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Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint

inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms

remain uncontrolled despite medication and allergen avoidance. AIT is considered

to have been effective if it alleviated allergic symptoms, decreased medication use,

improved the quality of life even after treatment cessation, and prevented the progression

of AR to asthma and the onset of new sensitization. AIT can be administered

subcutaneously or sublingually, and novel routes are still being developed, such as

intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through

modification of innate and adaptive immunologic responses. The main mechanism of AIT

is control of type 2 inflammatory cells through induction of various functional regulatory

cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells

(DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However,

AIT has a number of disadvantages: the long treatment period required to achieve

greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker

for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants,

and novel vaccine technologies are being studied to overcome the problems associated

with AIT. This review presents an updated overview of AIT, with a special focus on AR.
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INTRODUCTION

Allergic rhinitis is a common upper airway disease. Its prevalence varies around the world. A good
epidemiologic study reported that 20 to 30% of adults and up to 40% of children are affected (1).
We recognize that allergic rhinitis (AR) has significant effects on the quality of life, sleep, and
performance at work and school of patients. AR is not only a disease of the upper airway. It may
also lead to inflammatory processes in the lower airways, which is supported by the fact that rhinitis
and asthma frequently coexist (2). Allergies are characterized by dysregulated type 2 immunity and
epithelial barriers that have increased concentrations of allergen-specific immunoglobulin (Ig) E
(3, 4). Type 2 immune responses involve T helper (Th) 2 cells, IgE-producing B cells, group 2
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innate lymphoid cells (ILC2s), and small fractions of interleukin
(IL)-4-producing natural killer (NK) cells and NK-T cells,
basophils, eosinophils, mast cells, and their cytokines (5).
Emerging evidence suggests that follicular helper T (Tfh) cells,
rather than Th2 cells, play a crucial role in controlling IgE
production (6). Upregulation of Tfh cell activities, including
a skewing toward type 2 Tfh cells and IL-13-producing Tfh
phenotypes, and defects in follicular regulatory T cells (Tfr) have
been recognized in patients with allergic diseases (6). Moreover,
there is a complex network among type 2 cytokines (IL-4, IL-
5, IL-9, and IL-13) which are secreted mainly from type 2
immune cells, and alarmins [IL-25, IL-33, and thymic stromal
lymphopoietin (TSLP)] which are released from tissue cells,
particularly epithelial cells (Figure 1).

Basic AR treatment consists of allergen avoidance, use of
medications that provide symptomatic relief, anti-inflammatory
therapies, and allergen-specific immunotherapy (AIT). At
present, AIT is only disease-modifying, and it is aimed at
improving allergen tolerance. AIT also changes the allergic
immune response to one of immune tolerance, as in healthy
individuals (7). AIT uses general mechanisms of immune
tolerance to allergens to normalize allergen-specific T and B
cells, regulation of IgE and IgG production, and modification
of mast cells, basophil activation thresholds, and the phenotype
of dendritic cells (DCs) (8). The main goals are maintaining
regulatory T cells (Tregs), regulatory B cells (Bregs), and
various other regulatory cells in order to suppress type 2
immune responses and allergic inflammation (Figure 1) (9).
AIT showed efficacy in selected AR patients with HDM
and birch or grass-pollen sensitization (10, 11). Substantial
evidence supports the effectiveness of AIT for AR in reducing
the symptoms and medication requirements, and its safety
and cost-effectiveness (12). AIT applied in the early stage
of allergic disease had an excellent preventive effect on
disease progression to asthma, especially in young children
(13). However, significant limiting factors for AIT were the
long duration of treatment, cost, poor patient compliance,
and severe life-threatening adverse reactions to the treatment
(14). It is hoped that these disadvantages can be mitigated
by developing non-allergenic, highly immunogenic allergen
extracts, combined usage with novel adjuvantmolecules, and new
administration routes. Here, we review our current knowledge
regarding AIT for AR. In addition, we update relevant topics
on the use of AIT in AR that can help physicians in
daily practice.

Abbreviations: AAMs, alternatively–activated macrophages; AIT, Allergen-

specific immunotherapy; APCs, Antigen-presenting cells; AR, Allergic rhinitis;

Bregs, Regulatory B cells; CCL, C-CMotif Chemokine Ligand; DCregs, Regulatory

dendritic cells; DCs, Dendritic cells; EPIT, Epicutaneous immunotherapy;

FAB, Facilitated allergen binding; HDM, House dust mite; IFN-γ, Interferon-

γ; Ig, Immunoglobulin; IL, Interleukin; ILCs, Innate lymphoid cells; ILIT,

Intra-lymphatic immunotherapy; NK, Natural killer; PBMCs, Peripheral

blood mononuclear cells; PGD2, Prostaglandin D2; SCIT, Subcutaneous

immunotherapy; SLIT, Sublingual immunotherapy; TGF-β, Transforming

growth factor-β; Tfh, Follicular helper T; Th, T helper; Tregs, Regulatory T cells;

TSLP, Thymic stromal lymphopoietin.

THE CELLULAR IMMUNE RESPONSE
FOLLOWING AIT

Since AIT acts in an antigen-specific manner, modulation of
antigen-specific immune cells, including T and B cells, was
thought to be its primary mode of action. However, recent
findings suggest that AIT also modulates non-antigen-specific
immune cells, including ILCs, monocytes/macrophages, NKs,
and DCs. These effects may also contribute to the improvement
of symptoms after AIT.

T Cells
AIT induces FOXP3+ and IL-10+ Treg cells (Tregs), which
prevent and inhibit allergic inflammation by expressing their
immunosuppressive functions at different levels (15). There are
4 types of the suppressive mechanism used by Tregs: (1) via
suppressive cytokines, IL-10, IL-35, and transforming growth
factor-β (TGF-β) secretion, (2) disruption of metabolic pathways
via CD25, cAMP, adenosine receptor 2, histamine receptor 2
(HR2), CD39, and CD73, (3) suppression of DC activation
by membrane-bound molecules, programmed death 1 (PD-
1), and cytotoxic T lymphocyte antigen 4 (CTLA-4), and (4)
cytolysis (granzymes A, B, and K) (16, 17). IL-10–producing
Tregs suppress Th2 type immune responses (IL-4, IL-5, IL-9,
and IL-13) and IL-17–producing Th cells (18, 19). Moreover,
AIT can inhibit CD45RBlowCD27−CRTH2+CD161+CD49d+

T cells (Th2A) and IL-21+ Tfh cells (20, 21). On the other
hand, AIT promotes IL-22– and interferon-γ (IFN-γ)–producing
Th cells (22, 23). AIT also involves upregulation of activated
Tregs (FOXP3+Helios+CD25+CD127−) and downregulation of
dysfunctional Tregs (ILT3+CD25+ and FOXP3+SATB1+) (23,
24). Recent studies revealed that AIT improved dysfunctional Tfr
(CD45RAlowCXCR5highFOXP3+) and reduced type 2 Tfh cells
that contributed to aberrant IgE production (25–27).

B Cells
Patients responding to AIT are characterized by the increase
of IgA, IgD, IgG2 and IgG4-positive allergen-specific B cells,
plasmablasts, and IL-10 or IL-1RA-positive Bregs (28–30). IL-10
suppresses IgE production and augments IgG4-producing class-
switched B cells (31). IgG4 blocks IgE antibodies by mopping
up free allergen, and IgE fails to trigger Fc receptors. Moreover,
IgG4 prevents mast–cell activation through FcγIII. AIT also
enhanced local allergen-specific IgA1 and IgA2 in patients
with grass–pollen allergy (32, 33). Thus, secretory IgA provides
protection by blocking allergens absorbed into the mucosa. AIT
induces allergen-specific IgD, and a recent study demonstrated
that IgD constrains IgE-mediated basophil degranulation (34).
Interestingly, a study in patients with grass-pollen subcutaneous
immunotherapy (SCIT) found that AIT could induce nasal
IgG4 levels, and blocking activity correlated with the clinical
response (35).

Innate Lymphoid Cells
Innate lymphoid cells were recently identified as innate-type
immune cells with no antigen receptors, meaning that they are
not directly activated by antigens (36). ILCs were activated by
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FIGURE 1 | The mechanism of immune tolerance to allergen induces by allergen-specific immunotherapy (AIT). AIT principally induces regulatory cells including Treg,

Breg, Tfr, DCreg, NKreg, and IL-10+ ILC cells. Treg cells apply four main mechanisms for suppressing inflammatory cells (inhibitory cytokines, cytolysis, metabolic

disruption, and targeting DCs). In addition, the regulatory cells produce IL-10 to suppress the type 2 inflammatory cells involved in allergic inflammation, such as Th2,

Tfh2, IgE-producing B cells, and ILC2s. Moreover, AIT induces allergen-specific immunoglobulin class-switch, promoting IgG4 and IgA.

various cytokines, neuropeptides, and lipid mediators produced
by surrounding cells (37). ILCs were initially divided into three
different subsets that resemble Th cell subsets based on the
transcription factors and cytokines they produced. Among them,
ILC2s resembling Th2 cells were involved in the pathophysiology
of various allergic diseases, including asthma and AR, through
the production of type 2 cytokines (38). Indeed, the frequency
of ILC2s in peripheral blood of seasonal AR patients was
increased during the season compared to healthy individuals
(39, 40). Local allergen provocation in patients with AR induced
accumulation of ILC2s in the nasal tissue, accompanied by
increased levels of prostaglandin D2 (PGD2), and IL-5 in the
nasal lining fluid (41). These findings suggested that allergen
exposure indirectly induces migration and activation of ILC2s
through PGD2 synthesis by activated mast cells. AIT reduced the
seasonal increase in ILC2s in peripheral blood of patients with
seasonal AR (39). Likewise, AIT reduced the frequency of ILC2s
in peripheral blood of patients with house dust mite (HDM) AR
(42, 43).

Recently, ILCs that produce IL-10 were identified in tissues
of both humans (44–46) and mice (44, 47–50). Such cells were
rarely detected in the tissues of both humans and mice at a
steady state (44, 50). However, they were increased in tissues
with type 2 inflammation, such as the nasal tissues of patients
with chronic rhinosinusitis with nasal polyps (44), and in the
lungs of a murine asthma model (44, 47–50). IL-10-producing
ILCs were shown to be converted from ILC2s upon IL-33 and
retinoic acid stimulation in vitro (44, 46, 47), and they are now
considered to be inducible cell types rather than residential cell
types. Intriguingly, AIT induced IL-10-producing ILCs in the
peripheral blood of patients with HDM (45) and grass-pollen
AR (46), and the frequency of those cells correlated with the
improvement in the symptom score. These findings suggest
that induction of IL-10-producing ILCs is also involved in the
mechanisms of AIT. Furthermore, IL-10-producing ILCs were
shown to suppress proliferation of ILC2s and T cells through
IL-10 and to protect against disruption of epithelial barrier
integrity by allergen exposure (44, 46). In murine asthmamodels,
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IL-10-producing ILCs reportedly exhibited an exhausted-like
phenotype with reduced capacity for type 2 cytokine production
(48, 51). However, the mechanisms underlying the induction of
AIT of IL-10-producing ILCs remain unclear.

Dendritic Cells
Dendritic cells are crucial antigen-presenting cells that direct
immune responses toward either inducing inflammation or
tolerance and are considered to be heterogeneous, both
phenotypically and functionally (52). Among them, tolerogenic
DCs (tDCs) induce tolerance through various mechanisms,
including induction of Tregs (53). Since tDCs are also
heterogeneous and may exhibit different phenotypes depending
on the organ, the characteristics of tDCs that may be induced
by AIT remain unclear. However, some markers related to
tDCs, including complement component 1 and stabilin, were
upregulated in peripheral blood mononuclear cells (PBMCs)
from grass-pollen allergy patients after 4 months of AIT (54),
suggesting that induction of tDCs may play a role in AIT.
Regulation of DC activation is a key mediated immune response
to allergens. Therefore, patients with allergic disease display a
tendency to produce fewer tolerogenic IL-10-producing DCs
(55). Furthermore, AIT enhanced regulatory dendritic cells
(DCregs) and type 1 DCs (DC1s), while decreasing DC2s
and DC17s in responder AIT patients (56). Plasmacytoid DCs
(pDCs), which play a crucial role in immunity against viral
infections, were suggested to be involved in the mechanisms of
AIT. Eljaszewicz et al. reported an increase in pDCs and CD141+

myeloid DCs in individuals with allergies (43). In contrast, the
number of CD1c+ myeloid DCs in patients with AR decreased
during the first year of AIT (43). Also, pDCs in peripheral blood
were found to be decreased in number after AIT (57, 58).

Macrophages
Macrophages are heterogenous phagocytic cells that play a vital
role in innate immunity and are significant contributors to the
adaptive immune system. Macrophages activated by Th1 cells are
identified as M1 macrophages, while those activated by IL-4 and
IL-13 are named alternatively activated macrophages (AAMs) or
M2 cells (59). M2 macrophages can produce IL-4 and IL-13, and
IL-10 and TGF-β in response to specific stimulators. M2a cells
activate Th2 cells via IL-4 and IL-13 production mediated by
C-CMotif chemokine ligand (CCL) 17 and mannose receptor C-
Type 1 (MRC1), leading to the development of allergic asthma
(60). M2b cells activate Tregs via IL-10 and TGF-β production
mediated by CCL24 and MRC1, leading to allergic tolerance
and deceased inflammation (60). However, the roles of M2
macrophages in AIT need to be further investigated.

Monocytes
Circulating monocytes are also known to be heterogeneous and
include 3 distinct subsets: classical monocytes (CD14++CD16−),
intermediate monocytes (CD14++CD16+), and non-classical
monocytes (CD14+CD16++). Non-classical monocytes are
considered to be proinflammatory cells that produce large
amounts of TNF-α. The frequency of non-classical monocytes
in peripheral blood was decreased after 3 months of AIT and

was more pronounced after 6 months. On the other hand,
intermediate monocytes, thought to have anti-inflammatory
properties, were increased after 1 year of AIT (61). Sousa
et al. also found that AIT enhanced circulating CD16+

monocytes (57).

NK Cells
Natural killer cells can differentiate into 2 distinct functional
subsets: NK1 or NK2 cells, which are analogous to the T-cell
subsets Th1 or Th2 (62). Moreover, TGF-β and IL-10-secreting
NKreg cells might have a role in the immune regulation of
allergic inflammation. For example, IL-10-producing NKreg cells
significantly suppressed both allergen or antigen-induced T-cell
proliferation, IL-13 and IFN-γ-secreting T cells, and reduced
IgE production (62, 63). However, a recent study observed no
changes in the frequency of NK cells in patients undergoing
AIT (43).

ADMINISTRATION ROUTES

Subcutaneous
Until recently, subcutaneous delivery (SCIT) was the standard
administration route for AIT (64). The conventional schedule for
SCIT using allergen extracts consists of dose build-up by once-
weekly injection, followed bymaintenance dose injections at 4–8-
week intervals, continued for at least 3–5 years (65). The build-up
phase can be shortened by following cluster or rush protocols
to help the patients reach maintenance (66). In the cluster
protocol, multiple injections are given on non-consecutive
days. In contrast, in the rush protocol, multiple injections are
given on consecutive days, reaching the maintenance phase
in few days, but this increases the risk of anaphylaxis (67).
Therefore, the accelerated protocols should be applied only in
specialized centers.

Sublingual
Sublingual immunotherapy involves administering allergens
under the tongue, generally daily. Sublingual immunotherapy
(SLIT) is administered via liquid drops or as freeze-dried,
lyophilized, or film-coated tablets. SLIT tablets contain a single
allergen, whereas SLIT drops often contain multiple allergens
for the treatment of poly-sensitization (68). At present, SLIT is
widely used to treat HDM, and grass and tree-pollen allergies.
Also, SLIT can be safely and effectively performed at home, and
it does not require a build-up phase (69). The oral mucosa and
regional lymph nodes form an elaborate immunological network,
which is an essential prerequisite for SLIT. The network includes
local antigen-presenting cells (APCs), such as Langerhans cells
in the epithelium, and oral dendritic cells (DCs) with the
CD103C−CD11b+ phenotype and macrophages in the lamina
propia (Figure 2) (70). Oral DCs transport sublingual antigens
to the submandibular lymph nodes and induce antigen-specific
Tregs. In addition, SLIT induces mucosal and serum-specific-
IgA responses, which may contribute significantly to tolerance
induction (32, 71). A clear difference between SCIT and SLIT is
the effective dosing range of allergen management. SCIT uses a
narrow effective dosing range of 5–25µg of allergen per injection
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FIGURE 2 | Immunologic mechanism of sublingual immunotherapy (SLIT). Substantial amounts of allergens from SLIT-tablet are capture by Langerhans cells in the

epithelial layer. Next, the allergen is processed and migrated transmucosal by myeloid dendritic cells (mDCs) to draining lymph nodes. In the lymph node, these cells

interact with T and B cell priming to regulate immune tolerance.

for many allergens, whereas SLIT requires at least 50–100 times
more allergen than SCIT to achieve a similar level of efficacy (72).
Therefore, long-term compliance with SLIT might be a concern.
However, a recent study in Denmark reported similar 1-year
compliance of∼50% with both SCIT and SLIT (73).

Intra-Lymphatic
Intra-lymphatic immunotherapy (ILIT) is the direct intra-
lymphatic injection of allergens. ILIT improves the efficiency
of AIT by reducing the number of treatment applications
and the treatment duration, achieving good compliance and
fast symptom alleviation, and showing exemplary safety (74,
75). ILIT requires only three ultrasound-guided injections of a
low allergen dose into the inguinal lymph nodes at 1-month
intervals (76). The cumulative allergen dose can be reduced
1,000-fold compared to SCIT (77). The disadvantage of ILIT
is the requirement for experienced staff for injection under
ultrasound guidance.

Epicutaneous
Epicutaneous immunotherapy is a novel therapy that is currently
being investigated. Epicutaneous immunotherapy (EPIT)
delivers allergens via repeated applications to the skin and APCs
in the superficial skin layers (78). Innovative epidermal allergen

powder delivery technologies include electronic spreading,
ablative fractional laser, and microneedle arrays (79). By
targeting epidermal Langerhans cells, but not mast cells or the
vasculature, EPIT can reduce both local and systemic adverse
effects (80). The following advantages have been noted for EPIT:
(1) a high safety profile due to allergen application into the non-
vascularized epidermis and subsequent allergen delivery to the
less–vascularized dermis, (2) increased convenience for patients
due to the non-invasive (needle-free) and self-administrable
application method, likely leading to improved compliance, (3)
absence of additional potential irritant constituents (e.g., alum,
preservatives), and (4) less cost–intensive than conventional
AIT (81). Several clinical trials in AR patients used EPIT to
deliver allergens of grass and birch pollen (82–85). The patch
application time ranges from 8 to 48 h (86–89). EPIT might
induce desensitization in patients with pollen sensitization,
although at increased risk of local adverse events. However,
more data are needed regarding patients with AR and indoor
allergen sensitization.

Local Nasal
Local nasal immunotherapy has been extensively investigated
in the past 40 years and seems to be effective only on rhinitis
symptoms. However, local nasal immunotherapy (LNIT) is not
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popular with patients due to local side effects that require
topical nasal premedication for their prevention and difficulty
of application (90). Currently, LNIT is not recommended for
clinical use.

BIOMARKERS

Allergen-specific immunotherapy is considered a precision
medicine model for treating allergic diseases because of its
individualized approach to treatment based on clinical and
immunological profiles of each patient (91). Biomarkers are
measurable indicators linking an underlying pathway to the
phenotype or endotype of a disease. Identification of specific
biomarkers that can identify responders, monitor treatment,
predict the durability of therapeutic effects, and determine
adverse event risk would aid clinical decisions and the delivery
of targeted and effective treatments (91, 92). New potential
biomarkers have been discovered with the emergence of
advanced immunological, data-driven “-omic,” and molecular
technologies (93, 94). Here, we briefly review a number of
promising candidates that are being evaluated for AIT immune
monitoring in the context of clinical trials as well as in real-world
clinical settings (Table 1).

Specific Immunoglobulins and Their
Inhibitory Activity
Measurement of IgE is the first step in the diagnosis of
atopic diseases. At present, detection of sIgE, either through
measurement in serum or by an in-vivo skin prick test, and
the manifestation of symptoms on exposure to the sensitizing
allergen is the only criteria for allergy diagnosis and starting
AIT (95). Several studies showed that the allergen-specific IgE
(sIgE) and total IgE (tIgE) levels increase transiently during the
initial stages of AIT but then return to their pre-treatment levels
during the maintenance phase (96, 97). These trends seem to vary
primarily with the duration of AIT and the time of sampling.
A slow decrease in those levels may not be accompanied by a
favorable clinical outcome (91). Several studies reported that the
sIgE/tIgE ratio before AIT might predict the ultimate efficacy of
AIT (91, 98, 99). A retrospective study in patients who underwent
grass-pollen or HDM SCIT or SLIT found that the clinical
response to AIT correlated significantly with the initial sIgE/tIgE
ratio (r = 0.723, p < 0.0001). The sensitivity and specificity of
the decision point for a serum sIgE/tIgE ratio of >16.2% were
97.2 and 88.1%, respectively (98). Others also found a similar
correlation between the ratio and AIT outcome, but a small
randomized controlled open-label study could not replicate those
results (99).

Numerous studies have found that the IgG1 and IgG4 levels
increase during AIT. Allergen-specific IgG4 (sIgG4) can compete
with sIgE for allergen binding, thereby blocking allergen-IgE
complex formation and preventing mast cell and basophil
degranulation, IgE-dependent cytokine secretion frommast cells,
binding of allergen to B-cell receptors on IgE+ memory B
cells, and allergen presentation to T cells (100). A correlation
between allergen sIgG4 and clinical outcomes has been reported

in some but not all studies (91). Furthermore, sIgG4 levels do
not always differentiate between responders and non-responders
(101). Thus, an IgG4 increase during AITmay reflect compliance,
not clinical efficacy. The absence of sIgG4 induction may also
be indicative of poor compliance (91). The sIgG4/IgE ratio
may monitor AIT progress and outcome, but it has shown
inconsistent utility (102, 103). Intriguingly, sIgG4 fell back to its
pre-treatment level within 1 year after discontinuation of AIT,
but its inhibitory capacity for serum IgE persisted for several
years, together with clinical benefits (104). That suggests that
sIgG4 might have either higher avidity or higher affinity (105).
Besides sIgG4, allergen-specific IgA (sIgA) is also induced during
grass-pollen SLIT and HDM SLIT. sIgA and other subclasses of
IgG may have a similar blocking function (97). There are only
limited data regarding the roles of other IgG subsets, i.e., IgD and
IgA, in serum.

IgE-facilitated allergen binding (IgE-FAB) is a highly
reproducible flow cytometry-based bioassay that was developed
to detect binding of allergen-IgE complexes to B cells that
express surface low-affinity IgE receptor FcεRII (CD23). This
bioassay is used to determine the antigen-presenting capacity
of B cells to T cells (106). It has been developed as a surrogate
for determining IgE-inhibitory activity during AIT (91). In
addition to sIgG4, which is responsible for serum inhibition of
IgE, there may be other factors that support serum inhibition of
IgE because IgG4-depleted serum retained its blocking activity
(107). These factors need further study. It was found that serum
inhibitory activity determined by IgE-FAB showed potential
to predict the clinical response (107). They were reported
that changes from the baseline of IgE-FAB at the initiation of
the maintenance phase and persist at least 1 year after AIT
discontinuation associated with clinical manifestation (104).
Inverse correlations were found between the symptom score,
the rescue medication score, and the IgE-FAB result (35). These
findings suggest that the serum inhibitory activity for IgE could
predict the final efficacy of AIT as early as at the start of the
maintenance phase of (105). To date, no data are available on the
association between the initial level of serum inhibitory activity
for IgE-FAB and responsiveness to AIT (91). An alternative test
is the enzyme-linked immunosorbent-facilitated antigen binding
(ELIFAB) assay, which follows the basic principles of a standard
ELISA protocol and is able to detect the inhibitory activity for IgE
after AIT (108). Although the IgE-FAB and ELIFAB techniques
show good clinical efficacy correlation for AIT, they are both
complicated, and their use is limited to specialized laboratories
(91, 92).

In addition, the sIgG subclass and sIgA levels can be detected
in the nasal lavage of allergic patients (109). An increase in
the IgG4 level was significantly associated with reduced nasal
sensitivity. A study of grass-pollen AIT patients demonstrated
that the nasal sIgG4 level increased during the pollen season. The
inhibitory activity for IgE-FAB of the nasal fluid and serum were
significantly increased in the SCIT group and correlated with
the total symptom improvement, indicating that sIgG4 produced
locally in the nasal mucosa can be a potential biomarker for AIT
efficacy (35, 110). Moreover, a recent study compared the nasal
and systemic grass-pollen sIgG4, sIgA1, and sIgA2 responses
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TABLE 1 | The implementation of biomarkers in allergen-specific immunotherapy (AIT).

Biomarkers Assay Advantages Disadvantages

IgE Total IgE Specific IgE

(serum/body fluid)

Serum sIgE is a gold standard of patient selection for AIT.

Baseline sIgE/tIgE ratio may be a potential positive predictive

marker for AIT.

The relationship sIgE/tIgE ratio and clinical

outcome has been inconsistent.

IgG4 Specific IgG4 (serum/body

fluid)

Elevation in serum sIgG4 is an indicator for compliance. sIgG4 may not be related with clinical outcomes.

Inhibitory activity IgE-FAB (serum/body fluid)

ELIFAB

An association between serum inhibition activity and

combined symptom-medication scores has been

demonstrated.

Serum inhibition activity has restricted the

availability requirement of specialized techniques.

Basophil activation Basophil activation test via

flow cytometry

Ex vivo test reflects the in vivo allergen-sensitized response. The results are variable with inhibition being

shown in some but not all studies.

Standardized and optimized assays are needed.

Cytokines and

chemokines

Serum/body fluid/in vitro cell

culture-based by ELISA or

Luminex

Serum and local cytokines and chemokines may be useful for

exploring mechanisms of AIT and proof of concept at drug

development.

Serum and local cytokines are at a low level in

concentration.

Cellular markers Immunophenotyping in ex

vivo or in vitro activating

cells, or tissue biopsy

Change in multiple cell subsets may be useful for exploring

mechanisms of AIT.

There is not sufficient information to link the

presence or function of cell subsets with

clinical efficacy.

The standardization for the identification of most

cell types is deficient.

Clinical biomarkers Allergen provocation test Provocation tests have been used as surrogate markers to

diagnose local allergic rhinitis and evaluate clinical response

to AIT.

Allergen provocation cannot replace natural

exposure in phase III clinical trials.

during 2 years of SCIT and SLIT and 1 year after treatment
discontinuation. Production of sIgA was shown to be a major
biological difference between SLIT and SCIT. Although SCIT
induced higher specific sIgG4 levels than SLIT, SLIT led to higher
sIgA levels both in serum and nasal fluid. The level of sIgA1 in
nasal fluid correlated with the suppression of nasal symptoms
of SLIT during nasal allergen challenge. sIgA production may
therefore represent a distinct mechanism by which SLIT achieves
its therapeutic effects (32).

As stated in the European Academy of Allergy and Clinical
Immunology (EAACI) Position Paper, serum-based biomarkers
are beneficial for selecting patients for AIT. An elevated sIgE/tIgE
ratio is a potential positive predictive marker for AIT. The sIgG4
level is proposed to be an indicator of compliance of patients,
but it shows no association with the efficacy of AIT. Serum
inhibitory activity for IgE, determined by IgE-FAB rather than the
level of sIgG4, might be associated with the symptom and rescue
medication scores and predictive of the clinical outcome (91).

Basophil Activation
To determine allergen sensitization, basophils are incubated with
a specific allergen, followed by an examination for degranulation.
Activation of basophils leads to upregulation of surface markers,
which is indicative of sIgE functional activity. Several surface
markers indicate basophil responsiveness and histamine release,
i.e., CD63, CD203c, CD13, CD107a, and CD164. Intracellular
histamine-binding fluorochrome-labeled diamine oxidase can
be quantified by flow cytometry. Blocking antibodies, such as
sIgG4, are augmented during AIT. They inhibit cross-linking of
allergens to sIgE bound to the surface of basophils and hereby
suppress basophil activation (111).

The findings regarding basophil activation during AIT
in placebo-controlled trials are inconsistent (91). Some
studies describe reduced basophil activation after AIT with
the decline correlating with clinical score improvement
(112, 113), while others failed to show suppression (114).
One study found no significant changes in basophil
activation after SLIT, despite induction of sIgG4 (114). These
contrasting findings may be explained by differences in the
immunotherapy route, with SLIT possibly being less effective
than SCIT in inhibiting basophils. Also, the methods used
to measure the markers of basophil activation may alter the
outcome (91).

Cytokines and Chemokines
The mechanism of induction of immunological tolerance by
AIT is the redirection of the Th2 phenotype toward a Th1
and Treg phenotype. One would anticipate decreases in Th2
cytokines (e.g., IL-4, IL-9 13, IL-19) and chemokines (e.g.,
eotaxin), and upregulation of Th1 (e.g., IFN-γ) and regulatory
cytokines (e.g., TGFβ, IL-10) (100, 105). However, serum
cytokine measurement is difficult due to their low levels, which
are often below the limit of detection of current methods.
Furthermore, relationships between serum cytokines and the
clinical outcome of AIT have not been elucidated (91). Shifts
in cytokine production by CD4+ T cells following AIT are
quantifiable through in vitro stimulation of PBMCs from patients
by treating them with allergen extracts at both the protein and
the transcript levels (92). High levels of IL-10 transcripts in
T cells of patients with HDM allergy predicted the success of
AIT (115).

Local rather than serum levels of cytokines may be predictive
of the clinical efficacy of AIT. Local cytokine production
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following nasal allergen challenge may be an important
treatment-related indicator (91). A cross-sectional study found
lower concentrations of Th2 cytokines and chemokines in the
nasal fluid after nasal allergen challenge following successful
AIT compared to untreated controls (110). In a double-blinded
randomized controlled trial, both SCIT and SLIT led to a decrease
in Th2 cytokines, including IL-4, IL-5, and IL-13 in the nasal
fluid after nasal allergen provocation after 2 years of continuous
AIT, and those changes were associated with improvement in
the clinical symptoms (19). At this stage, local and systemic
cytokines, and chemokines are not practical as biomarkers in
clinical practice. However, nasal cytokines can serve as markers
of the immunological response and be used for proof of concept
in drug development (91).

Cellular Markers
Tregs play a key role in immune tolerance to an allergen
after AIT (100, 105). There are two main types of Tregs, i.e.,
natural regulatory T cells (nTregs) that express FOXP3+ CD4+

CD25+, and inducible Treg cells (iTregs) generated in the
periphery under different tolerogenic conditions that produce
regulatory cytokines such as IL-10 and TGF-β. Different studies
have shown the immunomodulating properties of both allergen-
specific nTregs and iTregs in blood and tissues after SCIT and
SLIT, suggesting that there is a commonality between these
subgroups of Tregs (91). In AIT, initiation of peripheral T-cell
tolerance presents anti-inflammatory cytokines IL-10 and TGF-
β. An increased number of IL-10-expressing T cells during pollen
season and a seasonal increase in TGFβ+ T cells correlated,
respectively, with an increase in the serum IgG4 level and
an increase in the peripheral circulating IgA concentration
(116). Upregulation of activated allergen-specific Tregs (Der
p1-specific FOXP3+ Helios+IL-10+ Tregs) and downregulation
of a dysfunctional allergen-specific Treg cell subset (ILT3+

Tregs), associated with improved clinical response, were recently
described in a study of HDM-SCIT treated patients (29).
Identification of cell subsets, proteins, transcripts, and epigenetic
biomarkers may suggest the prognosis. A recent randomized
controlled study investigated epigenetic modification in the
FOXP3 promoter region and found that methylated CpG sites
within the FOXP3 locus of enriched peripheral memory Treg
cells were reduced after SLIT treatment, leading to immune
tolerance (117).

A novel effector subgroup of Tregs, i.e., Tfr cells, was
recently identified. Tfr cells can suppress Tfh cell-mediated B-
cell activation and antibody production (17). Recent evidence
shows that AIT modulates the balance between circulating Tfh
and Tfr, with Tfr as a potential biomarker for AIT efficacy (25, 27).
A study showed increased numbers of circulating Tfr cells, with
improved suppressive function, in AR patients after HDM SCIT
(23). Therefore, a better understanding of Tfr cells will help in the
development of novel strategies for AIT.

The involvement of B cells in allergen tolerance is mainly
through regulatory B cells (Bregs). Bregs are a subset of
B cells that have immunosuppressive and anti-inflammatory
properties, predominantly via the release of IL-10, auxiliary
Treg differentiation, IgG4 production, and inhibition of the

inflammatory responses facilitated by T cells and DCs (118).
IL-10-producing Bregs have been isolated from bee venom-
tolerant subjects, and they suppress the proliferation of bee
venom-specific T cells. Bee-venom immunotherapy (VIT)
increases the number of phospholipase A2 (PLA)-specific IL-10-
producing Bregs to a level comparable to in healthy beekeepers.
Interestingly, both groups have high levels of PLA-specific IgG4-
switched memory B cells, plasmablasts, and PLA-specific CCR5-
expressing B cells (7). Recently, a study of grass-pollen SCIT
showed an increase in the number of IL-10+ Bregs that was
associated with an increase in the sIgG4 level in the nasal
fluid (35). Furthermore, successful HDM SCIT-treated patients
were shown to have heightened frequencies of IgA and IgG4-
expressing allergen-specific B cells, plasmablasts, and IL-10+

and/or IL-1RA+ Bregs (29).
Growing evidence has proven the role of innate immunity

in allergic diseases, and there is a heightened focus on how
AIT alters ILC2s to induce tolerance. Peripheral ILC2s were
suppressed by grass-pollen SCIT. The level of ILC2s correlated
with the severity of self-reported symptoms during the pollen
season (39). Likewise, ILC2s in the peripheral blood of SCIT-
treated, HDM-allergic AR patients were reduced compared with
the untreated group (42). More recently, a subset of ILC2s
able to produce the regulatory cytokine IL-10 was described
(43, 45), and they attenuated Th responses and maintained
epithelial cell integrity. IL-10+KLRG1+ ILC2s were fewer in
patients with grass-pollen allergy compared to healthy subjects.
The ability of ILC2s to produce IL-10 was restored in patients
who underwent grass-pollen SLIT. Moreover, symptom severity
correlated inversely with the number of IL-10-producing ILC2s
after immunotherapy (46).

Dendritic cells are specialized antigen-presenting cells with
the ability to integrate a variety of incoming signals and
subsequently orchestrate adaptive immune responses. Molecular
markers associated with polarized monocyte derived DCs that
support the differentiation of either effector Th1, Th2, Th17,
or regulatory CD4+ T cells (termed DC1s, DC2s, DC17s,
and DCregs, respectively) have been identified by comparative
transcriptomic and proteomic analyses (91). AIT modulates DCs
by up-regulation of DCreg markers and down-regulation of DC2
markers (54). There was also a significant increase in DCs with
the DCreg phenotype [assessed bymRNA expression of stabilin-1
and complement component 1Q (C1Q)], with enhanced capacity
to generate IL-10 with diminished IL-12 in peripheral blood
samples from responders to SLIT (54).

At this stage, no cellular biomarker can serve as a biomarker
for monitoring AIT in clinical practice. However, biomarkers
may be valuable as indicators of immunological responses in drug
development and in AIT mechanistic studies (91).

Clinical Biomarkers
Allergen provocation tests, such as conjunctival provocation
tests, nasal provocation tests, and environmental exposure
chambers, are used to evaluate target organ responses. APTs are
commonly used in clinical practice to assess allergen-specific
reactivity of patients and the clinical relevance of IgE-mediated
sensitization (91, 119). They are a vital tool for the diagnosis
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of local AR (92, 119, 120). These tests can also be used as
in vivo methods for stratifying patients when investigating the
therapeutic effects in AIT trials. Allergen provocation tests
(APTs) permit better standardization of procedures, control of
environmental factors (temperature, humidity), and avoidance of
variability caused by seasonal variations in pollen exposure. They
are used as surrogate markers of the clinical response to AIT.
APTs are recommended to provide insight into the mechanisms
of AIT and biomarkers at both the local and systemic levels
(91, 119). The EuropeanMedicines Agency (EMA) suggests APTs
as primary endpoints in proof of concept and dose-finding trials
of AIT (phase II) before proceeding to phase III AIT trials.
However, APTs cannot be substituted for assessing symptoms
and requirements for rescue medication during natural allergen
exposure in phase III trials (91).

THE EFFICACY IN AR

Allergen-specific immunotherapy has been shown to be useful
for the long-term reduction of medical expenses because of its
sustained, disease-modifying effects. After administration for 3
to 4 years, both SCIT and SLIT effectively improved allergic
rhinoconjunctivitis (121), and asthma (122). The rate of new
antigen sensitization after 2 years was significantly lower in
patients undergoing AIT than in non-AIT patients. Moreover,
there was a 2–3-fold reduction in the risk of development of
asthma for 2–7 years after stopping AIT (123). Some studies also
found that theremight be a lower prevalence of allergy in children
born to mothers who underwent AIT during pregnancy. A total
of 56 homogeneous studies between 2003 and 2013, including
SCIT and SLIT, concluded that the recovery rate in AIT groups
was 53.67-fold higher than in the placebo groups (124). The
rate of reduction of symptoms and the medication score was
as high as 80% in SCIT for seasonal AR in many randomized,
placebo-controlled trials (RPCTs). Accordingly, the efficacy of
AIT depends on the allergen dose and treatment duration. The
clinical results have shown a high degree of heterogenicity and
responsiveness in individuals. The immunological response was
related to the personal dose (125), and long-term improvement
after discontinuation was related to the treatment duration (126).
There are no definitive diagnostic tools or markers for identifying
responder patients, so current practice suggests that physicians
discontinue AIT if there is no clinical response after 18–24
months (127). However, a standardized extract dose and clinical
data are not available for all extracts. The extracts in each country
have different potency, allergen dose, allergen mixtures, and
adjuvants. Moreover, data for direct comparisons of AIT and
pharmacotherapy are lacking because of a dearth of head-to-
head studies.

Comparison of SCIT and SLIT
Subcutaneous immunotherapy and SLIT differ in schedules,
route, frequency, amount of allergen, up-dosing, and
maintenance dosage. Nevertheless, clinical efficacy is evaluated
in the same way by using subjective and objective parameters.
SCIT has demonstrated benefits in children and adults with AR.
Symptom reduction has persisted for many years after stopping

treatment. Meta-analysis comparing SCIT and SLIT revealed
both to be effective for seasonal AR. In perennial disease with
HDM allergy, SCIT also showed benefit, but SLIT was doubtful
(128). Analysis of all randomized studies of SCIT generated a
dose-response curve (129). Effective doses were associated with
the amount of allergen, but side effects of SCIT also increased.

Meanwhile, SLIT showed a wide range of effective doses
(130). Some studies showed improvement in the second year
of treatment (131). A meta-analysis that compared the efficacy
of SCIT, SLIT tablets, and SLIT drops for grass AR found
no difference between SCIT and SLIT tablets, whereas SLIT
drops were less effective than the tablets (132). The early study
in 20 adults mono-sensitized to grass and treated with either
SLIT drops or SCIT showed that the combined symptom and
medication scores decreased by at least 50% in both groups
compared with the placebo, whereas sIgG4 changed only in
the SCIT group (133). However, direct comparisons of 11
randomized studies showed that SCIT was more effective than
SLIT compared with the placebo (134). A direct pairwise meta-
analysis of 26 double-blind randomized controlled trials to
compare the efficacy of HDMAIT using SLIT drops, SLIT tablets,
and SCIT in patients with perennial AR to HDM showed that the
symptom score was more significantly decreased with SCIT than
with SLIT drops or SLIT tablets (135).

However, more head-to-head, large, and well-designed studies
are needed to compare the effectiveness of SCIT and SLIT. A
head-to-head comparison of SCIT and SLIT in the grass-pollen
allergic mice showed that SCIT suppressed Th2 inflammation
and induced neutralizing antibodies, whereas SLIT suppressed
allergen-induced airway hyper-responsiveness and induced a
grass-pollen-specific IgG2a response (136). An evaluation of AR
patients who changed from SCIT to SLIT for a variety of reasons
found similarity of symptoms in 75%, while SCIT was preferred
by 8% and SLIT by 17% (137). Indirect comparisons tend to
conclude the superiority of SCIT due to the rapid improvement
and immunological change. Adverse reactions to SCIT included
a higher risk of local and systemic allergic reactions compared
with SLIT. Therefore, the risk with SCIT correlated with a larger
injection volume, multiple allergens per shot, and a higher extract
concentration. Retrospective data showed that 23% of SCIT
patients experienced systemic reactions after injection (138).
On the other hand, the safety of SLIT was better. Reactions
were recorded in 10–15% of SLIT patients, and most were mild
reactions in the early phase of treatment.

ILIT and EPIT
Several clinical trials testing the efficacy of ILIT in the treatment
of grass, birch, and cedar-pollen, and cat–dander allergies have
shown high therapeutic efficacy (75, 139–141). A systematic
review and meta-analysis of 11 randomized controlled trials and
2 cohorts showed short-term benefits of ILIT for seasonal allergic
rhinoconjunctivitis (142). ILIT improved the composite score
and visual analog scale and increased sIgG4 levels but did not
change the quality of life or sIgE levels. A recent study found
that 3 injections without an annual booster achieved a substantial
reduction in allergic symptoms and use of rescue medication
during a 3-year follow-up (143).
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Epicutaneous immunotherapy seems effective and safe for
rhino-conjunctivitis. In adults with timothy-grass-pollen allergy,
applying a Phl p 5 patch for 6 weeks reduced the allergic
symptoms and medication use in the treatment group compared
to the placebo group (89). EPIT efficacy was dose-dependent, but
a high dose was associated with local skin inflammation (144).
EPIT for HDM AR was studied in an animal model (145). A
number of questions remain, such as the standard dose, time of
treatment, type of antigen, and placebo effect, and are in need of
further study.

Comparison of AIT for Seasonal and
Perennial AR
The meta-analysis in AIT studies found SCIT to be significantly
effective in patients with seasonal (93) and perennial AR who
were sensitive to HDM (146). SLIT tablets for timothy grass,
a 5-grass mix, ragweed, and HDM showed efficacy in relieving
symptoms in America and Europe. Asthmatic child patients who
underwent SCIT treatment for more than 3 years showed control
of the symptoms of seasonal AR for 7 years after discontinuing
the AIT (123). In patients unresponsive to regular drug therapy,
SCIT reduced symptoms and medication in pre and co-seasonal
immunotherapy (147, 148). Subjects started SCIT at least 8 weeks
before the season and continued for at least 16 weeks (149).
Allergy drops for birch, alder, and hazel also showed benefits
in Europe. In pooled analyses, Durham et al. (150) showed
that, compared with the placebo, nasal symptoms improved in
seasonal AR by 4–27.2% with the 6–timothy–grass SLIT tablet
(overall improvement 16.3%) and by 15.2–18.8% with the 2–
ragweed SLIT tablet (overall improvement 17.1%).

For perennial AR, nasal symptoms improved by 16.1%
with HDM SLIT tablets relative to the placebo. The combined
symptom and medication score (CSMS) also decreased
significantly in patients using the HDM SLIT tablets for 1 year
(99). Thus, HDM SLIT tablets were more beneficial than all
pharmacotherapy regimens in perennial AR trials. Medication
reduction with SLIT tablets for perennial AR was 1.5–2-fold
compared to seasonal AR. SCIT for cat and dog allergies
yielded no meaningful data because of low potency and variable
standardization of allergens.

Comparison of Mono-Allergen and
Poly-Allergen AIT
There is no standardized approach to AIT for poly-
sensitized patients. In Europe and Asia, mono-allergens have
predominantly been used by choosing allergens that correspond
with the symptoms. However, in the United States, all relevant
allergens have been given to allergic patients (separate shots or
mixed shots). Poly-allergen AIT is performed by administering
mixed extracts at a single body site or single extracts at different
body sites, simultaneously or at different times. Poly-allergen
extracts were effective in SCIT (151), and the therapy is safe
if administered in an appropriate setting. However, data for
poly-allergen SLIT are scant. Therefore, there has been no head
to head clinical outcome comparisons of mono-allergen and
poly-allergen SCIT or SLIT. A meta-analysis study of HDM

AIT in mono and poly-sensitized patients with AR found no
significant differences in the nasal symptom score, medication
score, or quality of life between the groups. The study concluded
that single-allergen AIT using HDM was clinically effective for
both mono and poly-sensitized AR patients (152). Component-
resolved diagnosis is essential for avoiding the inclusion of
irrelevant allergens in mixed shots. An Expert Committee
recommended limiting mixtures to 2 or 3 extracts for patient
safety (153). The European AIT guidelines recommend that
poly-sensitized patients who are poly-allergic to taxonomically–
related homologous allergens be administered either a single
allergen or a mixture of homologous allergens (95). Moreover,
patients who are poly-allergic to non-homologous allergens
should be started on AIT with either the allergen responsible for
most of their AR symptoms or separate treatment with the two
clinically most important allergens (154).

The Efficacy in AR With Co-morbid Disease
Asthma
Allergen-specific immunotherapy has shown effectiveness
against allergic asthma. The common allergens in patients with
allergic asthma are similar to AR, including HDM, grass pollen,
tree pollen, and animal dander (122). A recent systematic review
and meta-analysis of 98 studies showed that SCIT and SLIT
significantly reduced short-term symptom scores andmedication
use in patients with allergic asthma (155). SCIT improved the
quality of life (QoL) (156–158), whereas SLIT showed variable
results in patients with allergic asthma (155). SCIT did not
reduce asthma exacerbation, defined as the number of oral
corticosteroids needed to restore asthma control (159), but SLIT
also showed inconclusive results. A large randomized controlled
trial of HDM SLIT tablets in patients with allergic asthma found
the treatment extended the time to exacerbation during inhaled
corticosteroid (ICS) reduction in suboptimally–controlled
asthma (160). Importantly, there were no reports of severe
systemic allergic reactions in SLIT patients (160). Nevertheless,
data are limited regarding the ability of SLIT to suppress asthma
exacerbation (160, 161).

Allergen-specific immunotherapy significantly improved the
forced expiratory flow at 25–75% but not the peak expiratory
flow rate (PEFR) or forced expiratory volume in 1 s (FEV1)
(155). SCIT improved bronchial hyper-reactivity, but nothing
was reported regarding SLIT (155). Conversely, SCIT caused
more systemic adverse effects than SLIT (122, 155). Some cohorts
showed a benefit of AIT in preventing the onset of asthma
in allergic rhinitis patients (162, 163). The EAACI guideline
recommends AIT as an add-on to regular asthma therapy
in adults with controlled or partially-controlled HDM-driven
allergic asthma (164). “Controlled asthma” is defined as daytime
symptoms <2 times/week, no night awakenings, relief is needed
for symptoms <2 times/week, and no activity limitation due
to asthma. “Partially-controlled asthma” is defined as failure to
meet the first 2 criteria above. The updated asthma guideline
recommends SLIT in adult HDM AR patients with asthma that
is suboptimally–controlled despite low to high dose inhaled
corticosteroid and FEV1 >70% (160, 165).
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Atopic Dermatitis
Many studies have been conducted in AR patients with or
without asthma who also have atopic dermatitis (AD). Some
patients showed improvement in AD symptoms, and no patients
became worse (166, 167). A systematic review and meta-
analysis reported a moderate level of evidence for effectiveness
in improving the total SCORing Atopic Dermatitis (SCORAD)
index over 18 months of SCIT (168). No fatal or near-fatal
adverse events were reported in any of the studies assessed.
SLIT also improved the total SCORAD (169, 170). However,
another systematic review of 12 eligible trials (6 SCIT and 4
SLIT) found no significant differences in the disease severity
score or eczema symptoms (171). Therefore, large controlled
and randomized clinical trials are needed to study this more.
Nevertheless, AIT may be an effective treatment option for
selected AD patients (172).

Sinusitis and Nasal Polyps
Allergen-specific immunotherapy also shows good efficacy in AR
with sinusitis. A survey study in the United States showed a
72% decrease in days lost from work, a 26% reduction in the
use of medications per year, and a mean reduction of 51% in
the overall symptom score in sinusitis patients who underwent
AIT (173). In addition, AIT for allergic fungal sinusitis resulted
in significant improvement in the endoscopic disease score and
chronic sinusitis survey symptom score and decreased systemic
corticosteroid use (174).

DURATION OF AIT

Many randomized controlled trials show long-term efficacy in
improving clinical and immunological change after SCIT and
SLIT. Continuous SCIT for 3–4 years resulted in 3 years of
persistent improvement in the clinical condition and medication
(147, 175, 176). In the SLIT study, 3 years of grass-pollen
sublingual drops showed benefit for only 1 year after stopping
treatment (177). Three years of grass-pollen SLIT tablets showed
a 20–30% reduction in symptoms and rescue medication for
2 years after discontinuation (147, 178–181). When AIT was
administered for less than 3 years, allergic symptoms usually
relapsed 1 year after discontinuation.

Patients undergoing AIT formore than 3 years showed clinical
efficacy beginning after 1 year of treatment (19, 176, 177, 180,
182). A comprehensive 5-year prospective controlled trial that
compared 3- and 5-year HDM SCIT found significant decreases
in the rhinitis severity score, asthma severity score, and visual
analog scale in both groups after 3 years. Moreover, the AIT
benefit was maintained in both groups at 5 years (183). All the
above evidence suggests that the duration of both SCIT and SLIT
should be at least 3 years for long-term clinical benefit.

ADJUNCTIVE THERAPIES IN AIT

Adjunctive therapy in AIT refers to the use of another treatment
together with AIT. Its purpose is to improve the efficacy of AIT
and decrease its adverse effects (Table 2).

Vitamin D
Vitamin D is a major substance that enhances human immunity
(200). Vitamin D2 is converted into active vitamin D3, which
regulates innate and adaptive immune responses (184). Active
vitamin D3 enhances IL-10 production from DCs and induces
Tregs (185). The clinical efficacy of AIT was increased when
vitamin D was sufficient (201, 202). Skin test reactivity to
grass pollen was significantly reduced by grass-pollen AIT
with adjunctive vitamin D supplementation compared to the
placebo (203). Moreover, children with grass-pollen AR who
underwent AIT with vitamin D showed a reduced symptom-
medication score and improved lung function compared to the
placebo (204). However, the role of vitamin D in AR remains
controversial (205).

Monoclonal Antibodies
Omalizumab is a monoclonal antibody that binds to the Fc
portion of the IgE molecule. In in vitro testing, omalizumab also
restored pDCs to Tregs (189). Combined SCIT with omalizumab
reduced symptoms and rescue medication during seasonal
allergen exposure compared to SCIT alone (190). Moreover,
omalizumab reduced the adverse effects of AIT, especially in
high-risk asthma patients and with the rush AIT protocol
(191–193). Dupilumab is a monoclonal antibody against the
IL-4 receptor. A recent study found that AIT combined with
dupilumab did not improve the clinical response compared to
AIT alone (195). There have been no studies using anti-IL5
receptor or anti-IL5 monoclonal antibodies as adjunctive therapy
to AIT in humans.

Probiotics
Probiotics have been proven beneficial for the immunological
system. Some species have been shown to increase Tregs, IgA
antibody production, and the activity of DCs. Thus, probiotics
can help reduce the risk of immunologically-mediated disease,
including Th2-mediated allergic responses that play a significant
role in allergic diseases. Lactobacillus and Bifidobacterium are the
main genuses used for the preparation of the products tested in
several studies. Strain-specific probiotics were used for adjunctive
treatment of AIT, specifically either probiotics or recombinant
probiotics. However, the data are still limited. Probiotics may
be ineffective after enzymatic degradation of allergens by the
oral route. Combination recombinant probiotics producing the
allergoid may be better to use only an allergoid for AIT treatment
of AR patients because of a safer and more effective. Most
studies of recombination probiotics in murine models as pre-
clinical studies showed reduced sensitization in both newborn
and adult mice (196). Intranasal vaccination of adult mice with
Lactococcus lactis strains resulted in decreased sIgE antibodies
and increased sIgA antibodies (197). Also, oral treatment of
adult mice with Lactobacillus acidophilus strains increased sIgG
antibodies (197). It appears that recombinant probiotics can
modulate the immune response, shifting it toward a Th1 and
Treg-specific immune response, but it remains unclear whether
long-lasting immunological tolerance is induced.

Several human studies have shown that probiotics reduce
symptoms and improve the quality of life in AR patients.
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TABLE 2 | AIT and adjunctive therapy.

Adjunctive therapy Immunological mechanism Clinical benefit References

Vitamin D

(VitaminD2 and D3)

1. Decrease DCs function by stimulating IL-10

production.

2. Increase production of Treg cells

3. Regulate innate and adaptive immune responses.

1. Improve symptoms in the patients with AR and allergic

asthma patients.

2. Laboratory improvement of regulatory cells and decrease

type 2 inflammatory cells

(23, 184–188)

Anti-IgE Restore pDCs to Treg cells 1. Decrease allergic symptoms, rescue medication during

seasonal exposure.

2. Decrease adverse events from immunotherapy, especially

in high-risk asthma and rush protocol.

(189–194)

Anti-IL5 and

Anti-IL-5 receptor

No current study using Anti-IL5 receptor or anti-IL5 monoclonal antibody as adjuvant therapy to AIT in human –

Anti-IL4/IL-13

receptor

Monoclonal antibody against IL-4 receptor Do not improve clinical response compared to AIT alone (195)

Probiotic 1. Increase Treg cells, IgA antibodies production, and

activity of DCs.

2. Conversion Th2 to Th1 response.

Additional AIT treatment with strain-specific probiotics might

help clinical improvement in allergic patients.

(196–199)

A systematic review by Zajac et al. (206) found that the
duration of probiotic administration varied from 4 weeks to
12 months. However, probiotics did not affect either tIgE or
sIgE. In another study, SLIT with adjunctive probiotic treatment
showed significantly higher Tregs than in the SLIT only group
(198). Overall, the mechanism and efficacy of probiotics in AR
management remain unclear. Nevertheless, probiotics have the
potential as adjunctive therapy in AR management.

ADJUVANTS IN AIT

Adjuvants are substances that precipitate with an allergen extract
in AIT vaccines (Table 3). The aim is to skew a robust Th2
immune bias toward the cytosolic inflammatory pathway for
enhanced antigen cross-presentation and IgG production or
toward the vacuolar pathway with a clear Th1 shift and active
tolerance (226). Also, adjuvants can prevent the too rapid
systemic distribution of allergens at the injection site.

Toll-Like Receptor Agonists (TLRs)
Toll-like receptor ligands comprise the innate immune system
that responds to pathogen-associated molecular patterns
(PAMPs). AIT with adjuvant TLR shows benefits and can
reverse allergic inflammation (207). TLR4 and TLR9 have
been tested for TLR-activating properties in allergic diseases
(208, 227). TLR4 ligands are monophosphoryl lipid A (MPL)
and lipopolysaccharide (LPS) (208). MPL can promote a shift in
the immune response toward a Th1/Treg response (208). MPL
is now being investigated in a clinical phase III study by both
subcutaneous and sublingual routes (209). Laboratory markers
showed a significant decrease in the IgE level and increased
production of IgG4. The symptom score also improved more
than with AIT without MPL (209). TLR4 has been used as an
adjuvant in vaccines for cancer and infection. However, TLR4
as an adjuvant of AIT for AR or asthma is unclear, but LPS has
been used to stimulate TLR4 in many animal studies. LPS can
promote human DCs to produce IL-12p70 and IP-10 and is a
potent Th1-biased stimulus (210). In vitro models using human

cord blood cells also showed downregulation of Th2 responses
due to reduced IL-13 after LPS administration (211). Clinical
studies are needed to determine the effectiveness of LPS as an
adjuvant of AIT in humans.

CPG-ODNs
Unmethylated deoxycytidyl-deoxyguanosine
oligodeoxynucleotides (CpG-ODNs) are PAMPs that mimic
bacterial DNA. CpG-ODNs stimulated TLR9 (228). CpG-ODNs
were previously considered to be potential vaccine adjuvants
(227). CpG-ODNs can shift human allergen-specific Th2 cells to
a Th1/Th0 phenotype. In a murine model, CpG-ODNs decreased
Th2 inflammation and IgE secretion (212) and increased Tregs
(213). The USFDA approved CpG-ODN as an immunoadjuvant
in the hepatitis B vaccine (229). CpG-ODNs are also used
as immune modulators in many cancer immunotherapies.
Recently, AIT cat allergen Fel d 1 with high-dose CpG-ODNs
reduced all allergic symptoms in a murine model. Moreover,
pDCs were increased and migrated from the injection site to
periphery sites (213). CpG-ODNs showed long-term clinical
effectiveness in patients with ragweed AR in phase II clinical
trials (214), but its efficacy was lacking in phase III controlled
clinical trials (215). A randomized controlled trial in humans is
needed to generate more information.

Aluminum Hydroxide
Aluminum hydroxide is the most common adjuvant used in
vaccines and AIT (230). Aluminum hydroxide in AIT can
induce allergen immunogenicity and increase IgG and IgE titers
(216), and create a sustained-release antigen depot leading to
greater safety (230). Aluminum hydroxide also induced greater
inflammation due to the recruitment and activation of APCs
at the injection site (217). The adverse effects of aluminum
hydroxide constitute a significant problem: acute and chronic
inflammation at the injection site was found in more than 15%
of AIT patients (218). At present, there is no clear consensus
regarding the benefit and serious adverse events of using
aluminum hydroxide as an adjuvant in AIT (219).

Frontiers in Allergy | www.frontiersin.org 12 October 2021 | Volume 2 | Article 747323

https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org
https://www.frontiersin.org/journals/allergy#articles


Boonpiyathad et al. Allergen-Specific Immunotherapy in Allergic Rhinitis

TABLE 3 | Adjuvant in AIT.

Vaccine adjuvant

therapy

Immunological mechanism Clinical benefit References

TLR agonist (MPL) 1. Reverse immune toward Th1/Treg response.

2. Significant decrease IgE level and increase production

of IgG4 level.

Improve symptom score. (207–209)

TLR agonist (LPS) 1. Promoted human DCs to produce IL-12p70 and

IP-10 and potent Th1-biased stimulus.

2. Downregulate Th2 responses by reducing IL-13.

Clinical benefit in human needs to study more. (207, 210, 211)

CPG-ODNs 1. Shift human allergen-specific Th2 cells to Th1/Th0

phenotype.

2. Reduce Th2 inflammation and IgE secretion.

3. Increase in regulatory Treg cells.

1. Reduce symptoms of allergic asthma in the mouse model.

2. Show long-term clinical efficiency in patients with ragweed

AR in phase II clinical trial but in phase III controlled clinical

trial show lack of success in efficiency.

(212–215)

Aluminum hydroxide 1. Increased allergen immunogenicity and IgG and IgE

titers

2. Recruitment and activation of APCs at the injection

site.

Inconclusive (216–219)

Calcium phosphate Adsorb antigens and increases IgG levels. Induce local adverse reactions. (220, 221)

Microcrystalline tyrosine Increased IgG production and limited increases of IgE

levels

Safe in using as adjuvant of AIT in humans. (222)

Fungal compounds Stimulate the innate immune system and induce cytokine

for the adaptive immune system.

Inconclusive (223)

Heat-labile toxin (LT)

from Escherichia coli

Stimulate the innate immune system Inconclusive (224)

Parasite molecules Suppression of host antigen-specific immune response Inconclusive (225)

Calcium Phosphate
Calcium phosphate is a mineral salt that could be used as
an adjuvant in AIT (216) because it can adsorb antigens and
increases IgG levels (220). However, it might cause local adverse
reactions. Calcium phosphate will be considered as an alternative
to aluminum hydroxide, but with lower adjuvant activity (221).

Microcrystalline Tyrosine
Microcrystalline tyrosine has been used as an immunomodulator
and adjuvant. The product released from the injection site
is L-tyrosine. Microcrystalline tyrosine (MCT) increased IgG
production while suppressing the IgE level (222). L-tyrosine is
safe when used as an adjuvant of AIT in humans. However,
caution is required in regard to possible tyrosine metabolism
disorder (222).

Fungal Materials
Compounds of fungal origin, i.e., fungal immunomodulatory
proteins (FIP), such as glycophosphopeptical, have been shown
to stimulate the innate immune system via non-specific
receptor recognition molecules and induce cytokines for the
adaptive immune system (223). However, the results for FIP
are inconclusive because most studies of FIP add-on to AIT
have shown no superior clinical improvement in AR patients
compared to AIT alone.

Heat-Labile Toxin
Patch delivery of a combination of birch-pollen allergen and rBet
v 1 with the heat-labile toxin from Escherichia coli was superior
in inducing allergen-specific IgG compared with subcutaneous
alum-adsorbed rBet v 1 in an animal model (224).

Parasite Proteins
Helminths can evade host immunity by suppressing the antigen-
specific immune response of the host. For example, Brugiamalayi
TGF-β homolog-1 and BrugiamalayiTGF-β homolog-2 can bind
to human TGF-β receptor (225) and mimic human TGF-β. Such
parasite molecules might be able to serve as adjuvant carriers for
AIT in the future.

DIFFERENT TYPES OF AIT

It is hoped that advanced technologies will be able to be combined
with AIT to achieve greater efficacy and safety. The aims are
IgE-activity reduction, allergenicity reduction, and induction
of allergen-specific blocking IgG antibodies. Methods would
include bypassing IgE, targeting T cells, modification of natural
extracts, and use of multiple recombinant allergens.

Component-Resolved AIT
The proportion of poly-sensitized AR patients has increased
along with cross-reacting allergens (i.e., profilin, polcalcin, lipid-
transporting proteins, tropomyosin, etc.). Allergen sensitization
varies among different age groups, study populations, and
geographical regions. In many countries, allergen extracts for
immunotherapy still use whole extracts. Component-resolved
diagnostics (CRD) has been brought to identify sensitization
to allergenic proteins and to improve AIT efficacy in poly-
sensitized patients (231). In a murine model of cockroach
allergy, component-resolved immunotherapy using Per a 9 found
reduced levels of Per a 9 sIgE, whereas sIgG1 and sIgG2
antibodies did not show significant change (232). In a human
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study, 1,263 Spanish patients with seasonal AR to grass and olive
pollens underwent AIT based on skin prick tests in 73% or CRD
IgE antibodies in 56.8% of the patients. The results showed that
AIT prescribed based on CRD was more accurate and reduced
the cost of immunotherapy (233).

Recombinant Proteins
Recombinant allergen-based vaccines that use allergen-encoding
DNA have been developed for both SCIT and SLIT. The aim
is less induction of IgE response and good induction blocking
allergen-specific IgG antibodies. Advances in molecular cell
biology enable the use of recombinant wildtype allergens (which
contain mainly conformational IgE epitopes that eliminate the
problem of poor quality of natural allergens), recombinant
hypoallergens (which, by DNA technology, convert allergens
to abolish IgE activity but leave the T–cell response), and
recombinant fusion proteins (carrier proteins and non-allergenic
allergen-derived peptides that contain tolerogenic epitopes)
(234). Significant benefits accruing from recombinant proteins
are more effective immune responses and fewer systemic
reactions following AIT. The recombinant hypoallergen Bet v 1
was reported to significantly increase Bet v 1-specific IgG1 and
IgG4 antibody levels and decrease the medical symptom score
in AR patients compared with non-AIT groups (235). Long-
term efficacy was seen in patients with allergic rhinoconjunctivitis
more than 3 years after completion of treatment (236). Non-
allergenic peptides from the major grass-pollen allergen and the
major HDM allergen induced allergen-specific IgG antibodies in
allergic patients. A novel recombinant fusion protein might be
able to be used with inactivated Escherichia coli as the expression
system, and rhinovirus-derived coat protein or hepatitis B as a
carrier protein. However, results in humans are inconclusive due
to scant data, and variations in extract preparation, dosing, the
dosing interval, and the reaction products.

Recent technology has already been developed for AIT with
allergen hybrids or mosaic antigens by fusion of different protein
sources, such as pollen, animal dander, and various foods. The
hybrid allergens are modified to be hypoallergenic while still
being able to induce T–cell tolerance. A Fagales pollen hybrid
(birch, hazel, alder, oak, and hornbeam) molecule for AIT was
more efficient in raising a T-cell response and showed lower IgE-
binding capacity compared with the crude extracts in a murine
model (237). In a study in rabbits, a recombinant hybridmolecule
consisting of the major birch allergen (Bet v 1) and grass-
pollen allergen (Phl p 5) increased IgG antibodies and reduced
allergenicity (238). A clinical trial that administered a vaccine
containing major grass-pollen allergens (Phl p 1, Phl p 2, Phl p
5, and Phl p 6) to patients with allergic rhinoconjunctivitis found
significantly increased grass-pollen-specific IgG and a decrease
in the total nasal symptom score (TNSS) (239). However, a
small study in patients with allergic rhinoconjunctivitis did not
find differences in the combined medication score or pollen
sIgG1 and sIgG4 (240). Recombinant allergen hybrids help to
reduce the administered dose, long-term immunogenicity, and
treatment duration, but late-phase reactions are still seen due
to the preservation of T-cell epitopes. Preclinical evaluation for
application in AIT needs further study.

Nanoparticles and Virus-Like Particles
Using nanoparticles and virus-like particles, allergens can be
delivered so as to activate the innate and adaptive immune
responses. Nanoparticles (<100 nm in size) such as liposomes,
polyamides, polysaccharides, and polyesters, and virus-like
particles can be used to encapsulate allergens to protect them
from IgE-binding, direct covalent conjugation, or adsorption,
and they are then delivered to APCs (241). Encapsulation
is preferred for the mucosal and oral routes. Nanomedical
platforms have the potential for achieving effective permeation
in the cases of epicutaneous and intranasal delivery, and for their
ability to form a depot, protect against enzymatic degradation
and stimulate allergen-specific tolerance (242). In vitro data
have shown promotion of Th1 stimulation and enhancement
of maturation of APCs without any Th2 response. Patients
undergoing HDM SCIT in which the allergen was encapsulated
in viral particles showed 50% improvement in the medical and
symptom scores compared with adjuvant alone (243).

Nucleic Acid-Based Vaccines
Deoxyribonucleic acid and mRNA encoding the desired allergen
are inserted into a bacterial plasmid. The plasmid contains non-
methylated CpGs so that it can stimulate an acquired immune
response. When the shot is injected, the gene contained in the
plasmids is delivered to the APCs of the host. Animal models
have shown immunomodulatory effects by driving Th1 induction
of IFN-γ and IgG2a antibodies and suppressing Th2 sensitization
(244). These vaccines are aimed at reducing severe systemic
effects of AIT. mRNA vaccines are safer than DNA vaccines
because foreign sequences in the DNAmay fuse into a genome of
a patient. Most studies had been conducted in murine models. In
a study in humans, a CryJ2-LAMP plasmid vaccine administered
to Japanese red cedar atopic subjects appeared to be a safe and
effective treatment (245).

T- and B-Cell Peptides
Synthetic allergen peptides containing T-cell epitopes do
not activate IgE antibodies but induce T-cell tolerance. A
clinical study of HDM and ragweed and grass-pollen allergies
demonstrated some benefits and safety. On the other hand,
increased nasal and bronchial symptoms were found in cat-
allergic patients (246). B-cell peptides aim to establish protective
humoral antibodies that are independent of IgE antibodies. For
the development of recombinant hypoallergenic allergen, B-cell
peptides that do not react with IgE antibodies are conjugated with
a carrier to be used for AIT with the goal to make a safer, resulting
in the generation of protective allergen-specific IgG antibodies
without stimulating IgE antibody production which can block the
interaction between patients IgE and natural allergen (247).

Allergoids
The term “allergoid” refers to an allergen that was chemically
modified by substances such as glutaraldehyde or formaldehyde
but retains the ability to elicit an immunological response. The
modification results in less-reactive B-cell epitopes by reducing
IgE-binding but leaves T–cell epitopes unaltered. Allergoids thus
show decreased allergenicity while improving immunogenicity.
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Allergoids are used primarily in allergic patients undergoing AIT.
The dose-escalation phase of conventional AIT lasts up to 6
months, whereas when using allergoids, up-dosing is significantly
shortened to only 4–8 weeks (248). Efficacy of allergoids has been
shown for HDM, birch pollen, and grass pollen. In a real-life
study from Germany, patients who underwent allergoid SCIT
had significantly fewer AR and asthma symptoms than the non-
AIT control group after 6 years of follow-up (249). Another study
showed an increase in sIgG4 antibodies in the allergoid treatment
group that was about 1.4–2.8 fold above the baseline (250). Grass-
pollen allergoid also showed efficacy for nasal symptoms in the
first pollen season, persisting until the third season. There was
no difference in basophil activation between the allergoid and
standard grass-allergen extract. Of note, immunogenicity was
significantly lower in the allergoid group than in the control
group (251). Allergoids have been demonstrated to be more cost-
effective than and preferable to other AIT options. However,
we have a poor understanding of the mechanism of action
with different allergoids, and the chemical modification method
has not been standardized. SCIT with allergoids appears to be
efficacious and more cost-effective and provides benefits that
persist for at least 1 year after cessation of AIT.

AIT IN THE COVID-19 PANDEMIC

The COVID-19 pandemic has taken an extreme human toll,
and the economic and social impacts of the pandemic are being
felt globally. COVID-19 is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Co-morbidities such
as obesity, hypertension disease, chronic obstructive pulmonary
disease, and cardiovascular disease are associated with severe
COVID-19 (252), but AR is not a risk factor for severe disease.
Currently, no immunologic or clinical evidence is available on
how AIT and SARS-CoV-2 interact (253). SCIT and SLIT should

be continued as long as there is no contraindication. SCIT
can be an option for patients who wish to start AIT and in
clinics where social distancing can be practiced (253). Confirmed
COVID-19 cases should discontinue AIT, whether SCIT or
SLIT, independent of disease severity until the symptoms have
completely resolved and/or adequate quarantine has been put in
place (254). After patients have recovered from COVID-19 and
are asymptomatic, AIT can be started up again as scheduled. SLIT
offers the option of self-treatment at home, thus avoiding the
need to travel to or stay in an allergy clinic or hospital. Data are
needed regarding patients switching from SCIT to SLIT during
maintenance–phase AIT.

CONCLUSION

Allergen-specific immunotherapy has been recommended
in practice to treat severe AR patients who do not respond
to conventional drug treatments. AIT induces allergic
immune tolerance by enhancing various regulatory cells to
control type 2 inflammation. AIT has been shown to be
effective in alleviating allergic symptoms, reducing medication
requirements, decreasing allergen reactivity, improving the
quality of life, and preventing the development of asthma.
However, conventional SCIT has disadvantages of requiring
numerous injections and visits to the clinic, high cost, and
systemic allergic reactions. Multiple administration routes for
AIT provide alternatives and help to improve patient compliance
and safety. New biologicals and advanced technologies are being
developed to further improve the effectiveness of AIT.
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