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Objective. We here describe the development of a freely available online database resource, GeneSpeed Beta Cell, which has been
created for the pancreatic islet and pancreatic developmental biology investigator community. Research Design and Methods.
We have developed GeneSpeed Beta Cell as a separate component of the GeneSpeed database, providing a genomics-type
data repository of pancreas and islet-relevant datasets interlinked with the domain-oriented GeneSpeed database. Results.
GeneSpeed Beta Cell allows the query of multiple published and unpublished select genomics datasets in a simultaneous
fashion (multiexperiment viewing) and is capable of defining intersection results from precomputed analysis of such datasets
(multidimensional querying). Combined with the protein-domain categorization/assembly toolbox provided by the GeneSpeed
database, the user is able to define spatial expression constraints of select gene lists in a relatively rigid fashion within the pancreatic
expression space. We provide several demonstration case studies of relevance to islet cell biology and development of the pancreas
that provide novel insight into islet biology. Conclusions. The combination of an exhaustive domain-based compilation of the
transcriptome with gene array data of interest to the islet biologist affords novel methods for multidimensional querying between
individual datasets in a rapid fashion, presently not available elsewhere.

Copyright © 2008 Nayeem Quayum et al. This is an open access article distributed under the Creative Commons Attribution
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1. INTRODUCTION

Genomics is playing a growing role in almost any biological
experimentation. Based on presently available commer-
cial expression array technologies, an investigator is given
almost full-genome coverage of transcriptional changes that
provides for novel methods for gene identification and
validation. However, exhaustive data mining from genomics
datasets is cumbersome, and to a large extent is outside
the expertise of the individual experimenter. The greatest
strength in genomics data analysis stems from multidimen-
sional analysis, as such orthogonal comparison can bring out
biologically relevant information not extractable from the
individual datasets alone. However, such multidimensional
querying is often advised against, as individual genomics
experiments are performed in different laboratories, using
dissimilar methodologies. Such array data should not be

uploaded and analyzed concomitantly in the available
software data analysis programs commonly used. Prudent
analysis of multiexperimental results would therefore call for
individual data analysis of experimental sets, and only parse
for intersections/exclusions within the resulting gene lists.
This is possible through genomics analysis platforms using
separate gene list saving. However, the process is burdened by
the fact that the analysis of a relevant dataset for orthogonal
querying requires the identification of the existence of the
data, upload, normalization, and scaling of individual DNA
chip scan files and thereafter selecting and executing a valid
analysis for the particular dataset, followed by results storage.
In practice, this is time consuming, and too overwhelming,
for most biologists.

In the islet and islet developmental biology research
fields, a continuously growing set of public genomics data is
becoming available. Also, initial problems in both genomics
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Figure 1: GeneSpeed and GeneSpeed Beta Cell comparison.

chip design and experimental execution are gradually being
overcome. It is therefore appreciated that a large, generally
untapped resource is provided by genomics analyses per-
formed in islet-focused laboratories around the world. Two
online databases, T1dbase [1] and EpconDb [2], contain
genome data repository components within their sites.
However, they do not provide advanced multiexperimental
querying options that would allow generation of gene lists
between experiments. Acknowledging this, we set forth to
create a resource that would consolidate diabetes-research
relevant genomics data and allow rapid multidimensional
analysis between such datasets. To do this, we created an
online genomics data repository, which we term GeneSpeed
Beta Cell. This was developed as an additional component
of the GeneSpeed resource [3], see Figure 1. GeneSpeed
Beta Cell (http://genespeed.ccf.org/betaCell/) contains two
forms of data: normalized and similarly scaled genomics data
relevant for the islet or pancreatic developmental biologist.
Secondly, it contains precalculated analyses, which include
pairwise and self-organizing neural network clustering
results applied to relevant data series. On the analysis side,
GeneSpeed Beta Cell provides “My Gene Workspace” where
gene list overlap can be evaluated. It also provides access
to any search parameter in the GeneSpeed environment,
including precalculated data on tissue specificity (Shannon
entropy) and wide-tissue batch expression queries. Together,
the unified environment within the GeneSpeed database
provides for some unique capacities not found elsewhere. We
here describe the use of GeneSpeed Beta Cell by addressing a
set of novel, and biologically relevant, questions appealing to
the islet biologist.

2. GENESPEED BETA CELL DATABASE STRUCTURE
AND NAVIGATION

2.1. Multiexperimental viewing

“GeneSpeed Beta Cell” is a gene array data repository linked
to the GeneSpeed environment. For a more detailed descrip-

tion of the domain-based gene categorization afforded by
GeneSpeed, please refer to [3] and the online background
and tutorials. GeneSpeed Beta Cell consists of a central
“experiment selector page” (Figure 2), listing experiments
by relevance to embryonic development, adult islet studies,
adult whole pancreas studies, experiments using cell lines,
and solid tumor data. Currently, the site is being expanded
with gene chip data of developing nonpancreatic endoderm.
For each group, experiments are separated into human
and mouse studies. At current, Affymetrix-type data is
supported, given that the body of relevant genomics data
is the largest on this particular platform; but as the parent
GeneSpeed database is not platform-specific, we have also
made it capable of operating with the Illumina BeadChip
type datasets. All current Affymetrix-type datasets in the
repository were obtained as unnormalized raw cel files,
and were normalized using MAS5.0 using identical settings
and similarly scaled for cross-experimental comparisons (see
methods). The available data can be viewed through multiex-
perimental viewing. Any saved gene list can be viewed for any
of the available datasets. This is a fast and convenient way to
display the normalized expression values of defined gene lists
between independent experiments performed in different
laboratories. The resulting display page is constructed to
facilitate horizontal glancing of expression values, while
maintaining the individuality of experiments. As there is no
limit as to the number of genes shown or number of exper-
iments selected, the resulting page view can be quite large.
To assist the identification of the respective column (tissue
type/experimental condition) and row (gene symbol), a
hovering tool supplying this information was implemented.
Also, for quick analysis of the gene ID, each cell is hyperlinked
to the respective Unigene page for that gene. If a gene within
a gene list does not contain a respective probeset, the cell
content is displayed as N.A. The multiexperiment viewer
facilitates table sorting based on each component in selected
datasets. This provides, for example, quickly arranging genes
in a larger gene list according to expression levels for
any tissue/condition selected (e.g., Figure 3 shows a list of
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Figure 2: Web-page view of the GeneSpeed Beta Cell experiment selection window.

homeodomain-class genes sorted based on expression at the
E12.5 gestational time point in pancreatic development).

2.2. Multidimensional analysis in
“My Gene Workspace”

To enhance online capabilities, we developed tools for
multidimensional analysis. The multidimensional analysis
tool operates within a “My Gene Workspace” environment
(Figure 4), which is array-platform independent as it stores
genes by Unigene identifier. “My Gene Workspace” allows for
temporary storage of gene lists, naming such, and selecting
individual lists to be combined using the Boolean operators
AND or OR. Hereby, intersections (AND), or additive
combinations (OR) can be performed on the selected
gene lists, for further logical operations or visualized using
the multiexperimental viewer. Several means of populating
the workspace is possible. The user is provided with a
“permanent list” account, in which work between sessions
can be saved. Lists can here be grouped according to
project name. Gene lists from the permanent account can

be ported to the workspace or gene family choices from a
concurrent GeneSpeed query that can be directly imported.
In addition, gene list results from precalculated analyses
based on the available datasets can be added. The final
option provides a highly useful method to dynamically
aggregate and compare results from individual experimental
data that was not initially designed for a combined analysis.
Such comparisons can be highly scientifically relevant, and
examples are provided later.

As this latter method is based on precalculated analysis
of available datasets, a certain level of a priori choice
has been necessary to implement, as all permutations of
possible data analysis could not be practically implemented.
Consequently, depending on the underlying experimental
conditions, the precomputed analysis is restricted to pairwise
analysis (although multiple pairwise comparisons are often
provided for a given dataset), or a self-organizing cluster
analysis (for series-type data such as experimental time, drug
concentration, or developmental time). Graphical presenta-
tion of each analysis is provided to help the user gauge gene
numbers given the conditions chosen. For pairwise analysis,
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Figure 3: Example output page of homeodomain-class genes expressed in pancreatic development from E12.5 to E18.5. The list was ordered
based on expression levels in E12.5 pancreas. As examples, Mrg1 and Adnp are expressed at high levels throughout pancreatic development.
Several genes such as Pitx2 and multiple Hox-family members decrease abruptly after E14.5, and are only expressed significantly during early
organ development.
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Figure 4: Web-page view of “My Gene Workspace” selection window.

a volcano plot (plotting significance (p-value) versus fold-
change) of the pairwise analysis result is shown. The default
cutoff for gene selection is set at a false discovery rate of
0.1, but can be changed to the user’s preference. Similarly,
the fold-change range can be freely set, allowing the user to
port, that is, >2-fold upregulated genes in a given condition
into the workspace. The graphical presentation of cluster
analyses contains a cluster number, and number of genes
within the cluster. The user is free to select any number
of clusters and port to the workspace. In this manner,

various experimental conditions can be continuously ported
to the workspace, and the experimental multi-intersectional
analysis occurs there. There is no limit to the number of
gene lists present in the workspace. We should note that
for both the multidimensional viewing page, and for the
multidimensional query form in the workspace, individual
datasets are always kept separate (viewer), treated as such
(query page), and are never pooled. Cross-experimental
pooling is not tolerable due to varying conditions in different
laboratories during data generation.



Nayeem Quayum et al. 5

2.3. Current experimental content of
GeneSpeed Beta Cell

As the available datasets and analyses grow on a daily basis,
users should visit the site for a list of currently available
datasets and analyses.

2.4. GeneSpeed Beta Cell use-case scenarios

Some biologically relevant use-case scenarios for the islet
cell biologist are described in the following. Each of these
is available also as online tutorials at GeneSpeed Beta
Cell at http://genespeed.ccf.org/betaCell/tutorial.jsp. As for
any bioinformatics-based method application, the results
are provided as candidate gene lists, corresponding to
genes/probesets fulfilling input criteria. The further vali-
dation of such lists using noninformatics-based techniques
is a general requirement. In the following demonstrations,
the end-result gene lists are often supported by previ-
ous published data from other sources, hereby providing
the validation required for the particular demonstration
scenarios.

Example 1 (Compiling lists of islet-expressed transcription
factors (online tutorial 1)). We wish to address the issue of
defining islet-expressed transcription factor (TF) encoding
genes. To do this, we will utilize the predefined transcription
factor categorization provided by the GeneSpeed database,
assemble a nonredundant list of TF encoding genes, and
find those reduced in Ngn3 null pancreas. First, we select
“new search,” and desired species “mouse” from the drop-
down menu. Next, we select “search by transcription factor
classification” within the GeneSpeed search options. As 5
major domain family groupings exist for the transcription
factor type genes, we will need to iterate the following
procedure for each, but will here limit the families to the
“Basic,” “Beta-Scaffold,” and “HTH” superfamilies. These
families contain, for example, the leucine zipper, bHLH,
and homeodomain transcription factor families, but not the
Zn-finger class. Selecting “Basic” as the first type, we ctrl-
select all the subfamily members of the basic TF superfamily.
Displaying the result provides 685 hits. These correspond
to every instance where the Unigene database of the mouse
contains a homology hit for any of the domain types
associated the “basic” superfamily. However, as the database
has no preset lower E-score cutoff, several false positives exist
in this list (see discussion of how to set an E-score cutoff on
the description pages at GeneSpeed for a full explanation).
To eliminate low-scoring similarity hits, we set the E-score
cutoff at E10-6, and redo the search. Now, a resulting list of
167 genes is detected. We save these to the user account under
an arbitrary name (All TFs). This process is repeated for
the TF superfamilies mentioned above, where the individual
results is added to the All TF’s list, consequently providing a
list of >1600 individual Unigenes. These are next imported
into the “My Gene Workspace.” To extract genes unique to
pancreatic islets in the developing pancreas, we will take
advantage of the available dataset for Ngn3-null embryonic
pancreas, which is listed under the experiment listing page
of GeneSpeed Beta Cell. A pair-wise analysis is provided

comparing E15.5 Wt and E15.5 Ngn3 Null pancreas. The
Ngn3-deficient pancreas is excellent to define endocrine-
specificity, as the organ is devoid of endocrine cells. Selecting
genes upregulated>1.5 fold, P < .25, a second list is imported
into the workspace as Down in Ngn3. This list contains 114
genes. Obtaining the intersection between the TF ALL
and Down in Ngn3 lists provide a total of 8 transcription
factor encoding genes lost in Ngn3 mutant E15.5 pancreas:
Ngn3, NeuroD, Isl1, Pax6, Arx, MafB, Nkx2.2, Insm1, and
HIF1a.

Example 2 (Multidimensional intersection analysis to
define developmentally regulated expression of protein
kinase-encoding genes (online tutorial 2)). We here will
seek to discover kinase-encoding genes that are enriched in
either early or late pancreatic development. A similar study
has not been done before. To perform this task, we first
need to compile a list of all protein kinase-type genes in the
mouse transcriptome. Using a text-search for a gene known
as a protein kinase (e.g., insr), we obtain two hits: Insr and
Insrr. Both of these are receptor tyrosine kinases, and display
the presence of the Tyr pkinase domain (IPR001245) with
an E-score at 1E10−145. We also note that the generic kinase
domain (IPR000719) is detected in both at 1E10−24. By
checking the “InterPro sub-search” box for the IPR001245
domain, and execute the search: “refine by subsearch,”
we obtain a nonredundant list of Unigene clusters having
similarity to the IPR001245 domain. This provides 480
hits, covering all kinase-domain forms (S/T as well as
Y-kinase types). To curate against low-similarity hits, we
manually set the E-score threshold at <1E-6. The resulting
list contains bona-fide 432 kinase-containing genes, which
we subsequently save as “Kinase all” to our account. Many
of these genes represent genes with no previous annotation
as being of the kinase-domain containing type, and may
not have been named yet. Next, we wish to identify which
of these kinase-encoding genes display a downward trend
during pancreatic development. To do this, we move to the
“search GeneSpeed Beta Cell,” and expand the “Embryonic
studies” dataset tab. Selecting the “kinetic series of mouse
pancreatic development 1” precomputed cluster analysis, we
are provided with the results of a Kohonen’s self-organizing
cluster analysis in a graphical format. Gene clusters with a
downward trend during pancreatic development are selected
(cluster 3,4,5,8,9,15,20) and combined using the selection
tool provided. The results are saved as Genes Trend Down
to the workspace. Within the workspace the intersection
between the Genes Trend Down and the Kinase all lists are
obtained using the Boolean operator AND. The resulting
list contains 138 kinase-type genes. The list can be saved, or
gene expression of the particular genes can be displayed in
some or all mouse array experiments in the GeneSpeed Beta
Cell database. The latter may provide important clues as to
tissue-specific expression of individual members. Finalizing
this demonstration, we wish to address the identity of
kinase-encoding genes that are upregulated over time in
the developing pancreas. By repeating the above method
for kinase-type genes displaying upregulation (Cluster
6,11,16,17,21,22, generating list Gene Trend Up), only 27

http://genespeed.ccf.org/betaCell/tutorial.jsp
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genes are identified. We can conclude that more kinase
signaling diversity exists prior to rather than after the
secondary transition in the mouse pancreas.

Example 3 (Defining human islet-specific expression using
Shannon Entropy with exocrine elimination (online tutorial
3)). This example uses the available dataset on human
tissues, as provided by the Novartis Genomics Institute
(http://symatlas.gnf.org/SymAtlas/about.jsp). A tissue set
consisting of 79 human tissues and 61 different mouse
tissues, mostly adult solid organs, has been generated in
duplicate using the Affymetrix GNF1 platform. To provide
a measure of tissue expression selectivity, we adopted the
method of Shannon entropy determination, as previously
described by Schug et al. [4]. Shannon entropy provides
quantitative measures of expression using a bit-rate scale. For
each gene, the Shannon entropy (Hgene) defines the degree
of ordered expression; as a rule, the lower the Hgene, the
fewer tissues in the total set express the gene in question. To
identify those tissues showing uniqueness in expression, the
measure Qtissue can be used. Again, as a rule, the lower the
Qtissue value, the more specific the gene is expressed in that
particular tissue. A rank order of the lowest Qtissue values thus
provides a list of those genes that have the highest selectivity
for the tissue in question. Shannon entropy computations
were performed for all tissues in the above datasets. As the
human, but not the mouse, datasets contain array data for
islets, the present example is currently limited to human.
From the GeneSpeed search query, we select species “homo
sapiens,” and thereafter “search by expression.” We select
the human GNF1A chip, and “calculated Shannon entropy”
using the drop-down boxes. The following page contains
selector boxes for each tissue in the set. For pancreatic islets,
we select a Qtissue value of <1.7 × Hgene. The user should
have experiment with the Qtissue setting; the lower values
(approaching Hgene) provide smaller numbers, but more
tissue-specific genes. Relaxing the value towards a value of
2 × Hgene provides more exhaustive, albeit less selectively
expressed genes. At Qislet at 1.7 × Hgene, we identify 96
probesets (as more than one probeset may exist for each
gene, the actual number of genes identified is often slightly
lower). Selecting to show all Shannon entropy values, we
next copy the entire table into Excel, in order to rank-order
the hits. Not surprisingly, the top of this list consists of
Glucagon (GCG), Insulin (INS), IAPP, but we also notice
that not far from the top, some nonendocrine-type genes,
such as PNLIPRP1 and CPA2 are present. The reason for
this is due to exocrine contamination. The majority of such
genes are easily removed by eliminating all genes in which
Qpanc < Qislet. Ranking the resulting genes provides a list
of genes showing the highest selectivity for pancreatic islets
compared to 78 other human tissues (the 30 top-ranked
genes of this list is shown in Table 1). The results include
the complement of endocrine terminal products (Ins, Gcg,
Sst, Ppy), four Reg-type genes (Reg1b, Reg3g, Reg3a, Regl),
several well-known endocrine transcripts (Pcsk1 (PC1/3),
Iapp, Slc30a8), secretogranins (Scgb2a1, Scgn, Scg5, Scg2,
Scg3), and transcription factors known to function in the islet
(FoxA2, Nkx2.2, Isl1).

Example 4 (Pituitary versus pancreatic islets: finding com-
mon neuroendocrine properties (online tutorial 4)). It is
known that neuroendocrine cell types shares certain char-
acteristics related to production and release of secreted
products. The pituitary and islets are highly enriched in cells
producing polypeptide hormones. Using Shannon entropy,
we will here ask what are the genes that may be in common
between pituitary and pancreatic islets and not expressed
widely elsewhere. Similar to above, we select Shannon
entropy query in GeneSpeed, and input a slightly relaxed
Qtissue value of 1.8 for both pituitary and pancreatic islets.
Individually, QIslet < 1.8×Hg and Qpituitary < 1.8×Hg identify
292 and 222 probesets, respectively. The intersection is 21
probesets, corresponding to 19 individual genes (Table 2,
3 probesets for GNAS, guanine nucleotide binding protein
were identified). Three genes encode known granule-type
proteins (ChgrA, secretogranin 2 (SCG2), secretogranin
5 (SCG5)). Two transcription factors are found: InsM1
and ZNF91. The proprotein convertase subtilisin/kexin
type-1 inhibitor (PCSKN1) and the peptidylglycine alpha-
amidating monooxygenase are also present. Other products
include CACNA1F (Calcium channel, voltage-dependent,
alpha 1F), CNGA3 (Cyclic nucleotide gated channel alpha
3), the transmembrane protein TMEM30 as well as sev-
eral uncharacterized genes. Many of these genes represent
expected hits, and show the value of combining parameters
such as tissue uniqueness and overlapping gene expression to
derive a meaningful candidate repertoire for further scrutiny.

3. DISCUSSION

Of the current available places for genomics data reposition,
the NCBI GEO (gene expression omnibus, [5]) is presently
the most exhaustive. The development of GEO proceeds
to include data analysis of public array-type experiments,
which also include those deposited on islets, or developing
pancreas. The tools are currently limited to analyses
performed within individual experiments, and data results
cannot be ported between experiments. However, no other
resource exists with a similar exhaustive compilation of
DNA microarray-type datasets, and as such, GEO represents
a growing and increasingly important pillar for array data
compilation. In contrast to the more universal user-base that
GEO seeks to cover, certain resources have also been made
available and dedicated to the islet community. T1Dbase
(http://www.t1dbase.org/) was specifically developed to
catalogue information on the genetics of type-I diabetes,
and contains extensive information on candidate gene
regions [1]. It also contains a microarray repository and
a recently developed Gene Atlas search function, aimed
at providing a rapid visualization of gene expression in
islets. The strength of the environment lies in the use of
Gaggle [6], which is a Java-based communicator interface
to several bioinformatics tools. However, to use this requires
a significant knowledge of the Gaggle-implemented tools
such as the TIGR tmev (http://www.tm4.org/mev.html)
or R (http://www.r-project.org/), notwithstanding a rather
complicated data upload scheme. Despite its strength, this
may therefore represent a time-consuming and intellectual

http://symatlas.gnf.org/SymAtlas/about.jsp
http://www.t1dbase.org/
http://www.tm4.org/mev.html
http://www.r-project.org/
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Table 1: Results, use-case scenario 3. Genes defined as most specific for human islets as based on Shannon Entropy calculations.

Gene Symbols Entropy Hg QIslets QPancreas

Hs.516494 GCG 1.32 1.65 4.22

Hs.89832 INS 1.2 1.74 3.04

Hs.46835 IAPP 1.95 2.33 5.63

Hs.4158 REG1B 2.82 3.91 4.48

Hs.447084 REG3G 3.61 4.46 7.89

Hs.567312 REG3A 3.45 4.65 5.41

Hs.584797 REGL 3.61 4.91 5.59

Hs.12409 SST 4 5.15 9.27

Hs.558368 PPY 4.28 5.36 11.82

Hs.78977 PCSK1 4.31 5.72 11.8

Hs.97644 SCGB2A1 4.17 5.83 12.14

Hs.204238 LCN2 3.95 6.24 9.34

Hs.612083 NA 4.23 6.51 7.43

Hs.73923 PNLIPRP1 4.69 6.57 7.05

Hs.489786 CFTR 4.8 6.85 7.29

Hs.116428 SCGN 5.03 6.89 9.34

Hs.76452 CRP 5.18 7.21 8.66

Hs.156540 SCG5 4.92 7.62 11.4

Hs.53985 GP2 5.23 7.71 7.72

Hs.516726 SCG2 4.96 8.3 12.7

Hs.232618 SCG3 5.12 8.49 13.3

Hs.534458 CGI-38 5.02 8.51 13.37

Hs.125898 GNAS 5.64 8.6 12.81

Hs.8364 PDK4 5.72 8.62 10.84

Hs.592742 ELL2 5.54 8.63 12.26

Hs.2256 MMP7 5.7 8.7 11.14

Hs.123072 RAB3B 5.13 8.78 13.24

Hs.155651 FOXA2 5.45 8.95 9.62

Hs.516922 NKX2-2 5.45 9.17 12.68

Hs.558519 ERO1LB 5.63 9.18 11.22

Hs.491232 SLC39A14 5.55 9.18 10.11

Hs.260720 DNAJC12 5.69 9.25 11.76

Hs.82071 CITED2 5.58 9.36 13.37

Hs.503733 LOC653275 5.88 9.38 11.61

Hs.203699 GOLPH3L 5.59 9.41 11.95

Hs.479602 APBB2 5.76 9.45 13.23

Hs.109590 GENX-3414 5.89 9.79 13.27

Hs.89655 PTPRN 6.01 9.84 12.71

Hs.532270 SLC30A8 5.97 9.87 12.33

Hs.505 ISL1 6 9.9 11.7

barrier to most biologists using the resource irregularly.
Another comparable resource, the EpconDb (http://www
.cbil.upenn.edu/epcondb42/) [2], originally generated by
the Endocrine Pancreas Consortium and funded through
the NIH Beta Cell Biology Consortium (http://www.betacell
.org/), also provides microarray chip repository support.
Recently, precalculated analysis results for select experiments
are also provided. The structure of the EpConDb resource
centers on the GUS (genome unified schema), which includ-
es the DOTS database. DOTS shares significant similarities

to the NCBI-devised Unigene EST database, but extend to
include splice site data, as well as promoter definition.

The GeneSpeed Beta Cell site seeks to complement
these resources on particularly two fronts: to provide more
extensive orthogonal analysis between array experiments
and to provide a functional gene list operator workspace,
which neither the T1dbase nor Epcondb sites allow. To
achieve the former, we focused on providing a larger degree
of relevant precomputed analyses of array experiments
providing these in an easy-to-query format. To achieve the

http://www.cbil.upenn.edu/epcondb42/
http://www.cbil.upenn.edu/epcondb42/
http://www.betacell.org/
http://www.betacell.org/
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Table 2: Results, use-case scenario 4. Genes specific for both pancreatic islets and pituitary.

Unigene ID Symbol Gene name

1 Hs.6790 DNAJB9 DnaJ (Hsp40) homolog, subfamily B, member 9

2 Hs.156540 SCG5 Secretogranin V (7B2 protein)

3 Hs.516726 SCG2 Secretogranin II (chromogranin C)

4 Hs.389378 MON2 MON2 homolog (S. cerevisiae)

5 Hs.150793 CHGA Chromogranin A (parathyroid secretory protein 1)

6 Hs.152944 LOH11CR2A Loss of heterozygosity, 11, chromosomal region 2, gene A

7 Hs.631626 ZNF91 Zinc finger protein 91

8 Hs.89584 INSM1 Insulinoma-associated 1

9 Hs.234785 CNGA3 Cyclic nucleotide gated channel alpha 3

10 Hs.632799 CACNA1F Calcium channel, voltage-dependent, alpha 1F subunit

11 Hs.369430 PAM Peptidylglycine alpha-amidating monooxygenase

12 Hs.146180 TMEM30B Transmembrane protein 30B

13 Hs.125898 GNAS GNAS complex locus

14 Hs.459183 ALPK3 Alpha-kinase 3

15 Hs.87295 FAM18B Family with sequence similarity 18, member B

16 Hs.522640 PCSK1N Proprotein convertase subtilisin/kexin type-1 inhibitor

17 Hs.496542 RNF128 Ring finger protein 128

18 Hs.444459 C9orf135 Chromosome 9 open reading frame 135

19 Hs.503733 LOC653275 Similar to cryptic/cripto

latter, we developed a gene list workspace that would allow
for platform-to-platform compatibility using the common
Unigene denominator, which is the nexus of the GeneSpeed
MySQL database. The current version of the database
provides certain features not found elsewhere, some of which
has been addressed through the demonstration cases. Yet,
the database is a currently developing structure that in
its present form is useful, but easily imagined improved.
Therefore, we are currently focusing on key aspects for the
further development of the GeneSpeed environment. These
include the identification of additional relevant microarray
experiments; filling out “missing links” by performing stop-
gap-type microarray experiments for populating critical, but
missing, areas of the pancreatic expression space; improving
the search and query formats for user-friendliness; and
finally developing an export/import interface for pathway
analysis programs such as Ingenuity Pathway Analysis (IPA).

The usefulness of GeneSpeed Beta Cell database is depen-
dent on the amount of available genomics data content. A
linear increase in number of available datasets and accompa-
nying precomputed analyses translates into an exponentially
growing set of query combinations. There are obvious
gaps in the available datasets, as multiple null mutations
have been created for several key developmental regulators
during pancreatic development, and several mutant models
resulting in diabetes due to beta-cell dysfunction have also
been reported, all of which would represent valuable data
in the present environment. Therefore, we are asking the
islet research community to share available datasets for
multidimensional analysis. Also, we will continue to upload
publicly available datasets from the GEO environment.

For a wet-biology laboratory like our own, the present
incarnation of the database has provided means of moving

forward in otherwise difficult-to-execute bioinformatics-
based questions. We hope that the same appreciation may
pioneer gene identification challenges in other laboratories
hereby helping the diabetes research community.

4. METHODS

4.1. Genomics data incorporation and analysis

The “GeneSpeed Beta Cell” environment was developed
using the J2EE platform on a Linux server. For Affymetrix-
type genomics data, we compiled the CEL files (raw data)
associated with different experiments from different sources
and normalized them locally using MAS5.0 algorithm,
using an identical scaling factor of 500, to ensure optimal
comparability in a cross-experimental setting.

The microarray experiments currently available can be
grouped, and hence analyzed, according to experimental
design type. For time-series experiments (and drug-effect
studies), an SOM neural network clustering algorithm was
applied. The number of clusters selected is empirically
based on individual results, selecting the minimal number
adequately describing the data complexity. A graphical
presentation is provided of the log-transformed expression
averages of genes within the cluster. Also, the total number
of gene number contained/cluster is provided. R and Biocon-
ductor [7] were used to accomplish this task.

For multicomponent analysis, which also includes single
pair-wise analysis, ANOVA testing was performed. For
multiple-condition datasets, several pair-wise analyses are
provided. These results are depicted through volcano plots.
A false discovery rate (FDR) test correction on the ANOVA
result at 10% significance is provided for each plot as the
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default P-value setting. On the volcano plots, the boxed areas
outlining a 10% FDR corrected P-value and the−2 to +2 fold
regions of change are shown.

4.2. Account functionality

There are two account types in GeneSpeed: “guest” and
“registered user.” In order to use the workspace environment
registration is required. A “registered user” can log back into
their account to gain access to saved studies. Establishing a
registered account is free and can be done on the GeneSpeed
registration page (http://genespeed.ccf.org/loginReq.php).
An automated password will be sent to the newly registered
user. The confidentiality of all registration information is
strictly maintained and we will only use such information
to notify our users of any disruptions or modifications of
the GeneSpeed service. At present, only registered users are
allowed to use the GeneSpeed Beta Cell database.

The GeneSpeed account allows registered users to save
gene lists into a private account that is permanent and may
only be viewed by the owner. The “My Gene Workspace,” on
the other hand, maintains gene lists temporarily during the
current login session; upon logging out the content of the
“workspace” will be deleted.

4.3. Functional implementation of
“My Gene Workspace”

The “My Gene Workspace” logic was developed using J2EE
and sql-type queries. Facilitating cross-platform compar-
isons, the workspace utilizes Unigene cluster Ids (UID).
Consequently, the probeset identification through the exper-
imental analyses is translated into corresponding UID upon
transfer to the workspace. As a result, if more than one
probeset is detected for a given gene in the analysis, these
probesets collapse into the UID of that gene. Secondly, upon
selection of the content of a gene list in the workspace,
followed by showing the content in the expression space,
all probesets corresponding to the selected Unigene will
be displayed. To reduce ambiguities, we update the system
continuously upon the availability of updated mapping files
from NetAffx Analysis Center server. Given that the NCBI
Unigene dataset is constantly evolving, updated mapping to
the most recent UID is done every 6 months.
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