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Abstract  
Chronic alcoholism seriously damages the central nervous system and leads to impaired learning and memory. Cell damage in chron-
ic alcoholism is strongly associated with elevated levels of hydrogen sulfide (H2S) and calcium ion overload. Aminooxyacetic acid is a 
cystathionine-β-synthase activity inhibitor that can reduce H2S formation in the brain. This study sought to observe the effect of ami-
nooxyacetic acid on learning and memory in a chronic alcoholism rat model. Rats were randomly divided into three groups. Rats in the 
control group were given pure water for 28 days. Rats in the model group were given 6% alcohol for 28 days to establish an alcoholism 
rat model. Rats in the aminooxyacetic acid remedy group were also given 6% alcohol for 28 days and were also intraperitoneally injected 
daily with aminooxyacetic acid (5 mg/kg) from day 15 to day 28. Learning and memory was tested using the Morris water maze test. The 
ultrastructure of mitochondria in the hippocampus was observed by electron microscopy. H2S levels in the hippocampus were measured 
indirectly by spectrophotometry, and ATPase activity was measured using a commercial kit. The expression of myelin basic protein was 
determined by immunohistochemistry and western blotting. Compared with the control group, latency and swimming distance were pro-
longed in the navigation test on days 2, 3, and 4 in the model group. In the spatial probe test on day 5, the number of platform crosses was 
reduced in the model group. Cristae cracks, swelling or deformation of mitochondria appeared in the hippocampus, the hippocampal H2S 
level was increased, the mitochondrial ATPase activity was decreased, and the expression of myelin basic protein in the hippocampus was 
down-regulated in the model group compared with the control group. All the above indexes were ameliorated in the aminooxyacetic acid 
remedy group compared with the model group. These findings indicate that aminooxyacetic acid can improve learning and memory in a 
chronic alcoholism rat model, which may be associated with reduction of hippocampal H2S level and mitochondrial ATPase activity, and 
up-regulation of myelin basic protein levels in the hippocampus.
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memory abilities; Morris water maze; myelin basic protein; mitochondria; ATP enzyme activity; neural regeneration 

Graphical Abstract   

Mechanism by which aminooxyacetic acid (AOAA) enhances learning and memory abilities of rats with 
chronic alcoholism

Introduction 
Chronic alcoholism caused by prolonged overdrinking re-
sults in central nervous system damage. Chronic alcoholism 
is a progressive, potentially fatal disease, characterized by a 
strong desire for alcohol, an increase in tolerance, increased 
dependence, and non-control (Nam et al., 2012; Du et al., 
2014). Long-term heavy drinking causes damage to the cen-
tral nervous system and peripheral nerves (Li et al., 2005). 

The neurotoxicity of ethanol has been extensively studied, 
but its mechanism of action remains unclear. Decreased 
activity of cytochrome oxidase causes increased neuronal 
adenosine triphosphate (ATP) metabolism and calcium 
overload (Yang et al., 2011). Ethanol produces oxygen free 
radicals by the action of alcohol dehydrogenase and alde-
hyde dehydrogenase that damage neuronal DNA. N-meth-
yl-D-aspartic acid (NMDA) and/or γ-aminobutyric acid 
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(GAGB) mediate alcohol-induced neuronal apoptosis (San-
dra et al., 2001). Aminooxyacetic acid (AOAA) can inhibit 
the expression of cystathionine-beta-synthase, thereby re-
ducing the formation of H2S, inhibiting Ca2+ influx, and alle-
viating intracellular Ca2+ overload (Li et al., 2009). However, 
there is currently no study addressing AOAA treatment for 
chronic alcoholism. We speculate that AOAA can relieve 
nerve cell damage caused by chronic alcoholism and can 
improve central nervous system function by reducing the 
formation of H2S and alleviating intracellular Ca2+ overload.  

Myelin sheath is a single layer fat-protein tissue that en-
velops the axons of neurons. Myelination injury or shedding 
has an adverse effect on neuronal function (Sandell and Pe-
ters, 2003; Marina et al., 2008). Previous studies have shown 
cognitive and memory function defects related to changes 
in the myelination of nerve fibers (Luo et al., 2001; Long et 
al., 2005). In the central nervous system, myelin basic pro-
tein (MBP), accounts for 30–40% of myelin in the myelin 
sheath. MBP is an extrinsic protein localized exclusively at 
the cytoplasmic surface in the major dense line of the myelin 
sheath (Xie al., 2013). It is synthesized and secreted by oli-
godendrocytes (Li, 2007). MBP can promote axonal regen-
eration (Xu et al., 2005) and can also combine with calcium 
to inhibit calcium overload caused by free radicals during 
membrane lipid degradation (Li et al., 2006). A decrease in 
the level of MBP can inhibit myelin formation and affect the 
normal conduction function of the myelin sheath (Zhang et 
al., 2017). The hippocampus is strongly associated with ad-
vanced neural activities, such as learning and memory and 
emotions. There is a clear synaptic pathway within the hip-
pocampus and the integrity of the hippocampal formation 
is important for learning and memory (Zao et al., 2015). In 
this study, we investigated a rat model of chronic alcoholism 
and observed the effect of AOAA treatment on changes in 
H2S levels, mitochondrial structure and MBP levels in the 
hippocampus. We also tested the learning and memory ca-
pabilities of the model rats. 

Materials and Methods
Animals
Sixty 2-month-old, male, Sprague-Dawley rats weighing 
120–160 g were provided by the Animal Management Cen-
ter of Zhengzhou University of China [SCXK (Yu) 2015-
0004]. The experiment was approved by the Animal Ethics 
Committee of Xinxiang Medical College of China (No. 
4107000081551).

The rats were housed at 22–25°C for 5–7 days to acclima-
tize to the laboratory environment. The rats were randomly 
divided into a control group, an AOAA remedy group, and a 
model group (chronic alcoholism model) (n = 20 per group). 

Model establishment and drug administration
The control group was given free access to pure water every 
day, the water being changed every morning at 9:00 a.m. To 
establish a model of chronic alcoholism (Rong et al., 2008), 
the model and AOAA remedy groups were given free access 
to 6% (v/v) alcohol solution for 28 days, with the alcohol 

solution being changed at 9:00 a.m. every day. From day 15 
to day 28, rats in the AOAA remedy group were intraper-
itoneally injected once a day with 5 mg/kg AOAA (Geel, 
Antwerp, Belgium) dissolved in 1 mL of saline (Tang et al., 
2015). The control and model groups were intraperitoneally 
injected with 1 mL saline once a day from day 15 to day 28. 
After establishment of the model, the water maze test was 
performed to verify whether the model was successful. A 
significant difference in learning and memory abilities be-
tween the model and control groups indicates the model has 
been successfully established. 

Evaluation of learning and memory abilities
On the 28th day after the start of model establishment, each 
group was tested in the Morris water maze test. This laby-
rinth system is widely used with rats in basic and applied 
neurobiology (Hu et al., 2000). The Morris water maze ap-
paratus (Noldus, Wageningen, Gelderland, Netherlands) 
consisted of a cylindrical pool, a movable platform and a 
drainage system (Yu et al., 2015). The pool was circular with 
a black wall and bottom. The pool was surrounded by blue 
curtains to block visual references in the room. References 
of various shapes and colors can be fixed to the inner wall 
of the pool or other visible high points (Yan et al., 2004). 
During training, a platform was submerged 0.5 cm below the 
surface in a fixed position within a quadrant. The pool was 
divided into four quadrants: southwest, southeast, north-
west and northeast. The submerged platform was placed in 
the center of the southeast quadrant. On the first day of the 
test, the platform was removed as a pre-experiment for the 
rats to become acclimatized to the environment and to iden-
tify and remove rats with poor swimming skills. Eight rats 
from each group were randomly selected for the navigation 
test and the spatial probe test. The positioning navigation 
test was performed on four consecutive days. The starting 
quadrant was changed each day in an anti-clockwise man-
ner. Each rat was trained four times (in a different quadrant 
each time) every day. The swimming trajectory of rats was 
recorded with a camera and analyzed using behavioral re-
cord software, EthoVision XT 8 (Noldus). Each time the rat 
found the submerged platform, the rat was allowed to stay 
on the platform for 30 seconds to consolidate its memory. 
The maximum duration for each training was 60 seconds. If 
the submerged platform was not found within 60 seconds, 
the rat was directed to the platform and allowed to stay on 
the platform for 30 seconds. In the navigation test, the la-
tency period to find the underwater platform and swimming 
distance of each rat were recorded. A shorter delay time 
and trajectory length indicated stronger learning ability. 
The spatial probe test was performed following the navi-
gation test. The spatial probe test was conducted only once 
to measure the ability of rats to retain the memory of the 
platform position. The difference between this experiment 
and the previous one was that the platform was removed. 
The rats were then released from the center of the northwest 
quadrant, which was opposite the target quadrant, and the 
swimming time was 180 seconds. In the spatial probe test, 
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the more times the rat crossed the platform position and the 
longer the swimming distance within the platform quadrant, 
the stronger the learning ability. After the end of the Morris 
water maze test, the rats were euthanized. Four rats in each 
group were subjected to immunohistochemical staining and 
a total of eight hippocampi were analyzed. The left and right 
hippocampi of the remaining four rats were cryopreserved. 
H2S levels, ATPase activity, and MBP protein levels in the 
eight hippocampi were measured, and the mitochondria 
were observed.

H2S levels in the hippocampus measured by 
spectrophotometry
Twelve hours after euthanasia, H2S absorbance in hippocam-
pal tissue was measured using an ELx800 automatic micro-
plate reader (Bio-Tek, Venuschi, VT, USA) at the wavelength 
of 670 nm. H2S levels in the hippocampus were measured 
according to an H2S standard curve and expressed in terms of 
H2S level per unit weight of tissue (nmol/g) (Ou et al., 2007). 
The levels of H2S in the eight hippocampi were measured. 

Morphology of mitochondria observed by electron 
microscopy
Twelve hours after euthanasia, 1 cubic millimeter pieces 
of hippocampus were prepared. The pieces were fixed with 
4% glutaraldehyde for 1 minute, and then stored at 4°C for 
3 hours. The samples were then washed with PBS and im-
mersed in 1% citric acid for approximately 1 hour. After 
washes with PBS, these samples were dehydrated with ace-
tone and embedded in epoxy resin. The samples were then 
sliced into ultrathin sections. The sections were stained with 
citrate and uranyl acetate and observed by transmission elec-
tron microscopy (Hitachi, Tokyo, Japan). The morphology of 
mitochondria in neurons of the hippocampus was compared 
among groups (with assistance from the Electron Microscopy 
Department of Xinxiang Medical College of China).

Determination of mitochondrial ATPase activity
Twelve hours after euthanasia, according to the instructions 
of the Ultramicro Total ATP Enzyme Assay Kit (Nanjing 
Institute of Bioengineering, Nanjing, China), samples were 
pretreated, then tissues were accurately weighed, and phys-
iological saline added to give a weight (g):volume (mL) ra-
tio of 1:9. Samples were mechanically homogenized under 
ice-water bath conditions and centrifuged at 2500 × g for 10 
minutes. The supernatant was taken to measure mitochon-
drial ATPase activity. The supernatant was taken for enzy-
matic reaction, and centrifuged at 3500 × g for 10 minutes, 
and then treated with the fixed phosphorus reagent. The 
optical density (OD) values were measured using a spectro-
photometer at 636 nm. The ATPase activity was calculated 
by (measured OD value − control OD value)/(standard OD 
value − blank OD value) × standard concentration × 6 × 7.8 
÷ sample protein concentration. 

MBP immunohistochemistry 
The brains of four rats from each group were fixed with 4% 

paraformaldehyde for 12 hours, paraffin embedded and sec-
tioned. Using an SP Kit for immunohistochemistry (Bioss, 
Beijing, China), sections were dewaxed and rehydrated, and 
0.01 mol/L citrate solution was used for antigen retrieval. 
The slices were washed in PBS for 5 minutes three times, in-
cubated in 5% H2O2 solution at 37°C for 20 minutes (SP Kit; 
Bioss Inc.), washed in PBS for 5 minutes three times, and 
blocked with normal goat serum working fluid at 37°C for 
20 minutes. A rabbit anti-MBP polyclonal antibody (Bioss 
Inc.) was added, incubated at 37°C for 20 minutes and then 
rinsed with PBS for 5 minutes three times. Biotin-labeled 
secondary antibody working fluid was added and incubated 
at 37°C for 60 minutes. Sections were then washed with PBS 
for 5 minutes three times. Horseradish peroxidase-labeled 
streptavidin working fluid was added and incubated at 37°C 
for 50 minutes. Staining was developed with diaminobenzi-
dine at 37°C for 5 minutes and observed and photographed 
under a light microscope. Image-pro-plus 6.0 image pro-
cessing software was used to analyze the positive expression 
of MBP. The value of the integrated OD (mean density) of 
the effective target protein divided by the effective target dis-
tribution area is the mean density value.

MBP western blot assay 
Three days after euthanasia, the hippocampus was added 
in tissue lysate (1 mg: 10 μL,Beyotime Biotechnology Co., 
Ltd., Shanghai, China) containing protease inhibitor (50:1; 
Beyotime Biotechnology Co., Ltd.) and incubated for 30 
minutes and then centrifuged to extract whole protein. 
Protein concentration was measured using a bicinchoninic 
acid protein quantification kit (Beyotime Biotechnology 
Co., Shanghai, China). The extracted protein was diluted to 
give the same concentration in all samples and incubated at 
100°C in a water bath for 10 minutes, followed by storage at 
−80°C. Sodium dodecyl sulfate polyacrylamide gel electro-
phoresis was performed on 40 μg of protein at 120 V for 90 
minutes (BioRad, Hercules, CA, USA). Proteins were then 
transferred onto polyvinylidene fluoride membrane at 100 V 
for 90 minutes (BioRad). The membrane was then incubated 
with a rabbit anti-MBP polyclonal antibody (1:500; Bioss) at 
4°C overnight. The blot was then rinsed with Tris-buffered 
saline containing Tween 20 (1:1000), incubated with goat 
anti-rabbit IgG (1:1000; Beyotime Biotechnology Co.) and 
then rinsed again in Tris-buffered saline with Tween 20. 
Strip analysis was then performed using an imaging system 
(UVP, Upland, CA, USA). The value of the integrated op-
tical density of the target protein divided by the integrated 
optical density of the internal reference protein gave the rel-
ative value of the target protein. 

Statistical analysis
Data are expressed as the mean ± SEM and were analyzed 
using SPSS 13.0 software (SPSS, Chicago, IL, USA). The 
comparison between groups was performed by one-way 
analysis of variance followed by the least significant differ-
ence post hoc test. A value of P < 0.05 was considered statis-
tically significant.
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Results
Learning and memory in each group
As shown in Figure 1, the learning and memory of the the 
model group was significantly worse than that of the con-
trol group, showing longer latency periods and swimming 
distances. There was a significant difference between the 
groups on day 2 and day 4 (P < 0.01). The latency periods 
and swimming distances in the AOAA remedy group were 
significantly decreased compared with the model group, es-
pecially on day 2 and day 4 (P < 0.01). 

Figure 2 shows the representative exploratory trajectories 
of the rats on day 5. Compared with the control group, the 
trajectories of the rats in the model group were remarkably 
more evenly distributed in each quadrant with a decreased 
number of platform crossings. The trajectories of the rats in 
the AOAA remedy group were significantly concentrated in 
the quadrant of the platform with an increased number of 
platform crossings compared with the model group.

H2S levels in the hippocampus
As shown in Figure 3, compared with the control group, 
H2S levels in the hippocampus of rats of the model group 
were significantly increased (P < 0.01). H2S levels were sig-
nificantly decreased in the hippocampus in the AOAA rem-
edy group compared with the model group (P < 0.01).

Morphology of mitochondria in the hippocampus 
observed by electron microscopy
The morphology of mitochondria in the hippocampus of 
each group was observed by electron microscopy. As shown 
in Figure 4, mitochondria indicated by black arrows were 
intact. There was no cavitation, cristae breakage, or swell-
ing. The mitochondria indicated with white arrows show 
vacuolization, and broken and deformed cristae. The mito-
chondria in the control group were intact and there were no 
vacuoles, cristae breaks, or swelling. The mitochondria in 
the model group showed cristae breakage, swelling and de-
formation. Mitochondrial morphology was improved after 
AOAA treatment. 

Mitochondrial ATPase activity
As shown in Figure 5, mitochondrial ATPase activity in 
the hippocampus of the model group was significantly de-
creased compared with that of the control group (P < 0.01). 
The activity of mitochondrial ATPase in the AOAA remedy 
group was significantly higher compared with that in the 
model group (P < 0.01).

MBP expression in the hippocampus 
MBP expression was observed by immunohistochemistry in 
the hippocampal CA1 region in each group (Figure 6A–C). 
The average OD shows the level of MBP in the hippocampal 
CA1 region. Compared with the control group, the MBP level 
was significantly decreased in the model group (P < 0.01). The 
MBP level was significantly increased in the AOAA remedy 
group compared with the model group (P < 0.01) (Figure 6D). 

Western blot assay of MBP is shown in Figure 7. MBP 

levels were significantly decreased in the hippocampus of 
the model group compared with the control group (P < 0.01). 
MBP levels were significantly increased in the AOAA reme-
dy group compared with the model group (P < 0.01). 

Discussion
Chronic alcoholism seriously damages the central nervous 
system and leads to impaired learning, memory, and cogni-
tive judgment (Li et al., 2016; Le et al., 2017). The mechanism 
of nerve damage by alcohol has been investigated by different 
studies. Decreased activity of cytochrome oxidase causes 
reduced neuronal ATP metabolism and calcium overload. 
Ethanol produces oxygen free radicals under the action of 
alcohol dehydrogenase and aldehyde dehydrogenase, which 
injure neuronal DNA. Ethanol-induced neuronal apoptosis is 
mediated by NMDA and/or GAGB, and serotonin receptors 
(Sandra et al., 2001). AOAA can inhibit the expression of 
cystathionine-beta-synthase, thereby reducing the formation 
of H2S, inhibiting Ca2+ influx and alleviating intracellular Ca2+ 
overload, which relieves cell damage (Li et al., 2009). How-
ever, no study has addressed AOAA treatment for chronic 
alcoholism. The results of this study indicate that AOAA can 
alleviate the impaired learning and memory caused by chron-
ic alcoholism.

Along with CO and NO, H2S is a gaseous signaling molecule 
(Li et al., 2016; Le et al., 2017). In the brain, cystathionine-be-
ta-synthase catalyzes the formation of H2S (Zhao et al., 2001; 
Cui et al., 2016) from cysteine. Physiological concentrations of 
H2S can help blood vessel dilation and the anti-oxidative re-
sponse (Jung et al., 2014; Huang et al., 2017) to maintain learn-
ing and memory abilities (Li et al., 2015; Tian et al., 2016). High 
concentrations of H2S can, however, impair organs (Jiang et al., 
2016). It inhibits central nervous system function, and specif-
ically inhibits the excitatory postsynaptic membrane potential 
and blocks synaptic transmission. It also enhances NMDA 
receptor-mediated calcium overload, which leads to increased 
intracellular calcium concentration and damage to mitochon-
drial morphology and energy metabolism, eventually resulting 
in cell necrosis. Chronic alcoholism can activate cystathi-
onine-beta-synthase, and catalyze the formation of H2S (Zao 
et al., 2001). AOAA is a cystathionine-beta-synthase inhibitor 
(Sandell and Peters, 2003; Niu et al., 2018), and can reduce H2S 
formation in the brain by inhibiting cystathionine-beta-syn-
thase activity (Donovan et al., 2017).

ATPase can catalyze the oxidation of ADP to ATP, which 
plays an important role in material transport and information 
transfer (King et al., 2016). The activity of ATPase can change 
with the onset of diseases (Li et al., 2000). By detecting the 
activity of mitochondrial ATPase in the hippocampus of each 
group, we found that compared with the control group, AT-
Pase activity was remarkably decreased in the model group. 
Compared with the model group, ATPase activity was dra-
matically increased in the AOAA remedy group. 

MBP is the main protein of central nervous system myelin 
and can promote axonal regeneration (Luo et al., 2001; Zhou 
et al., 2017). In addition, MBP can also inhibit the calci-
um-induced degradation effect of free radicals on membrane 



1572

Du AL, Qin HZ, Jiang HB, Fu PY, Lou K, Xu YM (2018) Aminooxyacetic acid improves learning and memory in a rat model of chronic alcoholism. 
Neural Regen Res 13(9):1568-1574. doi:10.4103/1673-5374.237120 

lipids (Xu et al., 2005). Sandell and Peters (2003) found that 
cognitive and memory function defects are associated with 
structural changes of myelinated myelin sheath in the cen-
tral nervous system. High levels of H2S can have effects on 
the central nervous system. Accumulation of ethanol can 
cause oligodendrocyte damage (Hu et al., 2016) and reduce 
MBP levels, causing the myelin sheath to come off axons, 

leading to impairment of information transmission among 
synapses (Bai et al., 2017).

In summary, AOAA can ameliorate the effects of chron-
ic alcoholism on brain tissue, which might be achieved by 
reducing H2S levels. Thus, AOAA protects mitochondrial 

Figure 1 Morris water maze 
navigation test.
(A) Latency to the platform for 
the three groups; (B) swimming 
distance to the platform for three 
groups. The data are presented as 
the mean ± SEM. Comparisons 
between groups were conducted 
by one-way analysis of variance 
followed by the least significant 
difference post hoc test. **P < 0.01, 
vs. C group; ++P < 0.01, vs. M 
group. C group: Control group; M 
group: model group; AR group: 
AOAA remedy group (chronic 
alcoholism model + aminooxy-
acetic acid remedy). AOAA: Ami-
nooxyacetic acid.

Figure 2 Representative trajectories of rats in the Morris water maze 
spatial probe test on day 5. 
(A–C) Representative trajectories of rats in the control (A), model (B)
and AOAA remedy groups (C) (chronic alcoholism model + AOAA 
remedy), respectively. The more trajectories in the target quadrant (lower 
left quadrant), the better the memory of the rat; the more platform cross-
ings (circle in the lower left quadrant), the better the memory of the rat. 
The trajectories of rats in the model group were significantly more evenly 
distributed in each quadrant compared with the control group, and the 
number of platform crossings was reduced. The trajectories of the rats 
in the control and the AOAA remedy groups were significantly concen-
trated in the platform quadrant and many crossed the platform. AOAA: 
Aminooxyacetic acid.

A B C

Figure 4 Ultrastructure of hippocampal mitochondria. 
(A–C) Ultrastructure of mitochondria in the control (A), model (B) and 
AOAA remedy groups (C), respectively (scanning electron microscopy,  
original magnification, 10,000 ×). Black arrows indicate intact mitochon-
dria without vacuoles, cristae cracks, swelling or deformation. White 
arrows indicate damaged mitochondria. They contain vacuoles and the 
cristae are broken and deformed. The mitochondria in the control group 
were intact without vacuoles, cristae cracks or swelling. The mitochon-
dria in the model group showed vacuoles, cristae cracks and swelling. 
Mitochondrial ultrastructure was improved after AOAA treatment. 
AOAA: Aminooxyacetic acid. 
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Figure 3 H2S levels in the hippocampus. 
The data are presented as the mean ± SD (n = 8). Comparisons between 
groups were conducted by one-way analysis of variance followed by the 
least significant difference post hoc test. **P < 0.01, vs. C group; ++P < 
0.01, vs. M group. C group: Control group; AR group: AOAA remedy 
group (chronic alcoholism model + aminooxyacetic acid remedy); M 
group: model group. AOAA: Aminooxyacetic acid.
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Figure 5 Mitochondrial ATPase activity in the hippocampus.
The data are presented as the mean ± SD (n = 8). Comparisons between 
groups were conducted by a one-way analysis of variance followed by the 
least significant difference post hoc test. **P < 0.01, vs. C group; ++P < 
0.01, vs. M group. C group: Control group; M group: model group; AR 
group: AOAA remedy group (chronic alcoholism model + aminooxy-
acetic acid remedy). AOAA: Aminooxyacetic acid.
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Figure 6 Mean optical density of MBP in the hippocampus. 
(A–C) Light microscopy images of MBP immunohistochemistry in the 
hippocampus of the control (A), model (B) and AOAA remedy groups 
(C), respectively. (D) Mean optical density of MBP in the hippocampus 
of each groups (C). The data are presented as the mean ± SD (n = 8). 
Comparisons between groups were conducted by a one-way analysis of 
variance followed by the least significant difference post hoc test. **P < 
0.01, vs. C group; ++P < 0.01, vs. M group. C group: Control group; M 
group: model group; AR group: AOAA remedy group (chronic alcohol-
ism model + aminooxyacetic acid remedy); MBP: myelin basic protein. 
AOAA: Aminooxyacetic acid.
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Figure 7 MBP levels in the hippocampus (western blot assay).
(A) Protein bands of MBP and GAPDH in the hippocampus of each 
group. (B) The levels of MBP in the hippocampus of each group. Data 
are presented as the mean ± SD (n = 8). Comparisons between groups 
were conducted by a one-way analysis of variance followed by the 
least significant difference post hoc test. **P < 0.01, vs. C group; ++P < 
0.01, vs. M group. C group: Control group; M group: model group; AR 
group: AOAA remedy group (chronic alcoholism model + aminooxy-
acetic acid remedy); MBP: myelin basic protein. AOAA: Aminooxy-
acetic acid.

function, reduces alcohol-induced MBP damage, and pro-
tects the structure and function of neurons, thereby improv-
ing the learning and memory of chronic alcoholism model 
rats. However, in this study, we only focused on the learning 
and memory capabilities of rats, and H2S levels, mitochon-
drial ATPase activity and MBP levels in the hippocampus. 
Therefore, further investigations are needed to support 
AOAA treatment for chronic alcoholism.
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