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ABSTRACT: Gas dehydration is a critical process in gas trans-
portation and chemical reactions, yet traditional drying agents
require an energy-intensive dehydration and regeneration step. Here,
we present a nonporous molecular crystal called Melem that can be
synthesized and scaled up through solid-state synthesis methods.
Melem exhibits exceptional water selectivity in gas dehydration and
can be reactivated under moderate conditions. According to the
single-crystal structure and powder X-ray diffraction studies, a
reversible structural transformation between Melem and its hydrated
form, Melem−H2O, induced by hydration/dehydration processes
has been observed. Melem displays water adsorption properties with
a maximum uptake of 11 mmol·g−1 at p/p0 = 0.92 and 298 K.
Additionally, Melem retained consistent water capture capacities
after 5 adsorption−desorption cycles. The remarkable gas
dehydration performance of Melem was confirmed by column breakthrough experiments, which achieved a separation factor of
up to 654.

Water vapor is one of the main causes for pipeline
corrosion and blockage during gas transportation.1,2

The presence of water can significantly reduce the efficiency of
chemical reactions, such as in methane dry reforming.3 Gases
are typically dried using solid desiccants such as zeolites 3A,
4A, and 13X.4 These solid desiccants require heating to
approximately 200 °C for activation. This process demands
substantial energy and involves the risk of adsorbent pore
collapse. In addition, commercial solid desiccants also exhibit a
high affinity for CO2, which makes them less efficient in drying
gas streams containing CO2. It is of utmost importance to
discover a viable solution that effectively addresses all these
challenges.
In recent years, porous materials such as metal−organic

frameworks have gained extensive attention for separation
applications, including gas drying.5−10 Normally, factors such
as the rigid pore environment, limited adsorption site density,
and dynamic competition among various guest species hinder
the potential of porous materials to enhance selectivity.11−13

Hydrogen-bonded organic frameworks (HOFs), a class of
porous materials constructed by weak noncovalent intermo-
lecular interactions (hydrogen bonding and π···π stacking),
have emerged rapidly as multifunctional materials for gas

storage,14,15 separation,16−18 proton conduction,19,20 sens-
ing,21−24 enzyme encapsulation,25−27 antibacterial activity,28,29

and applications over the past decade.30−32 Due to the flexible
and weak nature of hydrogen bonds, the original intermo-
lecular interactions in HOFs may be disrupted or reorganized
under specific driving forces, causing changes in the pore
environments, adsorption sites, and pore size.33,34 By taking
advantage of the characteristics of hydrogen bonding, design-
ing nonporous hydrogen-bonded molecular crystals that
display pore-opening responses to particular guest molecules
can markedly enhance their utility in molecular recognition
and separations. Rahmani et al. found that nonporous TPBD
allows for highly selective capture of p-xylene, undergoing a
structure transformation from TPBD to TPBD-PX.35 Molec-
ular crystals with hydrophilic functional groups, such as amino
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and 2,4-diamino triazine (DAT) groups might be promising
adsorbent materials for selective recognition and separation of
water.36−39

In this study, we observed a reversible structural trans-
formation process featuring pore opening/closing, induced by
hydration/dehydration, which could be utilized for the specific
recognition and adsorption of water during gas dehydration.
We found that Melem, a nonporous molecular crystal
composed of 1,3,3a1,4,6,7,9-heptaazaphenalene-2,5,8-triamine,
exhibited a unique pore-opening effect toward the water. The
reversible structural framework transformation between the
nonporous Melem and porous Melem−H2O can be observed
by single-crystal X-ray structures and powder X-ray diffraction
(PXRD). The nonporous nature of Melem could avoid the
influence of gases on H2O adsorption properties. Melem
exhibits a maximum adsorption capacity of approximately 11.0
mmol·g−1 for water, and its adsorption capacity remains
unchanged after at least 5 consecutive adsorption−desorption
cycles. Column breakthrough experiments have further
established its gas dehydration performance. Additionally,
Melem demonstrated good thermal stability and can be readily
regenerated without compromising its performance, showcas-
ing its promising practical applications in the field of gas
dehydration.
The crude nonporous Melem was obtained using melamine

as the precursor under 430 °C (Scheme 1).39−41 After

removing the melamine by boiling water, the nonporous
Melem rebuilds into Melem−H2O by a hydrogen bond.42,43

The Melem−H2O could be returned to nonporous Melem by
heating to remove the H2O from the frameworks. The Melem
was crystallized in a monoclinic system with the P21/c space
group, while the Melem−H2O was crystallized in a trigonal
system with the R3̅c space group. Melem was assembled by
intermolecular hydrogen bonds and π−π stacking between the
inversion CN heterocyclic rings (Figure 1a−d). With the
introduction of H2O, the original intermolecular hydrogen
bonds were broken, forming 1D channels with a diameter of
9.5 Å (Figure 1e,f). The O-positions obtained from the
structure are shown schematically in Figure 1f and consist of a
hexamer. Each water molecule establishes hydrogen bonds
with two other water molecules and two Melem molecules,
with one Melem molecule contributing an amino group and
the other supplying nitrogen of the hexagonal nitrogen ring.
The distance of the adjacent water oxygen atom was 3.3 Å in
the range of characteristic H-bonding distance. The hexagonal
channels with a diameter of 5.3 Å formed by water hexamer
allowed further filling by H2O molecules. The layer distance

between Melem molecules decreased from 3.3 to 3.1 Å while
maintaining the form of inverted stacking (Figure 1g,h).
The PXRD results demonstrated the phase change after

water adsorption and desorption (Figure 2a). After heating and
dehydration, the disappearance of the diffraction peaks at 2θ =
6.1 and 10.6° indicated that the frame of Melem−H2O began
to collapse. In addition, the diffraction peaks at 2θ = 24−28°
become cluttered, suggesting a layer-to-layer rearrangement.
The formation of new diffraction peaks at 2θ = 13.4, 25.8, and
26.2° demonstrated the formation of nonporous Melem. The
diffraction peaks belonging to Melem−H2O at 2θ = 6.1 and
10.6° would reappear after absorbing water or leaving them in
moist air for a few days. The scanning electron microscopy
(SEM) photographs revealed the topography changes of
Melem−H2O and Melem (Figure S1). Microcrystals of
Melem−H2O were observed to adopt a hexagonal prismatic
shape, whereas Melem microcrystals maintained a rod-like
morphology.
To assess the H2O adsorption performance of Melem, we

measured the water adsorption isotherms. Due to the Melem
being in a nonporous phase at lower relative humidity (RH),
its adsorption capacity for H2O is relatively weak (Figure 2b).
As the amount of H2O adsorption increases, the pore channel
gradually opens and the rate of H2O adsorption increases
rapidly. The inflection point occurred around 33% RH (4.58
mmol·g−1), which corresponded to the state of one H2O
molecule per Melem (Figure 1f). It implies that the pore
channel is fully open. The following adsorbed H2O molecules
further form intermolecular hydrogen bonds with H2O in the
pore space. The maximum H2O capacity reached 11.0 mmol·
g−1 at a partial pressure ratio (p/p0) of 0.92 and a temperature
of 298 K, which is comparable to that of zeolite desiccants such
as zeolite 4A (11.6 mmol·g−1),44 zeolite 4A (14.4 mmol·g−1),44

and other types of zeolites.45,46 And we found that the
saturated water vapor adsorption capacity of Melem slightly
decreased at 308 K (Figure S2). Thermogravimetric−differ-
ential scanning calorimetry was employed to quantify the heat
of adsorption (Qst). The calculated H2O Qst values for Melem
was 62.43 kJ·mol−1 (Figure S3), suggesting that the interaction
between Melem and water was much higher than that of silica
gel desiccants (43−50 kJ·mol−1).47 The thermal weight loss
curves of Melem and Melem−H2O were depicted in Figure 2c.
Melem−H2O lost 14% of its weight before reaching 150 °C,
mostly due to water loss from its pores (environmental RH
about 45%). In addition, we examined the impact of
dehydration temperature on the dehydration efficiency of
Melem−H2O (Figure S4). Melem only lost 12% and 13% of its
weight in 2 h at 70 and 90 °C, respectively. At 110 and 130 °C,
Melem took 12 and 20 min, respectively, to lose all the water
in the pores. Adsorption−desorption cycles of Melem revealed
a full and rapid dehydration, which can be achieved after
simple heating at 110 °C under vacuum. Additionally, Melem
has demonstrated a strong recycling ability. After the 5-cycle
water adsorption, there was no decline in H2O uptake, and the
structural integrity of reactivated HOF was still reserved
(Figure 2d and Figure S5).
After achieving satisfactory H2O adsorption and exhibiting

excellent thermal stability, we tested the CO2 and CH4
adsorption and desorption isotherms for Melem to explore
further the interaction between gases and the Melem
structures. Melem can adsorb a small amount of CO2 and
CH4 (Figure 2b). As for CO2 adsorption, the observed CO2
uptake at 1 atm reaches 1.07 cm3·g−1 at 298 K, which increases

Scheme 1. Schematic of the Synthesis of Melem and the
Hydration/Dehydration-Induced Reversible
Transformation Processa

aThe red, white, gray, and blue balls represent O, H, C, and N atoms,
respectively.

Chem & Bio Engineering pubs.acs.org/ChemBioEng Letter

https://doi.org/10.1021/cbe.3c00114
Chem Bio Eng. 2024, 1, 283−288

284

https://pubs.acs.org/doi/suppl/10.1021/cbe.3c00114/suppl_file/be3c00114_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/cbe.3c00114/suppl_file/be3c00114_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/cbe.3c00114/suppl_file/be3c00114_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/cbe.3c00114/suppl_file/be3c00114_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/cbe.3c00114/suppl_file/be3c00114_si_001.pdf
https://pubs.acs.org/doi/10.1021/cbe.3c00114?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/cbe.3c00114?fig=sch1&ref=pdf
pubs.acs.org/ChemBioEng?ref=pdf
https://doi.org/10.1021/cbe.3c00114?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


to 1.75 cm3·g−1 at 273 K (Figure S6). According to the PXRD
patterns of Melem before and after CO2 adsorption, it is
evident that Melem did not undergo a phase transition due to
CO2 (Figure S7). Solid desiccants often show highly
competitive adsorption of H2O and CO2. To investigate the
effect of water in pores on CO2 adsorption performance, we
tested the CO2 adsorption curve of Melem−H2O (Figure S8).
The CO2 adsorption capacities of Melem−H2O are slightly

higher than the uptakes of nonporous Melem. The H2O
molecules in the 1D pores do not increase the adsorption
capacity of CO2. As for CH4 adsorption, the observed CH4
uptake at 1 atm reaches 0.52 cm3·g−1 at 298 K, which increases
to 0.57 cm3·g−1 at 273 K (Figure S9).
To elucidate the mechanism of H2O selective adsorption in

Melem and the structural transformation during H2O
adsorption, density functional theory (DFT) calculations

Figure 1. (a) The structure of Melem. (b) The hydrogen bonds in Melem. (c) The layer distance in Melem. (d) The stacked inversion CN
heterocyclic rings in Melem. (e) The 1D channels of the Melem−H2O (water molecule are omitted). (f) The water hexamers in Melem−H2O. (g)
The layer distance in Melem−H2O. (h) The stacked inversion CN heterocyclic rings in Melem−H2O. The red, white, gray, and blue balls represent
O, H, C, and N atoms, respectively.

Figure 2. (a) The PXRD patterns of Melem and Melem−H2O after treating with different conditions. (b) The adsorption isotherms of Melem for
H2O, CO2, and CH4 at 298 K. The solid symbols represent adsorption, while open symbols represent desorption. (c) The thermogravimetric
analysis (TGA) curves of Melem and Melem−H2O. (d) Adsorption cycles for Melem, adsorption at 298 K and desorption at 383 K.
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were carried out. As shown in Figure 3a, the Melem molecule
in Melem hydrogen-bonded to adjacent Melem molecules

through the N atom and amino group, with a binding energy of
−59.73 kJ·mol−1. When the H2O molecule was introduced into
the system, the O atom of H2O prioritized hydrogen-bonding
with the amino group, while the H atom of H2O hydrogen-
bonded with the N atom, with a binding energy of −67.46 kJ·
mol−1 (Figure 3b), sufficient to disrupt the hydrogen-bonded
structure of Melem. The static H2O binding energy derived
from the DFT calculations was in good agreement with the
value obtained from the vapor adsorption isotherms. Upon
transformation into Melem−H2O, the dihedral angle of the
Melem molecules decreased to 18.52°, concurrent with an
increase in binding energy to −87.23 kJ·mol−1 (Figure S10).
This implies that the adsorbed water would not disrupt the
hydrogen bonding network structure of Melem−H2O. In
contrast, the binding energies for CO2 and CH4 were
significantly weaker, at −32.46 kJ·mol−1 and −12.60 kJ·
mol−1, respectively (Figure 3c,d), and were not adequate to
break the original structure of the nonporous Melem and open
up its pores.
The adsorption selectivity of Melem for H2O indicates its

potential as a gas desiccant. We evaluated adsorption

competition between water in CH4- and CO2-containing gas
streams, as would occur for separation involving natural gas
and syngas of methane dry reforming. We performed
breakthrough adsorption column experiments on H2O vapor
(single component) and in the presence of CH4 and CO2 using
a similar total flow of 40 cm3·min−1. The data were analyzed by
mass spectrometry, and the H2O retention times in the column
reached 95−105 min·g−1 at 20% RH (Figure S11). The
retention time of H2O in the column decreased as the RH
increased (Figure S12). The presence of CH4 or gas mixture
(CO2/CH4: 50/50) did not affect the retention time of H2O
(Figure 4a,b). The separation factor was calculated to be about
654 according to the column breakthrough experiments.
Melem could maintain stable retention time and obtain dried
CH4 for three consecutive breakthrough cycles (Figure S13).
H2O can be fully separated from gases, which confirms that
Melem is a potential adsorbent capable of full discrimination of
the water molecules in the gas by hydration/dehydration-
induced reversible transformation mechanism.
In conclusion, we introduced a hydration/dehydration-

induced reversible transformation approach and employed
flexible Melem for targeted recognition and uptake of H2O in
gas dehydration. Structural transitions between Melem and
Melem−H2O can be observed during the water adsorption and
desorption processes. Significantly, the nonporous structure
confers upon Melem a minimal adsorption capacity for gases,
thereby preventing the adsorption of gases by the dehydrant
during the dehydration process. Melem has an adsorption
capacity of 11.0 mmol·g−1 for water at 25 °C and can be
regenerated to its original adsorption capacity at only 110 °C.
Column breakthrough experiments demonstrated its effective-
ness in drying gases. The separation factor was calculated to be
about 654. Consequently, Melem has exhibited high selectivity
and affinity for H2O, rendering it an up-and-coming candidate
for the effective dehydration of industrial gases.
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Figure 4. Column breakthrough experiments for (a) CH4 (20% RH) and (b) CO2/CH4 mixture (50/50, 20% RH) with He as a carrier gas at 25
°C.
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