamate (2.34) 2.03 0.008 0.75

Ver vs. MIRI

lipids (0.86) 1.57 0.003 0.49

lipids (1.26) 2.03 0.005 0.36

lactate (1.31) 12.22 0.001 1.61

lactate (4.11) 5.20 0.001 1.57

alanine (1.48) 1.44 0.021 1.31

acetoacetate (2.26) 2.64 0.036 0.30

glutamate (2.34) 1.69 0.011 1.43

taurine (3.26) 2.47 0.025 0.75

taurine (3.43) 1.18 0.043 0.78

WXKL vs. MIRI

leucine + isoleucine (0.93) 1.33 0.036 0.77

valine (1.04) 1.72 0.035 0.47

3-hydroxybutyrate (1.18) 4.57 0.033 0.22

3-hydroxybutyrate (2.28) 1.90 0.020 0.22

acetoacetate (2.26) 3.52 0.012 0.18

glutamine (2.13) 2.70 0.012 0.79

glutamine (2.44) 1.37 0.026 0.65

creatine (3.03) 2.37 0.033 0.55

taurine (3.26) 3.67 0.005 0.64

taurine (3.43) 1.60 0.007 0.75

glucose (5.22) 3.35 0.014 1.74

Table 2.  The dominating metabolites extracted by multivariate statistical analysis that discriminated the cases 
of MIRI vs. Sham, Ver vs. MIRI, and WXKL vs. MIRI.
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Amino acids also can serve as metabolic fuel in muscle and other tissues by the way of transamination. In the 
reaction, the amino group of an amino acid is transferred to α-ketoacid, typically catalyzed by a transaminase. A 
very common α-ketoacid is α-ketoglutarate, an intermediate in the citric acid cycle. Transamination of alanine 
or aspartate together with α-ketoglutarate can give the products of pyruvate or oxaloacetate and glutamate30. It is 
supposed that a decreased level of glutamate caused by MIRI possibly accompanies with a deficiency of pyruvate 
and oxaloacetate, which contribute as substrates or intermediates in fundamental processes such as glycolysis and 
the citric acid cycle for further ATP production.

In a worse situation of the MIRI rats, levels of other amino acid sources such as BCAAs (isoleucine and 
leucine) were elevated in plasma to compensate energy shortages. It suggests that the degradation of BCAAs 
are probably blocked involving the inhibition of the branched-chain alpha-ketoacid dehydrogenase (BCKDH) 
complex, leading to a buildup of BCAAs (leucine and isoleucine) and their toxic by-products in the blood. By 
converting BCAAs either into acetyl-CoA or succinyl-CoA that enter the citric acid cycle, BCKDH complex is 
a key enzyme for serving BCAAs as energy fuel31. The above results reveal that the generations of acetyl-CoA 

Figure 5.  Visualization of the involved pathway for the differential metabolites. The summarized pathway is 
based on KEGG database (http://www.kegg.jp/).The metabolites in blue were detected in the NMR spectra 
whereas those in black failed NMR detection. Box plots showed the normalized relative contents of these 
differential metabolites in the four treatment groups.

http://www.kegg.jp/
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derivatives from complementary energy sources are impaired by IR injury, which further leading to the accumu-
lations of BCAAs in blood, and then failed to afford the greater energy demand.

Compared to the model group, verapamil-treated rats showed a significantly decreased level of lipids, while a 
fair change of plasma glucose. The results imply that the most beneficial effect of verapamil is related to amend-
ment on mitochondrial function for accelerating the utilization of excessive lipids induced by MIRI. The elevated 
level of glutamate indicated an amelioration of amino acid transamination to afford relatively sufficient pyruvate 
and oxaloacetate after verapamil treatment. However, plasma levels of lactate and alanine were observed increas-
ingly in Ver group, which indicate the completeness of glycolytic pathway in cardiac myocytes rather than further 
formations of acetyl-CoA or oxaloacetate from pyruvate entering the mitochondrion through a transporter.

On the other hand, the WXKL-treated group showed no significant change in the level of plasma lipids while 
the glucose level was obviously elevated compared with MIRI group. The results imply that WXKL contributes 
to the supplement of glucose from liver glycogen degradation as energy provision to support the function of the 
heart, an energy metabolic control distinct from that of verapamil. Previous studies have demonstrated that pro-
vision of glucose together with insulin and potassium improves contractile function in the acutely ischemic and 
reperfused myocardium32. Moreover, plasma BCAAs (isoleucine, leucine and valine) showed decreased levels 
in WXKL-treated rats, suggesting WXKL may also modulate the degradations of BCAAs for providing more 
Acyl-CoA derivatives to generate ATP.

The metabolic analysis revealed that both verapamil and WXKL could increase the levels of taurine and ace-
toacetate in plasma compared to those of MIRI group. Taurine is a major constituent of bile with various funda-
mental biological roles, such as conjugation of bile acids, antioxidation, osmoregulation, membrane stabilization, 
and modulation of calcium signaling33. It is reported essential for cardiovascular function with a specialty of 
increasing the force and effectiveness of heart-muscle contractions34. It also acts as an antioxidant and protects 
against toxicity of various substances35, and the supplementation with taurine has been shown to prevent oxida-
tive stress induced by exercise36. Acetoacetate together with 3-hydroxybutyrate are known as ketone bodies that 
are produced by the liver from fatty acids. During the periods of extreme circumstance, these ketone bodies are 
readily picked up by the extra-hepatic tissues, and converted into acetyl-CoA which then enters the citric acid 
cycle and is oxidized in the mitochondria37. Pathological states could significantly alter energy metabolism. For 
example, during the development of heart failure, the capacity of heart to utilize fatty acids is diminished. Recent 
studies suggested a role of ketone bodies as an alternative fuel and myocardial ketone oxidation as a key metabolic 
adaptation in the failing human heart38. Interestingly, studies of relative oxidation in an isolated heart preparation 
using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling 
using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a 
fuel source in the context of reduced capacity to oxidize fatty acids39. Our results showed that both verapamil and 
WXKL could stimulate the generations of ketone bodies in liver and transport them through blood to heart for 
energy. With the elevating levels, verapamil and WXKL are supposed to stimulate bile secreting taurine and liver 
generating ketone bodies and transport them to heart through blood to resist excessive ROS induced by MIRI, 
regulate calcium signaling to enhance contractile function, as well as deliver fuels for energy supplements.

In summary, our 1H-NMR-based metabonomics approach provides a promising technique to elucidate and 
compare the cardioprotective mechanisms of traditional Chinese medicine (WXKL) and Western medicine (ver-
apamil) on ischemia-reperfusion injury. Several metabolites, involving some complementary energy sources, and 
their metabolic pathway were found closely related to the progression of ischemia-reperfusion on myocardium. 
A prominent mechanism of verapamil was the modulations on lipid metabolism and amino acid transamination 
in cardiomyocytes, whereas that of WXKL was mainly the regulation of glucose oxidation and BCAAs degrada-
tions to content the energy demands of heart. Besides these differences, both WXKL and verapamil can improve 
the secretions of taurine and ketone bodies to overcome the oxidative stress and the shortage of energy sources 
induced by ischemia-reperfusion.

Figure 6.  A summary of the metabolic responses of MIRI rats treated by WXKL and verapamil.
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Although lipid metabolism fluctuates significantly, it is still a challenge to identify the individual lipid species 
in a serum sample by 1H-NMR spectroscopy without any lipid-enriching step. A lipidomics research based on 
chromatography coupled with time of fight mass spectrometer (LC-MS) technique would be necessary and is in 
our subsequent plan to profile more detailed information of disturbance on lipid metabolism by MIRI and its 
therapeutic efficacy by WXKL.

Materials and Methods
Reagents and drugs.  Potassium phosphate dibasic trihydrate (K2HPO4·3H2O), sodium phosphate mono-
basic dehydrate (NaH2PO4·2H2O), disodium fumarate and deuterium oxide (D2O, 99.9% in D) were purchased 
from Sigma-Aldrich (St. Louis., MO, USA). Sodium azide (NaN3) in analytical grade was obtained from Tianjin 
Nankai Share Compounds Co., Ltd. (Tianjin, China). Chloral hydrate was purchased from Tianjin Kermel 
Chemical Reagent Co. Ltd. (Tianjin, China) and freshly prepared to 5% solution with saline before experiment. 
WXKL was obtained from Shanxi Buchang Pharmaceutical Co., Ltd (Shanxi, China) and dissolved in saline to 
a concentration of 0.9 g/mL for experiments. Verapamil was purchased from Tianjin Centralpharm Co., Ltd. 
(Tianjin, China). We converted a commonly used dosage of verapamil in clinical practice as the chosen dose 
20 mg/kg in the experiment.

Animals.  Male Sprague-Dawley (SD) rats, weighing 230–280 g, were purchased from Bio-Technology Co., 
Ltd., Beijing, Huafukang (Certificate no. SCXK (Jing) 2012-0001). The animals received standard diet and water 
ad libitum, and were kept under a 12-h light/dark cycle.

Myocardial I/R model and drug administration.  Rats were randomly divided into four groups, includ-
ing Sham, MIRI, WXKL and Ver groups. Seven days before I/R surgery, the rats in treatment groups were admin-
istered with WXKL via gavages in saline at a dose of 9 g/kg and Ver via peritoneal injection at a dose of 20 mg/
kg once daily for 7 days. The animals in Sham and MIRI groups received saline at 10 ml/kg at the same time. For 
MIRI model preparation, rats were subjected to ligation on the proximal left anterior descending coronary artery 
for 30 min and then released according to the previous studies40. Rats were anesthetized with 5% chloral hydrate 
(300 mg/Kg) by peritoneal injection. Skin preparation was completed and placed in a supine position. After left 
thoracotomy was performed to expose the heart, the proximal left anterior descending coronary artery (LADCA) 
was ligated with a 5/0 silk. The suture silk was released after 30 min, allowing reperfusion to occur. Then the 
thorax was closed, and as soon as spontaneous respiration was sufficient, the rats were released and allowed to 
recover on an electric blanket. The animals in Sham group underwent the same procedure but without ligation 
of suture silk.

Echocardiographic assessment on left ventricular function.  The left ventricle function was evalu-
ated 2 h after I/R, using a Vevo 2100 Ultra-high resolution small animal ultrasound imaging system in real time 
(Visual Sonics Vevo 2100, Canada) with a MS-250 ultrasound scanning transduce. Two-dimensional cine loops 
and guided M-mode frames were recorded from the parasternal long axis by using 13–24 MHz variable frequency 
ultrasound scanning transducer. Left ventricular ejection fraction (LVEF), left ventricle fractional shortening 
(LVFS) and other indicators were measured to determine the left ventricular systolic function. All data were ana-
lyzed off-line at the end of the study with software resident on the ultrasound system.

Hemodynamic evaluation of cardiac function.  Two hours after reperfusion, rats were anesthetized with 
5% chloral hydrate (peritoneal injection) and the left ventricle was cannulated through right carotid artery, which 
was connected to a bio-function experiment system MP100-CE (BIOPAC systems Inc., Santa Barbara, California, 
USA). Briefly, the right common carotid artery was dissected and separated from the connective tissue. A catheter 
was inserted into the left ventricle through the carotid artery. HR, LVEDP, LVSP, +dp/dtmax, and −dp/dtmax were 
measured at baseline.

Adequacy of anesthesia was controlled by monitoring corneal reflex and the lack of response to toe-pinching. 
Hearts were excised from rats for further investigation after terminal anesthesia by i.p. injection of 5% chloral 
hydrate at dose 300 mg/kg and heparin (100U). Euthanasia was performed by excessive inhalation of isoflurane. 
Death was monitored by the cardiac activity and respiration.

Sample preparation and NMR measurements.  After fasting for 12 h, blood samples were collected by 
abdominal aortic method. Serum were obtained by the centrifugation of blood at 4 °C, and all the samples were 
snap frozen in liquid nitrogen and stored at −80 °C until required for analyses. Serum samples were thawed at 
room temperature and centrifuged at 14 000 rpm for 10 min. A 250-μl supernatant was transferred into 5 mm 
NMR tubes (Norell, USA) and blended with the same volume of 0.2 M phosphate buffer in D2O (pD 7.4) contain-
ing 0.1% of NaN3.

All NMR spectra were acquired at 298 K on a 600.25 MHz Bruker AVIII HD spectrometer (Bruker BioSpin, 
Germany) equipped with a 5 mm BBO H&F cryogenic probe. Automatic shimming and adjusting of 90° pulse 
length were performed for each sample. Standard Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was used 
to suppress the residual water signal and also filter the broad signals from the molecules with short T2 relaxation 
times41. A total of 64 scans were collected into 32 K data points over a spectral width of 12019.2 Hz with a relax-
ation delay of 4 s and an acquisition time of 3.07 s. An exponential line-broadening of 0.3 Hz was applied to the 
free induction decay prior to Fourier transformation. Additional 1H, 1H-correlation spectroscopy (COSY) and 
1H, 13C-heteronuclear single quantum correlation (HSQC) spectra were recorded on the selected samples for the 
purpose of resonance assignment.
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Data processing for metabonomic analysis.  Acquired 1H-NMR data were processed with MestReNova 
6.1.1 (Mestrelab Research S. L., Spain). Spectra were carefully phased, baseline corrected and referenced to fuma-
rate (6.504 ppm). The spectral region δ 0.6–9.0 was integrated into bins with an equal width of 0.01 ppm. Regions 
for residual solvent signals of water (δ 4.40–5.11) and fumarate (δ 5.50–6.76) were discarded during analysis. All 
remaining spectral bins were regarded as variables and then normalized to the total sum of the integrated area.

Multivariate statistical analysis was conducted using the web server for metabonomic data analysis: 
MetaboAnalyst 3.0 (www.metaboanalyst.ca). Partial least squares discriminate analysis (PLS-DA) was carried 
out on the pair to scaled NMR data for group clustering and biomarker identification. The goodness of fit and 
model validity of PLS-DA were evaluated by the parameters of R2 and Q2 with leave one-out cross validation. The 
distinct metabolites as potential markers between classes were weighted through the values of variable impor-
tance in the projection (VIP) more than one.

Statistical analysis.  All data were expressed as mean ± S.D. and performed using SPSS17.0 statistical 
software. One-way analysis of variance (ANOVA) followed by Turkey test for multiple comparisons were used 
between groups. A value of p < 0.05 was considered as statistically significant.

Study approval.  All animal procedures and handlings were approved by the Tianjin University of Traditional 
Chinese Medicine Animal Research Committee (TCM-LAEC2017003) and in accordance with the National 
Institute of Health’s Guide for the Care and Use of Laboratory Animals.
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