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Abstract: Inorganic nanomaterials such as nanotubes and nanorods have attracted great attention
due to their anisotropic properties. Although the alignment control of inorganic nanomaterials is key
to the development of functional devices utilizing their fascinating properties, there is still difficulty
in achieving uniform alignment over a large area with a micrometer thickness. To overcome this
problem, we focused on liquid crystals (LCs) to promote the alignment of anisotropic nanomaterials,
taking advantage of the cooperative motion of LCs. We present the uniform, one-dimensional
alignment of ZnO nanorods along the direction of LCs in micrometer-thick cells by grafting nematic
LC polymers from the nanorod surfaces to provide miscibility with the host LCs. Polarized optical
microscopy and polarized UV–visible absorption spectroscopy revealed the unidirectional alignment
of nematic LC polymer-grafted ZnO nanorods parallel to the nematic host LCs.

Keywords: nanorod; alignment; liquid crystal; surface modification

1. Introduction

Inorganic anisotropic nanomaterials such as nanotubes and nanorods have attracted
great attention due to their remarkable properties derived from their size effects and
anisotropic shapes, such as electrical conductivity [1,2], optical properties of polarized
emission and absorption [3,4], and thermal conductivity [5,6]. Various devices have been
proposed as promising applications for nanomaterials—for example, piezoelectric energy
harvesting [7,8], photovoltaics [9–11], and photonics [12]. To fully utilize their fascinating
properties in functional devices, it is essential to control the alignment of nanomaterials
at device-relevant length scales. To date, various alignment methods have been reported.
For example, vertically aligned nanorods on substrates have been fabricated by metal
organic chemical vapor deposition [13,14], pulsed laser deposition [15], hydrothermal
growth [16], chemical bath deposition [17], surfactant-assisted sol–gel processes [18], and
dopant mediated assembly [19]. All these methods are applicable to substrates satisfying the
condition of the controlled growth of materials. Alternatively, methods for aligning presyn-
thesized nanorods could expand the versatility of nanorod materials. Electric/magnetic
fields [20–22], mechanical forces [23], and selective incorporation into microphase-separated
block copolymers [24–26] have been used to induce the alignment of nanorods. However,
there still remain challenges in unidirectional alignment over a large area, mostly due
to aggregation.

Liquid crystals (LCs), which have both fluidity and anisotropy, are candidate materials
for promoting nanorod alignment. Nanorods surface-modified with thermotropic LC
molecules have been proposed for the utilization of anisotropic properties with regulated

Molecules 2022, 27, 689. https://doi.org/10.3390/molecules27030689 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27030689
https://doi.org/10.3390/molecules27030689
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5449-0656
https://orcid.org/0000-0002-0396-5874
https://doi.org/10.3390/molecules27030689
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27030689?type=check_update&version=1


Molecules 2022, 27, 689 2 of 12

structures [27–30]. The formation of lyotropic LCs from nanorods modified with block
copolymers has also been shown to utilize LC properties [31–33]. These studies suggest that
the control of interactions between nanorods and LCs is key to their alignment. In order to
further enhance the interaction between nanorods and LCs and effectively induce uniform
alignment, we carefully regulated the surface density of LC polymers modified in inorganic
nanorods and achieved the unidirectional alignment of zinc oxide (ZnO) nanorods over a
large area [34]. Our concept of the surface-density regulation of LCs in nanorods allows
cooperative molecular interactions with the surrounding low-molecular-weight host LC
molecules, leading to hierarchical, uniform alignment without the aggregation of nanorods.
However, the control of the alignment in the thickness direction is limited to only a few tens
of nanometers near to the alignment layer. If the alignment of nanorods can be controlled to
the thickness of micrometers, their applications as functional anisotropic materials will be
greatly expanded by utilizing the nanoscale anisotropic properties on a macroscopic scale.

In this study, we report the alignment behavior of the LC polymer-grafted ZnO
nanorods in an LC cell with a thickness of approximately 5 µm. Low-molecular-weight
LCs with a high fluidity and the ability of molecular alignment are adopted as host LCs to
drive the nanorods surface-grafted with LC polymers. We evaluate the miscibility of the
surface-modified nanorods to the host LCs, which is the key to inducing the cooperative
motion. Finally, we investigate the optical properties of the surface-modified nanorods
in the host LCs in 5 µm-thick cells and demonstrate their unidirectional alignment in
homogeneous and homeotropic manners.

2. Results and Discussion
2.1. Liquid Crystalline Behavior of the Nematic LC Host Dispersed with LC
Polymer-Grafted Nanorods

We anticipated the alignment of nanorods by the cooperative interaction of host LCs
and nematic LC polymer grafted from nanorod surfaces. Here, we adopted 4-cyano-4′-
pentylbiphenyl, 5CB, as a low-molecular-weight host LC to induce the alignment of ZnO
nanorods grafted with the nematic LC polymer, poly{4-[4-(4-methoxyphenyloxycarbonyl)
phenoxy]butyl methacrylate}, PMA(4OPB), as shown in Figure 1. Firstly, the LC behavior
of PMA(4OPB)-grafted ZnO nanorods dispersed in 5CB was investigated by differential
scanning calorimetry (DSC) to evaluate their miscibility. Figure 2 shows the DSC ther-
mograms of PMA(4OPB)-grafted nanorods, 5CB, and their 1:20 mixture in weight ratio.
PMA(4OPB)-grafted nanorods showed an endothermic peak at 98 ◦C during the heating
process and an exothermic peak at 97 ◦C during the cooling process (Figure 2a). Compared
with the previous report [34], these peaks were attributable to the nematic to isotropic
phase transition of the grafted PMA(4OPB). The nematic to isotropic phase transition
enthalpies (∆HN-I), expressed as total energy per molar quantity of LC mesogens, were
0.59 and 0.56 kJ/mol for the heating and cooling processes, respectively. 5CB showed
a broad exothermic peak at around −15 ◦C derived from recrystallization, endothermic
peaks corresponding to the melting at 24 ◦C, and the nematic to isotropic phase transition
at 35 ◦C during the heating process, while the exothermic peaks of the isotropic to nematic
phase transition were at 35 ◦C and the crystallization was at –18 ◦C during the cooling
process (Figure 2b). Both ∆HN-I values were 0.51 kJ/mol during the heating and cooling
processes, respectively.

In the case of their mixture (Figure 2c), the peaks due to the nematic to isotropic
phase transition of PMA(4OPB)-grafted nanorods at 98 ◦C (heating) and 97 ◦C (cooling)
disappeared. Instead, endothermic and exothermic peaks during the heating and cooling
processes were observed at 35 ◦C, which was identical to the nematic to isotropic phase
transition of 5CB. The melting point during the heating process was observed at 17 ◦C, but
no crystallization peak was observed due to supercooling. Polarized optical microscope
(POM) images of the mixture under crossed polarizers exhibited schlieren textures, which is
characteristic of a nematic phase, at a temperature below 35 ◦C and became dark at higher
temperatures (Figure 3). According to the DSC and POM measurements, the peaks of the
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DSC thermogram at 35 ◦C were attributable to the nematic to isotropic phase transition.
The ∆HN-I values of the mixture were 0.33 and 0.39 kJ/mol in the heating and cooling
processes, respectively. The decrease in the phase transition enthalpies compared to 5CB
suggested that the added PMA(4OPB)-grafted nanorods locally disordered the molecular
orientation. Nevertheless, the single phase transition by DSC and the optically anisotropic
textures, without significant segregation by POM, confirmed that PMA(4OPB)-grafted
nanorods are miscible with a 5CB host and form a uniform nematic phase.
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Figure 1. Chemical structures used in this study.

2.2. Homogeneous Alignment of ZnO Nanorods in Host LC

The alignment behavior of PMA(4OPB)-grafted ZnO nanorods dispersed with a 5CB
host was firstly investigated in an approximately 5 µm-thick cell coated with a homoge-
neous alignment layer which had been obtained by a rubbing treatment. Figure 4 shows
the optical properties of the sample cell filled with the mixture. Similarly, in the 5CB cell
(Figure A1a), the obtained cell was optically transparent, as shown in Figure 4a. The POM
observation of the cell under crossed polarizers showed a clear contrast for every 45◦ rota-
tion and the image became completely dark when the polarization direction was parallel or
perpendicular to the rubbing direction, as indicated in the top images of Figure 4b. The
molecular alignment direction was confirmed by the POM observation with a tint plate
(retardation (R) = 137 nm). As shown in the bottom images of Figure 4b, the additive and
subtractive color effects were found when the optical axis of the tint plate was parallel and
perpendicular to the rubbing direction, respectively. The POM results indicated that the
mesogens of the host LC were aligned parallel to the rubbing direction. The value of R
for the mixture, measured using a Berek compensator, was 840 nm. Using the relation of
R = d∆n, where d is the cell thickness (d = 5 µm) and ∆n is birefringence, the value of ∆n
was calculated to be 0.16. Similarly, ∆n of 5CB was determined to be 0.15 (Figure A1b).
The almost identical ∆n values, regardless of the existence of nanorods, suggested that
PMA(4OPB)-grafted nanorods are well miscible with the host 5CB and form homogeneous
alignment cooperatively without a significant disturbance of the molecular alignment.
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Figure 2. Differential scanning calorimetry (DSC) thermograms at 3rd heating and cooling cycle: (a) 
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Figure 2. Differential scanning calorimetry (DSC) thermograms at 3rd heating and cooling cycle:
(a) PMA(4OPB)-grafted ZnO nanorods; (b) 5CB; (c) their mixture. Scanning rate: 10 ◦C/min (a) and
1 ◦C/min (b,c).
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Figure 4. Optical properties of 5CB doped with PMA(4OPB)-grafted ZnO nanorods with a weight
ratio of 20:1 in a glass cell with a homogeneous alignment layer. (a) Photograph. Scale bar, 5 mm.
(b) POM images under crossed polarizers without (top) and with (bottom) a tint plate with a
retardation of 137 nm. White crossed arrows show the direction of the polarizers. Yellow arrows
show the rubbing direction. Red arrows show the direction of the tint plate. Scale bars, 200 µm.
(c) Polarized UV–vis absorption spectra. A‖ and A⊥ are absorbances parallel and perpendicular to
the rubbing direction.
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To further investigate the alignment of ZnO nanorods as well as mesogens, we mea-
sured the polarized ultraviolet (UV)–visible (vis) absorption spectra (Figure 4c). We defined
the absorbances parallel (A‖) and perpendicular (A⊥) to the rubbing direction, respectively.
The absorption below 340 nm was derived from the cyanobiphenyl moieties of the host
5CB. The absorption band at around 350 nm, which was not observed for 5CB (Figure A1c),
was assigned to the ZnO nanorods. The absorbance parallel to the rubbing direction was
larger compared to the perpendicular direction for both bands. The order parameter (S),
which showed the degree of the in-plane alignment, was calculated by using the following
equation [35]:

S =
A‖ − A⊥

A‖ + 2A⊥
(1)

The S value for ZnO nanorods was 0.09 at 355–360 nm. The S value for the host LC
mesogens is not discussed here because the absorption of ZnO nanorods is also overlapped
with that of mesogens. The results of POM and polarized UV–vis absorption spectra
indicated that the ZnO nanorods were aligned cooperatively with the host LCs according
to the rubbed alignment layer in micrometer-thick cells.

2.3. Homeotropic Alignment of ZnO Nanorods in the Host LC

The ZnO nanorod-dispersed LC in a glass cell with a homeotropic alignment layer
showed different optical properties from that in the homogeneously aligned cell, as shown
in Figure 5. The glass cell was optically transparent, as shown in Figure 5a. A conoscopic
POM image exhibited a clear isogyre (Figure 5b). The result indicated that host 5CB
molecules in the cell have a homeotropic alignment. In addition, the alignment directions
of both the host LC and PMA(4OPB)-grafted ZnO nanorods were evaluated by polarized
UV–vis absorption spectroscopy. We determined the absorbances parallel (AH) and perpen-
dicular (AV) to the direction of the sample injection, respectively. As shown in Figure 5c, the
absorbance derived from ZnO and mesogens was identical regardless of the polarization
direction. These results show that PMA(4OPB)-grafted ZnO nanorods are homeotropically
aligned with host LCs in a micrometer-thick cell.
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200 µm. (c) Polarized UV–vis absorption spectra. AH and AV are the absorbances parallel and
perpendicular to the injection direction of the sample.

3. Materials and Methods
3.1. Materials

A host LC (5CB) was provided by Merck, Darmstadt, Germany, and used without
further purification. ZnO nanorods grafted with a nematic LC polymer PMA(4OPB)
were synthesized as previously reported [34]. ZnO nanorods with an average diameter
of 7 nm and a length of 50 nm were modified with initiator moieties for atom transfer
radical polymerization (ATRP). The surface density of the ATRP initiator moieties was
controlled to be 0.79 nm−2, which was determined by X-ray fluorescence (XRF) analysis. A
nematic LC polymer PMA(4OPB) was grafted from the initiator-modified ZnO nanorods
by ATRP with a feed molar ratio of 4-[4-(4-methoxyphenyloxycarbonyl)phenoxy]butyl
methacrylate to the initiator moieties equal to 100. The monomer conversion measured by
1H NMR was 33%. The resultant PMA(4OPB)-grafted ZnO nanorods were observed using
a transmission electron microscope (TEM), as shown in Figure 6. The precursor solution
of the homogeneous alignment layer (AL1254) was supplied by JSR Corporation, Tokyo,
Japan, and that for the homeotropic alignment layer (Sunever) was supplied by Nissan
Chemical Corporation, Tokyo, Japan.

3.2. Sample Preparation

Glass cells with homogeneous and homeotropic alignment layers were fabricated
according to the procedure shown in Figure 7. Glass substrates (25 mm × 15 mm) were
ultrasonically cleaned with 2-propanol for 30 min and treated with a UV-ozone cleaner (NL-
UV42, Nippon Laser & Electronics Lab Co. Ltd., Nagoya, Japan) for 10 min. The precursor
solutions for the alignment layers were spincoated on the cleaned glass substrates and
heated at 220 ◦C for 1 h. The glass substrates with the homogenous alignment layer
were rubbed by a rubbing machine (MRG-100, EHC Co., Ltd., Hachioji, Japan). Glass
cells were fabricated by adhering a pair of alignment layer-coated glass substrates with
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glue containing 5 µm-thick silica spacers (Thermo Scientific, 9000 Series, #9005, Thermo
Fisher Scientific, Waltham, MA, USA). The actual thickness of the prepared glass cells
was determined by UV–vis spectroscopy based on the Fabry–Perot method. A typical
transmission spectrum is shown in Figure 8. The thickness (d) was calculated using the
wavelengths of the interference maximum (λ1, λ2) by the following equation [36]:

d =
λ1λ2

2(λ1 − λ2)
(2)
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homeotropic (b) alignment layers.

The mixture of PMA(4OPB)-grafted ZnO nanorods and 5CB with a weight ratio of
1:20 was dispersed in tetrahydrofuran (THF) and stirred for 1 h at room temperature.
After the removal of THF under vacuum for 6 h, the mixture was further treated with an
ultrasonicator (VS-02RD, Velvo-Clear, Tokyo, Japan) for 30 min at room temperature to
improve the dispersity of PMA(4OPB)-grafted ZnO nanorods in the host 5CB. The sample
mixture was injected into the hand-made glass cells by capillary action at 75 ◦C and cooled
down to 25 ◦C at a rate of 10 ◦C/min, as shown in Figure 9.
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3.3. Characterization Equipment

Differential scanning calorimetry (DSC) was performed using an Exstar DSC7000X
differential scanning calorimeter (Hitachi High-Tech Corp., Tokyo, Japan). Polarized optical
microscope (POM) images were obtained by a BX 50 polarized optical microscope (Olympus
Corp., Tokyo, Japan) equipped with a hot stage (HS82, Mettler Toledo, Greifensee, Switzer-
land) and a tint plate (U-TP137, Olympus Corp., Tokyo, Japan) or a Berek compensator
(U-CBE, Olympus Corp., Tokyo, Japan). Polarized UV–vis absorption spectra were mea-
sured by a UV–vis absorption spectrophotometer (V-670, JASCO Corp., Hachioji, Japan).
XRF analysis was performed using an X-ray fluorescence spectrometer (ZSX Primus II,
Rigaku Corp., Akishima, Japan). 1H NMR spectra were recorded by an NMR spectrometer
(Avance III, 400 MHz, Bruker Biospin, Bruker, Billerica, MA, USA). Transmission electron
microscopy was performed with a JEM-2100 microscope (JEOL Ltd., Akishima, Japan).

4. Conclusions

In this study, we investigated the alignment control of nematic LC polymer-grafted
nanorods dispersed in host LCs in micrometer-thick cells. The surface-grafted nanorods
were well miscible with the host LCs and formed a uniform LC phase, as confirmed
by DSC analysis. POM and polarized UV–visible absorption spectroscopy revealed the
homogeneous and homeotropic alignment of the surface-grafted nanorods parallel to the
host LCs in 5 µm-thick cells treated with alignment layers. Furthermore, the birefringence
of the host LCs dispersed with surface-grafted nanorods was almost identical to that
of 5CB, which suggests a cooperative interaction of grafted nematic LC polymers with
host LCs without significant segregation. The results reported herein will contribute to
the development of various microscale devices by enabling us to effectively utilize the
anisotropic properties of well-aligned nanomaterials.
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Appendix A

A homogeneous alignment cell of 5CB was prepared for comparison. The optical
properties are shown in Figure A1.
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Figure A1. Optical properties of 5CB in a glass cell with a homogeneous alignment layer. (a) Photo-
graph. Scale bar, 5 mm. (b) POM images under crossed polarizers without (top) and with (bottom) a
tint plate with a retardation of 137 nm. White crossed arrows show the direction of the polarizers.
Yellow arrows show the rubbing direction. Red arrows show the direction of the tint plate. Scale
bars, 200 µm. (c) Polarized UV–vis absorption spectra. A‖ and A⊥ are the absorbances parallel and
perpendicular to the rubbing direction.
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